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Abstract

This paper is a summary of [1]. We formulate some problem on quantum hypothesis testing
for special Gaussian states, which naturally appear in photonic systems. Moreover, we introduce
an optimal test for each quantum hypothesis testing problem. Optimal tests are constructed by
using group symmetry of Gaussian states and some results in classical hypothesis testing.

1 Gaussian state
We introduce Gaussian states on $\mathcal{H}=L^{2}(\mathbb{R})$ , which represents a single-mode bosonic system and
is spanned by sets $\{|k\rangle\}_{k\in \mathbb{Z}_{\geq 0}}$ of the k-th Hermitian functions $|k\rangle.$ $A$ most typical example of a
single-mode bosonic system is the one-mode photonic system, in which the vector $|k\rangle$ is called the
$k$-photon number state because it is regarded as the state corresponding to $k$ photons. Then, the set
$M_{N}=\{|k\rangle\langle k|\}_{k\in \mathbb{Z}>0}$ , the number measurement, forms a positive-operator-valued measure (POVM).
When the vector $|\xi^{-})\in L^{2}(\mathbb{R})(\xi\in \mathbb{C})$ is defined by

$| \xi):=e^{-\rfloor}\star^{2}\sum_{k=0}^{\infty}\frac{\xi^{k}}{\sqrt{k!}}|k\rangle,$

the state $|\xi)(\xi|$ is called a coherent state because it corresponds to coherent light in an optical system.
Then, the (special quasiclassical) Gaussian state is defined as a Gaussian mixture of coherent states
in the following way:

$\rho_{\zeta,N}=\frac{1}{\pi N}\int_{\mathbb{C}}|\xi)(\xi|e^{-\frac{|\zeta-\xi|^{2}}{N}d\xi},$

where $\zeta\in \mathbb{C}$ and $N\in \mathbb{R}_{\geq 0}$ . This is a special case of the general Gaussian state ([28]), but throughout
this paper, we will use the term Gaussian state to refer to the quantum state having the above
form. The mean parameter $\zeta$ and the number parameter $N$ correspond, respectively, to the mean
and variance of the Gaussian distribution. When the number measurement $M_{N}$ is performed for the
system with the Gaussian state $\rho_{\zeta,N}$ , the measured value $k$ is obtained with the probability

$P_{\zeta,N}(k):= \langle k|\rho_{\zeta,N}|k\rangle=\frac{1}{N+1}(\frac{N}{N+1})^{k}e^{-\#_{+}^{\zeta^{2}}}L_{k}(-\frac{|\zeta|^{2}}{N(N+1)})$ (1)

where $L_{k}(x)= \sum_{j=0}^{k}(\begin{array}{l}kj\end{array})\frac{(-x)^{j}}{j!}$ is the k-th Laguerre polynomial.
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It is known that there exist unitary operators $W_{\zeta}(\zeta\in \mathbb{C})$ on $L^{2}(\mathbb{R})$ and $U_{n}$ on $L^{2}(\mathbb{R})^{\otimes n}$ which
satisfy the following.

$W_{\zeta’}\rho_{\zeta,N}W_{\zeta}^{*}, =\rho_{\zeta+\zeta’,N}$ , (2)
$U_{n}\rho_{\zeta,N}^{\otimes n}U_{n}^{*}=\rho_{\sqrt{n}\zeta,N}\otimes\rho_{0,N}^{\otimes(n-1)}$ . (3)

We call the above unitary operators the displacement operator and concentrating operator, respec-
tively.

