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1. INTRODUCTION
The curve complex (or complex of curves) is introduced by Harvey [3] who was studying

the Teichm\"uller space of Riemann surfaces. The distance between curves on a surface can
be defined by using the curve complex of the surface. Masur and Minsky, in [6, 7, 8] for
example, studied various properties of the curve complexes and used them to investigate
3-manifolds. They introduced the notion of subsurface projection map which is one of the
useful tools to treat the curve complexes. From the view point of the curve complexes,
Hempel [4] defined so-called distance as a measure of complexities of Heegaard splittings
of 3-manifolds.

Since the curve complex has complicated structure in general (it is not even locally
finite), it is not easy to estimate the distance between given two curves. It is even more
difficult in general to estimate the distance of a Heegaard splitting since we need to
estimate the distance between two sets of infinitely many vertices in the curve complex.
Although, it is known that the curve complexes have infinite diameter (see [6]) and that
there exist Heegaard splittings of arbitrarily high distance (see [1, 2, 4] for example).
Namely, for any given integer $n$ , there exists a Heegaard splitting with distance bigger
than $n.$

In this paper, we give a method to extend a geodesic to one with given length (see
Section 3) and use it to construct Heegaard splittings with distance $n$ for any given non-
negative integer $n$ (see Section 4).

2. DEFINITIONS AND NOTATIONS

2.1. Curve complexes. Let $S$ be a compact orientable surface with genus $g$ and $p$

boundary components. $A$ simple closed curve in $S$ is essential if it does not bound a disk
in $S$ and is not parallel to a component of $\partial S$ . An arc properly embedded in $S$ is essential
if it does not co-bound a disk in $S$ together with an arc on $\partial S$ . We say that $S$ is spomdic
if $g=0,p\leq 4$ or $g=1,p\leq 1.$

Except in sporadic cases, the curve complex $C(S)$ is defined as follows: each vertex of
$C(S)$ is the isotopy class of an essential simple closed curve on $S$ , and a collection of $k+1$

vertices forms a $k$-simplex of $C(S)$ if they can be realized by disjoint curves in $S$ . In
sporadic cases, we need to modify the definition of the curve complex slightly, as follows.
We assume that $S$ is a torus, a torus with one boundary component, or a sphere with
4 boundary components since, otherwise, there are no essential simple closed curves in
$S$ . When $S$ is a torus or a torus with one boundary component (resp. a sphere with 4
boundary components), a collection of $k+1$ vertices forms a $k$-simplex of $C(S)$ if they
can be realized by curves in $S$ which mutually intersect exactly once (resp. twice). The
arc-and-curve complex $\mathcal{A}C(S)$ is defined similarly, as follows: each vertex of $\mathcal{A}C(S)$ is the
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isotopy class of an essential properly embedded arc or an essential simple closed curve on
$S$ , and a collection of $k+1$ vertices forms a $k$-simplex of $\mathcal{A}C(S)$ if they can be realized
by disjoint arcs or simple closed curves in $S.$

We can define the distance between two vertices in the curve complex $C(S)$ to be the
minimal number of 1-simplexes of a simplicial path in $C(S)$ joining the two vertices. We
denote by $d_{C(S)}(x, y)$ , or $d_{S}(x, y)$ in brief, the distance in $C(S)$ between the vertices $x$ and
$y$ . For subsets $X$ and $Y$ of the vertices of $C(S)$ , we define $diam_{S}(X, Y)=diam_{S}(X\cup Y)$ .
Similarly, we can define the distance $d_{AC(S)}(x, y)$ and $diam_{AC(S)}(X, Y)$ . We denote by
$[a_{0}, a_{1}\ldots, a_{n}]$ the path in $C(S)$ with vertices $a_{0},$ $a_{1}\ldots,$ $a_{n}$ such that $a_{i}\cap a_{i+1}=\emptyset(i=$

$0,1,$
$\ldots,$ $n-1)$ . We call a path $[a_{0}, a_{1}\ldots, a_{n}]$ a geodesic if $n=d_{s}(a_{0}, a_{n})$ .