2 Quantum hypothesis testing
In this section, we describe the formulation for quantum hypothesis testing.

2.1 Basic formulation for quantum hypothesis testing

In quantum hypothesis testing, in order to describe the null hypothesis $H_{0}$ and the altemative
hypothesis $H_{1}$ , we introduce two disjoint sets $S_{0}$ and $S_{1}$ of quantum states so that the unknown state
$\rho$ belongs to the union set $S:=S_{0}\cup S_{1}$ . Then, our problem is described in the following way:

$H_{0}:\rho\in S_{0}vs. H_{1}:\rho\in S_{1}.$

We now apply a two-valued POVM $\{T_{0}, T_{1}\}$ to the quantum system with the unknown state to
determine whether $\rho$ belongs to $S_{0}$ or $S_{1}$ . In this method, we support the hypothesis $H_{i}$ when the
outcome is $i\in\{0,1\}$ . There are two types of decision error. The first is that we accept $H_{1}$ although
$H_{0}$ is true, which is called a type I error. The second is to accept $H_{0}$ although $H_{1}$ is true, which is
called a type II error.

Since an arbitrary two-valued POVM $\{T_{0}, T_{1}\}$ is represented by an operator $0\leq T\leq I$ as $T_{0}=$

$I-T,$ $T_{1}=T$ where $I$ is the identity operator, an operator $0\leq T\leq I$ is called a test (operator) in
hypothesis testing. Then, the probabilities of a type I or type II error are expressed as

$\alpha_{T}(\rho):=Tr\rho T(\rho\in S_{0}) , \beta_{T}(\rho):=1-h\rho T(\rho\in S_{1})$ . (4)

A test with lower error probabilities is better, but the probabilities of type I and type II errors
cannot be minimized simultaneously. Since there often exists a trade-off between the probabilities of
type I and type II errors, we choose a permissible error constant $\alpha\in(0,1)$ for the probability of a type
I error; this is called the (significance) level. Hence, we consider tests $T$ with level $\alpha$ , i.e., Tr $T\rho<\alpha$

for all states $\rho\in S_{0}$ , and denote the set of tests $T$ with level $\alpha$ as follows;

$\mathcal{T}_{\alpha}:=\{T|0\leq T\leq 1, \prime RT\rho\leq\alpha, \forall\rho\in S_{0}\}$ . (5)

A test $T$ with level $\alpha$ is called a uniformly most powerful (UMP) test when the probability of type II
error is the minimum among tests with level $\alpha$ , i.e., $\beta_{T}(\rho)\leq\beta_{T’}(\rho)$ for all states $\rho\in S_{1}$ and for all
tests $T’\in \mathcal{T}_{\alpha}$ . UMP tests are often desirable in quantum hypothesis testing, but a UMP test may not
exist when the null hypothesis $H_{1}$ is composite. Thus we need to modify this formulation.

The family of quantum states in a hypothesis testing problem often has parameters that are unre-
lated to the hypotheses. We call these unrelated parameters the nuisance parameters. For example,
let us consider the following hypothesis testing problem of the number parameter $N$ for a family of
Gaussian states $\{\rho_{\zeta,N}\}_{\zeta\in \mathbb{C},N\in \mathbb{R}_{>0}}$ :

$H_{0}:N\leq N_{0}vs. H_{1}:N>N_{0},$
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where $N_{0}$ is a positive constant. In this case, the nuisance parameter is the mean parameter $\zeta\in \mathbb{C},$

which is unrelated to the number parameter $N.$

This situation can be formulated in the following way. It is assumed that our parameterized family
is given as $\{\rho_{\theta,\xi}\}_{\theta\in\ominus,\xi\in\Xi}$ , in which the parameter $\xi\in\Xi$ is the nuisance parameter and the parameter
$\theta\in\Theta$ is related to our hypotheses. In order to formulate our problem, we assume that the parameter
space $\Theta$ is given as the union of two disjoint subsets $\Theta_{0}$ and $\Theta_{1}$ . When $S_{i}=\{\rho_{\theta,\xi}\}_{\theta\in e_{:},\xi\in\Xi}$ for $i=0,1,$

our problem is described in the following way:

$H_{0}:\theta\in\Theta_{0}vs.$ $H_{1}:\theta\in\Theta_{1}$ with $\{\rho_{\theta,\xi}\}_{\theta\in e,\xi\in\Xi}.$

The min-max criterion for the nuisance parameter $\xi\in\Xi$ is based on the idea that it is better
for a test to have a smaller maximum value of the probability of type II error among all nuisance
parameters $\xi\in\Xi$ . Then, the optimal test with level $\alpha$ is given as the test $T_{0}$ with level $\alpha$ satisfying
the following equation:

$su_{\frac{p}{--}}\beta_{T_{0}}(\rho_{\theta,\xi})= \inf_{T,\epsilon\in\in \mathcal{T}_{0}}\sup_{\xi\in\Xi}\beta_{T}(\rho_{\theta,\xi}) (\forall\theta\in\Theta_{1})$
.

We call the above optimal test a $UMP$ min-max test with level $\alpha$ . Note that a UMP min-max test
coincides a UMP test when there are no nuisance parameters. Therefore the min-max criterion is a
generalization of the optimality for a UMP test. Our main task, which we will do in the following
sections, is to derive a UMP min-max test for various hypothesis testing problems for Gaussian states.

2.2 Invariance of the UMP min-max test

For a simple derivation of the optimal test, we sometimes focus on a unitary representation $V$ of
a group $G$ on a Hilbert space $\mathcal{H}$ . The unitary representation $V$ is called covariant conceming the
nuisance parameter space $\Xi$ , when there is an action of group $G$ to the nuisance parameter space $\Xi$

such that
$V_{g}\rho_{\theta,\xi}V_{g}^{*}=\rho_{\theta,g\cdot\xi}, \forall\theta\in\Theta, \forall\xi\in\Xi, \forall g\in G$. (6)

Now, we impose the invariance for tests under the above covariance. $A$ test $T$ is called a $Ginvar^{v}\iota ant$

test concerning a representation $V$ if $V_{g}TV_{g}^{*}=T$ holds for any $g\in G.$ $A$ $UMP$ invariant test is
defined by an invariant test with the minimum type II error in the class of tests with level $\alpha$ . That
is, an invariant test $T$ with level $\alpha$ is called a UMP invariant test with level $\alpha$ when $\beta_{T}(\rho)\leq\beta_{T’}(\rho)$

holds for all states $\rho\in S_{1}$ and for all invariant tests $T’\in \mathcal{T}_{\alpha}.$

It is often easy to optimize the invariant test by virtue of the invariance, and accordingly, to derive
the UMP invariant test. The quantum Hunt-Stein theorem guarantees that a UMP min-max test of
level $\alpha$ is a UMP invariant test. The quantum Hunt-Stein theorem for a compact group was given by
Holevo [27, 28] and for a noncompact case was shown by Bogomolov [7] and Ozawa [38], although it
was not stated in the context of quantum hypothesis testing. In the following, we restate the quantum
Hunt-Stein theorem as a theorem concerning the following testing problem with the min-max criterion:

$H_{0}:\theta\in\Theta_{0}vs.$ $H_{1}:\theta\in\Theta_{1}$ with $\{\rho_{\theta,\xi}\}_{\theta\in\Theta,\xi\in\Xi}$ (7)

for a family of quantum states $\{\rho_{\theta,\xi}\}_{\theta\in \mathbb{C},\xi\in\Xi}$ on $\mathcal{H}$ with a nuisance parameter $\xi.$

We state the quantum Hunt-Stein theorem for the noncompact case, which requires amenability
for a group $G$ . The definition and several properties of an amenable group are presented in [13, 8].
In particular, for a locally compact Hausdorff group $G$ , it is known that there exists an asymptotic
invariant probability measure on $G$ if and only if $G$ is amenable. Here, an asymptotic invariant
probability measure $\{\nu_{n}\}$ on $G$ is defined by a sequence of probability measures on $G$ satisfying

$\lim_{narrow\infty}|\nu_{n}(g_{J^{\backslash }}\cdot B)-\nu_{n}(B)|=0$
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for any $g\in G$ and any Borel set $B\subset G$ . For example, all compact Lie groups are amenable groups.
A finite-dimensional Euclid space $\mathbb{R}^{n}$ and the whole $\mathbb{Z}$ of integers are also amenable groups.