2.2. Subsurface projections. Let $\mathcal{P}(Y)$ denote the power set of a set $Y$ . Suppose that
$X$ is an essential subsurface of $S$ that contains an essential simple closed curve. We call the
composition $\pi_{0}0\pi_{A}$ of maps $\pi_{A}$ : $C^{0}(S)arrow \mathcal{P}(\mathcal{A}C^{0}(X))$ and $\pi_{0}$ : $\mathcal{P}(\mathcal{A}C^{0}(X))arrow \mathcal{P}(C^{0}(X))$

a subsurface projection if they satisfy the following (see Figure 1): for a vertex $\alpha$ , take
a representative $\alpha$ so that $|\alpha\cap X|$ is minimal, where $|$ $|$ is the number of connected
components. Then

$\bullet$ $\pi_{A}(\alpha)$ is the set of all isotopy classes of the components of $\alpha\cap X,$

$\bullet$ $\pi_{0}(\{\alpha_{1}, \ldots, \alpha_{n}\})$ is the union for all $i=1,$ $\ldots,$
$n$ of the set of all isotopy classes of

the components of $\partial N(\alpha_{i}\cup\partial X)$ which are essential in $X$ , where $N(\alpha_{i}\cup\partial X)$ is a
regular neighborhood of $\alpha_{i}\cup\partial X$ in $X.$

FIGURE 1

The following lemma can be proved by using [7, Lemma 2.2].

Lemma 2.1 (cf. [5, Lemma 2.1]). Let $X$ be a subsurface of a surface $S$ as above. Let
$[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}]$ be a path in $C(S)$ such that $\alpha_{i}\cap X\neq\emptyset$ for each $i=0,1,$ $\ldots,$

$n$ . Then
$diam_{X}(\pi_{X}(\alpha_{0}), \pi_{X}(\alpha_{n}))\leq 2n.$

Remark 2.2. In the above lemma, the assumption that $\alpha_{i}\cap X\neq\emptyset$ for each $i=0,1,$ $\ldots,$
$n$

is necessary. For example, consider a path $[\alpha_{0}, \alpha_{1}, \alpha_{2}]$ in $C(S)$ such that $\alpha_{0},$
$\alpha_{2}\subset X$ and

$\alpha_{1}\subset S\backslash X$ . Since we can choose $\alpha_{0}$ and $\alpha_{2}$ so that $d_{X}(\alpha_{0}, \alpha_{2})(=diam_{X}(\pi_{X}(\alpha_{0}), \pi_{X}(\alpha_{2})))$

is arbitrarily high, the assertion of the above lemma does not hold in this case.
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3. EXTENDING GEODESICS

Let $S$ be a compact orientable surface. Let $\alpha_{0},$ $\alpha_{1}$ and $\alpha_{2}$ be simple closed curves on
$S$ such that $\alpha_{0}\cap\alpha_{1}=\emptyset,$ $\alpha_{1}\cap\alpha_{2}=\emptyset$ and $\alpha_{0}\cap\alpha_{2}\neq\emptyset$ . Then $[\alpha_{0}, \alpha_{1}, \alpha_{2}]$ is a geodesic
in $C(S)$ . In this section, we show how to extend this geodesic to one with length $n$ for
a given integer $n(>2)$ . To this end, we further assume that, for $i=0,2$ , either $\alpha_{i}$ is
non-separating on $S$ or $\alpha_{i}$ cuts $S$ into two surfaces one of which is a 3-holed sphere. (We
need this assumption to use Lemma 2.1.)

FIGURE 2

Let $X_{2}$ be the complement of an open neighborhood of $\alpha_{2}$ in $S$ . Note that $[\alpha_{0}, \alpha_{1}, \alpha_{2}]$ is
a geodesic of length two in $C(S)$ . Choose a homeomorphism $f_{2}:Sarrow S$ such that $f_{2}(\alpha_{2})=$

$\alpha_{2}$ and that $diam_{X_{2}}(\pi_{X_{2}}(\alpha_{0}), \pi_{X_{2}}(f_{2}(\alpha_{0})))>8$ . (This is possible by [6, Proposition 4.6],
for example.) Let $\alpha_{3}=f_{2}(\alpha_{1})$ and $\alpha_{4}=f_{2}(\alpha_{0})$ . Note that $[\alpha_{2}, \alpha_{3}, \alpha_{4}]$ is a geodesic of
length two in $C(S)$ .
Claim 3.1. The path $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}]$ constructed above is a geodesic in $C(S)$ .