In addition, we need completeness of a family of quantum states. $A$ family of quantum states is
called complete if for any bounded linear operator $X$ the following equivalence holds:

$Tr(\rho X)=0(\forall\rho\in S) \Leftrightarrow X=0.$

For example, the entirety of pure states on a finite-dimensional quantum system and the Gaussian
states $\{\rho_{\zeta,N}\}_{\zeta\in \mathbb{C}}$ are complete for any $N>0.$

Theorem 1 $($ Quantum $Hunt-$Stein theorem $[7J, [38J)$ Let $S$ be a complete family of quantum states
on a Hilbert space $\mathcal{H}$ of at most countable dimension. When a unitaw representation of an amenable
group $G$ satisfies the covariant condition (6) concerning the nuasance pammeter space $\Xi$ , the following
equations hold.

$\inf_{T^{-}\in \mathcal{T}_{\alpha V}},\sup_{\xi\in\Xi}\beta_{\tilde{T}}(\rho_{\theta,\xi})=\inf_{\tau\in \mathcal{T}_{\alpha}}\sup_{\xi\in\Xi}\beta_{T}(\rho_{\theta,\xi}) (\forall\theta\in\Theta_{1})$,

$\inf_{\tilde{T}\in \mathcal{T}_{\alpha u,V}}\sup\beta_{T^{-}}(\rho_{\theta,\xi})=\inf_{\tau\xi\in\Xi\in \mathcal{T}_{\alpha u}},\sup_{\xi\in\Xi}\beta_{T}(\rho_{\theta,\xi}) (\forall\theta\in\Theta_{1})$ .

Theorem 1 yields that a UMP (unbiased) invariant test $T_{0}$ with level $\alpha$ for (7) is a UMP (unbiased)
min-max test with level $\alpha$ under the assumption in Theorem 1.

2.3 Reduction methods on quantum hypothesis testing problems

A realistic quantum hypothesis testing problem often has a complicated structure, and it is neces-
sary to simplify it. The following theorem is very useful to obtain optimal tests for several hypothesis
testing problems.

Theorem 2 Let $\mathcal{H}_{1},$ $\mathcal{H}_{2},$ $\mathcal{H}_{3}$ be Hilbert spaces with at most countable dimension, and

$S_{1}:=\{\rho_{\theta,\xi_{1}}\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1}}, S_{2}:=\{\rho_{\xi_{2}}\}_{\xi_{2}\in\Xi_{2}}, S_{3};=\{\rho_{\theta,\xi_{1},\xi_{3}}\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1},\xi_{3}\in\Xi_{3}}$

be famdies of quantum states on $\mathcal{H}_{1},$ $\mathcal{H}_{2},$ $\mathcal{H}_{3}$ , respectively. We assume that $V$ rs an irreducible repre-
sentation of an amenable group $G$ on $\mathcal{H}_{3}$ and $w$ covariant concerning the $nu?$sance parameter space
$\Xi_{1}\cross\Xi_{3}$ of the family of quantum states $\{\rho_{\theta,\xi_{1},\xi_{3}}\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1},\xi_{3}\in\Xi_{3}}$ . In addition, if $G$ is noncompact,
we assume that the family of quantum states $\{\rho_{\theta,\xi_{1}}\otimes\rho_{\theta,\xi_{1},\xi_{3}}\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1},\xi_{3}\in\Xi_{3}}$ is complete. Then, the
following equivalent relation holds.

A test $T$ zs a $UMP$ (unbiased) min-max test with level $\alpha$ for
$H_{0}:\theta\in\Theta_{0}vs.$ $H_{1}:\theta\in\Theta_{1}$ with $\{\rho_{\theta,\xi_{1}}\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1}}$ (8)

if and only if a test $U^{*}(T\otimes I_{\mathcal{H}_{2}}\otimes I_{\mathcal{H}_{3}})U$ is a $UMP$ (unbiased) min-max test with level $\alpha$ for
$H_{0}:\theta\in\Theta_{0}vs.$ $H_{1}:\theta\in\Theta_{1}$ with $\{U^{*}(\rho_{\theta,\xi_{1}}\otimes\rho_{\xi_{2}}\otimes\rho_{\theta,\xi_{1},\xi_{3}})U\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1},\xi_{2}\in\Xi_{2)}\xi_{3}\in\Xi_{3}}$ , (9)

where $U$ rs a unitary operator on $\mathcal{H}_{1}\otimes \mathcal{H}_{2}\otimes \mathcal{H}_{3}.$

In addition, when $\mathcal{H}_{3}w$ the empty set $\phi$ , a test $T$ is a $UMP$ (unbiased, min-max) test with level $\alpha$

for (8) if and only if a test $U^{\prime*}(T\otimes I_{\mathcal{H}_{2}})U’$ rs a $UMP$ (unbiased, min-max) test with level $\alpha$ for
$H_{0}:\theta\in\Theta_{0}vs.$ $H_{1}:\theta\in\Theta_{1}$ with $\{U^{\prime*}(\rho_{\theta,\xi_{1}}\otimes\rho_{\xi_{2}})U’\}_{\theta\in\Theta,\xi_{1}\in\Xi_{1)}\xi_{2}\in\Xi_{2}}$ , (10)

where $U’w$ a unitary operator on $\mathcal{H}_{1}\otimes \mathcal{H}_{2}.$

The above reduction theorem and the Hunt-Stein theorem play essential roles to derive optimal
tests in section 3 and 4.
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3 Hypothesis testing of the mean parameter
We now consider the hypothesis testing problem for the mean parameter of the Gaussian states.

We consider the hypothesis testing problem

$H_{0}$ : $|\zeta|\in[0, R_{0}]vs.$ $H_{1}$ : $|\zeta|\in(R_{\mathbb{C}}, \infty)$ with $\{\rho_{\zeta,N}^{\otimes n}\}_{\zeta\in \mathbb{C}}$ (H-1)

for $1\leq n\in \mathbb{N}$ and $R_{0}\in \mathbb{R}_{\geq 0}$ when the number parameter $N$ is fixed. That is, we suppose that the
number parameter $N$ is known. Then, the nuisance parameter space is $S^{1}=\{a\in \mathbb{C}\Vert a|=1\}$ , which
represents the phase of the mean parameter $\zeta$ . The UMP test for ( $H$-1) does not exist. Thus, our
purpose is to derive a UMP min-max test. Here, we define a test $T_{R,N}^{[A],\alpha}$ for $R\in \mathbb{R}_{\geq 0}$ by

$T_{R,N}^{[A],\alpha}:= \gamma_{R}|k_{R}\rangle\langle k_{R}|+\sum_{k=k_{R}+1}^{\infty}|k\rangle\langle k|,$

where $k_{R}\in \mathbb{Z}_{\geq 0}$ , and $0<\gamma_{R}\leq 1$ is determined by level $\alpha$ as

$1- \sum_{k=0}^{k_{R}}P_{R,N}(k)<\alpha\leq 1-\sum_{k=0}^{k_{R}-1}P_{R,N}(k)$ , (11)

$\gamma_{R}:=\frac{\alpha-(1-\sum_{k=0}^{k_{R}}P_{R,N}(k))}{P_{R,N}(k_{R})}$, (12)

where $P_{R,N}$ is the probability distribution in (1).