Proof. Let $[\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{m}]$ be a geodesic in $C(S)$ such that $\beta_{0}=\alpha_{0},$ $\beta_{m}=\alpha_{4}$ . Then
$m\leq 4.$

Assume that $\beta_{j}\neq\alpha_{2}$ for any $j=0,1,$ $\ldots,$
$m$ . Then $\beta_{j}\cap X_{2}\neq\emptyset$ for each $j=0,1,$ $\ldots,$

$m.$

By Lemma 2.1, we have $diam_{X_{2}}(\pi_{X_{2}}(\beta_{0}), \pi_{X_{2}}(\beta_{m}))\leq 2m\leq 8$, a contradiction. Hence,
$\beta_{j}=\alpha_{2}$ for some $j=0,1,$ $\ldots,$ $m.$

We have the equalities

$j=d_{S}(\beta_{0}, \beta_{j}) = d_{S}(\alpha_{0}, \alpha_{2})=2,$

$m-j=d_{S}(\beta_{j}, \beta_{m}) = d_{S}(\alpha_{2}, \alpha_{4})=2.$

By combining the above equalities, we have $m=4$ , and hence, $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}]$ is a
geodesic in $C(S)$ . $\square$

Remark 3.2. The above claim is an easy generalization of the example given in [9,
Chapter 2, Section 6]. In the example, a geodesic in $C(S)$ of length 4 is constructed when
$S$ is a 5-holed sphere.

We repeat this procedure to construct a geodesic $[\alpha_{0}, \alpha_{1}, \alpha_{2}\ldots, \alpha_{n}]$ for any even integer
$n$ . Namely, for each $i\in\{2,4, \ldots, n-2\}$ , sssume that $[\alpha_{0}, \alpha_{1}, \alpha_{2}\ldots, \alpha_{i}]$ is a geodesic in
$C(S)$ and that either $\alpha_{i}$ is non-separating on $S$ or $\alpha_{i}$ cuts $S$ into two surfaces one of which
is a 3-holed sphere.

$\bullet$ $X_{i}$ is the complement of an open neighborhood of $\alpha_{i}$ in $S,$

$\bullet$ $f_{i}$ : $Sarrow S$ is a homeomorphism such that $f_{i}(\alpha_{i})=\alpha_{i}$ and that
$diam_{X_{i}}(\pi_{X_{i}}(\alpha_{i-2}), \pi_{X_{i}}(f_{i}(\alpha_{i-2})))>2(i+2)$ ,
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$\bullet$ $\alpha_{i+1}=f_{i}(\alpha_{i-1})$ and $\alpha_{i+2}=f_{i}(\alpha_{i-2})$ .
Note that $[\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}]$ is a geodesic of length two in $C(S)$ .

Claim 3.3. The path $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i+2}]$ constructed above is a geodesic in $C(S)$ .

Proof. Let $[\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{m}]$ be a geodesic in $C(S)$ such that $\beta_{0}=\alpha_{0},$ $\beta_{m}=\alpha_{i+2}$ . Then
$m\leq i+2.$

Assume that $\beta_{j}\neq\alpha_{i}$ for any $j=0,1,$ $\ldots,$
$m$ . Then $\beta_{j}\cap X_{i}\neq\emptyset$ for each $j=0,1,$ $\ldots,$

$m.$

By Lemma 2.1, we have $diam_{X_{1}}(\pi_{X_{1}}(\beta_{0}), \pi_{X}.(\beta_{m}))\leq 2m\leq 2(i+2)$ , a contradiction.
Hence, $\beta_{j}=\alpha_{i}$ for some $j=0,1,$ $\ldots,$

$m.$

We have the equalities

$j=d_{S}(\beta_{0}, \beta_{j}) =d_{S}(\alpha_{0}, \alpha_{i})=i,$

$m-j=d_{S}(\beta_{j}, \beta_{m}) =d_{S}(\alpha_{i}, \alpha_{i+2})=2.$

By combining the above equalities, we have $m=i+2$ , and hence, $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i+2}]$ is
a geodesic in $C(S)$ . $\square$

In this way, we can extend the geodesic $[\alpha_{0}, \alpha_{1}, \alpha_{2}]$ to one with any given length.

4. APPLICATION To HEEGAARD SPLITTINGS

A 3-manifold $V$ is a compression body if there exists a closed (possibly empty) surface
$F$ and a $0$-handle $B$ such that $V$ is obtained from $F\cross[O, 1]\cup B$ by adding 1-handles to
$F\cross\{1\}\cup\partial B$ . The subsurface of $\partial V$ corresponding to $F\cross\{O\}$ is denoted by $\partial_{-}V$ , and we
denote by $\partial_{+}V$ the subsurface $\partial V\backslash \partial_{-}V$ of $\partial V$ . For a compact orientable 3-manifold $M,$

we say that $C_{1} \bigcup_{P}C_{2}$ is a genus-g Heegaard splitting of $M$ if $C_{1}$ and $C_{2}$ are compression
bodies in $M$ such that $C_{1}\cup C_{2}=M$ and $C_{1}\cap C_{2}=\partial_{+}C_{1}=\partial_{+}C_{2}=P.$