Theorem 3 For the hypothesis ( $H$ -1), the test

$T_{\alpha,R_{0},N}^{[1],n}:=U_{n}^{*}(T_{\sqrt{n}R_{0},N}^{[A],\alpha}\otimes I^{\otimes(n-1)})U_{n}$ (13)

is a $UMP$ min-max test with level $\alpha.$

Next, we consider the hypothesis testing problem

$H_{0}$ : $|\zeta|\in[0, R_{0}]vs.$ $H_{1}$ : $|\zeta|\in(R_{0}, \infty)$ with $\{\rho_{\zeta,N}^{\otimes n}\}_{\zeta\in \mathbb{C},N\in \mathbb{R}>0}$ ( $H$-2)

for $2\leq n\in \mathbb{N}$ and $R_{0}\in \mathbb{R}_{\geq 0}$ . But it is difficult to derive an optimal test for the above hypothesis
testing problem for an arbitrary $R_{0}\in \mathbb{R}_{\geq 0}$ since the number parameter $N$ is unknown. Hence, we
consider the hypothesis testing problem ( $H$-2) at $R_{0}=0$ :

$H_{0}:|\zeta|\in\{0\}vs.$ $H_{1}:|\zeta|\in(0, \infty)$ with $\{\rho_{\zeta,N}^{\otimes n}\}_{\zeta\in \mathbb{C},N\in \mathbb{R}>0}.$

We define a test $T_{\alpha}^{[t],n}$ by

$T_{\alpha}^{[t],n}= \sum_{k_{n}k=(k_{O},\cdot\cdot,)\in Z_{\geq 0}^{n+1}}\varphi^{;(n)}(k)|k\rangle\langle k|$

where the test function

$\varphi^{\prime(n)}(k):=\{\begin{array}{ll}0 (k_{0}<c(s(k)))\gamma(s(k)) (k_{0}=c(s(k)))1 (k_{0}>c(s(k)))\end{array}$

depends on the total count $s(k)$ $:= \sum_{j=0}^{n}k_{j}$ of $k=(k_{0}, \cdots, k_{n})$ , and functions

$c:\mathbb{Z}_{\geq 0}arrow \mathbb{Z}_{\geq 0}, \gamma:\mathbb{Z}_{\geq 0}arrow(0,1]$ (14)
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are determined as

$\sum_{l=c(s)+1}^{s}(\begin{array}{l}s-l+n-1n-1\end{array})<\alpha(\begin{array}{l}s+nn\end{array})\leq\sum_{l=c(s)}^{s}(\begin{array}{lll}s -l+ n-1 n-l \end{array})$ (15)

$\gamma(s):=\frac{\alpha(\begin{array}{l}s+nn\end{array})-\sum_{l=c(s)+1}^{s}(\begin{array}{l}s-l+n-1n-1\end{array})}{(^{s-c(s)+n-1}n-1)}$ (16)

for each total count $s\in \mathbb{Z}_{\geq 0}.$

Theorem 4 For the hypotheses ( $H$ -2) at $R_{0}=0$ , the test

$T_{\alpha}^{[2],n}:=U_{n}^{*}T_{\alpha}^{[t],n-1}U_{n}$ (17)

$u$ a $UMP$ unbiased min-max test with level $\alpha.$

It is not known if there exists an optimal test for the hypothesis testing problem ( $H$-2) when
$R_{0}\neq 0$ . This quantum hypothesis testing problem is analogous to the classical hypothesis testing
problem for the size of the mean parameter of the Gaussian distribution with unknown variance. The
problem is called the bioequivalence problem [9], and it is not known if there is an optimal test for
it. But the problem appears in several situations, including medicine and pharmacy, and a solution
is hoped for due to the demand of not only the theoretical aspect but also the practical aspect. The
problem ($H$-2) is expected to be important for quantum hypothesis testing because of the importance
of the bioequivalence problem.

4 Hypothesis testing of the number parameter
We now consider the hypothesis testing problem for the number parameter of Gaussian states.

We treat the hypothesis testing problem

$H_{0}$ : $N\in[0, N_{0}]vs.$ $H_{1}$ : $N\in(N_{0}, \infty)$ with $\{\rho_{\zeta,N}^{\otimes n}\}_{N\in \mathbb{R}_{>0}}$ (H-5)

for $1\leq n\in \mathbb{N}$ and $N\in \mathbb{R}_{>0}$ when the mean parameter $\zeta$ is fixed. That is, we suppose that the mean
parameter $\zeta$ is known.

The test function $\varphi$ : $\mathbb{Z}_{\geq 0}^{n}arrow[0,1]$ is defined by

$\varphi(k):=\{\begin{array}{l}0 (X_{1}(k)<K_{0})\gamma (X_{1}(k)=K_{0})1 (X_{1}(k)>K_{0}) ,\end{array}$ (18)

where $X_{1}(k)$ $:= \sum_{j=1}^{n}k_{j}$ for $k=(k_{1}, \cdot k_{n})\in \mathbb{Z}_{>0}^{n}$ , and the constants $K_{0}\in \mathbb{Z}_{\geq 0}$ and $\gamma\in(0,1]$ are
uniquely determined by

$1- \sum_{K=0}^{K_{0}}(\begin{array}{l}K+n-1n-1\end{array})(\frac{1}{N_{0}+1})^{n}(\frac{N_{0}}{N_{0}+1})^{K}<\alpha$

$\leq 1-\sum_{K=0}^{K_{0}-1}(\begin{array}{l}K+n-1n-1\end{array})(\frac{1}{N_{0}+1})^{n}(\frac{N_{0}}{N_{0}+1})^{K}$ (19)

$\gamma:=\frac{\alpha-(n-N_{R}}{(^{K_{0}+n-1}n-1)(\frac{1}{N_{0}+1})^{n}(\overline{N}_{0+\overline{1}}^{R)^{K_{0}}}N}$ . (20)
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Then we define a test as follows.
$T_{\alpha,N_{0}}^{[\chi^{2}],n}:= \sum_{k\in \mathbb{Z}_{\geq 0}^{n}}\varphi(k)|k\rangle\langle k|$

Theorem 5 For the hypothesis testing problem ( $H$ -5), the test

$T_{\alpha,\zeta,N_{0}}^{[5],n} :=(W_{-\zeta}^{\otimes n})^{*}T_{\alpha}^{[\chi^{2}],n}(W_{-\zeta}^{\otimes n})$ (21)

is a $UMP$ test with level $\alpha.$

Next, we consider the hypothesis testing problem

$H_{0}$ : $N\in(O, N_{0}]vs. H_{1} : N\in(N_{0}, \infty)$ with $\{\rho_{\zeta,N}^{\otimes n}\}_{\zeta\in \mathbb{C},N\in \mathbb{R}>0}$ (H-6)

for $2\leq n\in \mathbb{N}$ and $N\in \mathbb{R}_{>0}$ . The nuisance parameter space is $\mathbb{C}.$

Theorem 6 For the hypothesis testing problem ( $H$ -6), the test

$T_{\alpha,N_{0}}^{[6],n} :=U_{n}^{*}(I\otimes T_{\alpha}^{[\chi^{2}],n-1})U_{n}$ (22)

is a $UMP$ test with level $\alpha.$

5 Conclusion
We have treated several composite quantum hypothesis testing problem with nuisance parameters
in the quantum Gaussian system. Moreover, we have established a general theorem for reducing
complicated problems to fundamental problems (Theorem 2). In both deriving optimal tests and
reducing complicated problems, group symmetry played important roles, in which the quantum Hunt-
Stein Theorem was applied. Since the Gaussian state in quantum system corresponds to the Gaussian
distribution in a classical system, our testing problems for Gaussian states plays the same role as do
the testing problems for Gaussian distributions in the classical hypothesis setting.
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