For a compression body $V$ , the disk complex $\mathcal{D}(V)$ is the subcomplex of $C(\partial_{+}V)$ consist-
ing of the vertices with representatives bounding disks of $V$ . For a genus-g $(\geq 2)$ Heegaard
splitting $C_{1} \bigcup_{P}C_{2}$ , the (Hempel) distance of $C_{1} \bigcup_{P}C_{2}$ is defined to be $d_{P}(\mathcal{D}(C_{1}), \mathcal{D}(C_{2}))=$

$\min\{d_{P}(x, y)|x\in \mathcal{D}(C_{1}), y\in \mathcal{D}(C_{2})\}.$

Since Hempel [4] introduced the notion of distance of Heegaard splittings, the existence
of Heegaard splittings with arbitrarily high distance has been shown by using various
methods (see [4, 1, 2] for example). We can use a geodesic constructed in the previous
section to prove the following.

Theorem 4.1 ([5, Theorem 1.1]). For any integer $n>0$ and any integer $g>1$ , there
exists a genus-g Heegaard splitting $C_{1} \bigcup_{P}C_{2}$ with distance exactly $n.$

We remark that compression bodies $C_{1}$ and $C_{2}$ constructed in the proof of the above
theorem have boundary components other than the Heegaard surface $P=\partial_{+}C_{1}=\partial_{+}C_{2}.$

The following proposition is also useful to prove the above theorem.

Proposition 4.2 ([5, Proposition 3.1]). Let $V$ be a compression body obtained by adding
$a$ 1-handle to $F\cross[O, 1]$ , where $F$ is a $genus-(g-1)$ closed orientable surface $(g>1)$ .
Then we have the following.

(1) There is a unique non-separating disk in $V$ up to ambient isotopy.
(2) Any essential sepamting disk in $V$ can be isotoped to be disjoint from the non-

sepamting disk in $V.$
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In the remaining of this paper, we give a brief explanation on how to construct the
Heegaard splitting in the above theorem. We show the proof only in case where $n$ is even.
In case where $n$ is odd, we need to modify slightly the way to extend a geodesic in the
curve complex (see [5, Subsection 4.2]).

Let $C_{1}$ and $C_{2}$ be copies of the compression body obtained by adding a 1-handle to
$F\cross[O, 1]$ , where $F$ is a $genus-(g-1)$ closed orientable surface $(g>1)$ . We construct a
geodesic $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n+2}]$ of length $(n+2)$ in $C(\partial_{+}C_{1})$ as in the previous section. We
may assume that $\alpha_{0}$ is the boundary of the non-separating essential disk $D_{1}$ properly
embedded in $C_{1}$ , and we further assume that $\alpha_{2}$ is a simple closed curve on $\partial_{+}C_{1}$ which
intersects $\alpha_{0}$ transversely in one point. This implies that $\alpha_{n+2}$ intersects $\alpha_{n}$ transversely
in one point by the construction. Take any homeomorphism $h:\partial_{+}C_{2}arrow\partial_{+}C_{1}$ such that
$h(\partial D_{2})=\alpha_{n+2}$ , where $D_{2}$ is the non-separating essential disk properly embedded in $C_{2}.$

We identify the boundary components $\partial_{+}C_{1}$ and $\partial_{+}C_{2}$ by $h$ , and let $P=\partial_{+}C_{1}=h(\partial_{+}C_{2})$ .
Then $C_{1} \bigcup_{P}C_{2}$ is a genus-g Heegaard splitting of a compact orientable 3-manifold.

By Proposition 4.2, the boundary of any essential disk in $C_{1}$ (resp. $C_{2}$ ) has distance at
most 1 from $\alpha_{0}$ (resp. $\alpha_{n+2}$ ). Thus we can see that the distance of the Heegaard splitting
$C_{1} \bigcup_{P}C_{2}$ is at least $n$ . Note, on the other hand, that $\alpha_{2}$ (resp. $\alpha_{n}$ ) intersects $\alpha_{0}$ (resp.
$\alpha_{n+2})$ transversely in one point. Then, as illustrated in Figure 3, we can find an essential
separating disk in $C_{1}$ (resp. $C_{2}$ ) whose boundary is disjoint from $\alpha_{0}\cup\alpha_{2}$ (resp. $\alpha_{n}\cup\alpha_{n+2}$ ),
which implies that the distance of the Heegaard splitting $C_{1} \bigcup_{P}C_{2}$ is at most $n.$

FIGURE 3
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