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ABSTRACT. In this paper, we introduce norm curves as 1-dimensional algebraic subsets
in character varieties of 3-manifolds with torus boundary and follow the arguments in [8]
and [5] in this setting. We then clarify what we can say about cyclic surgeries of knots
with the specific tangle presentation $N(S+T)$ as in [16]. In the second half, we focus
on $r$-curves and give some simple observations about cyclic surgeries. We then check the
factors of $A$-polynomials using Culler’s calculations and give a few remarks and questions
about $A$-polynomiak and their factorization.

1. INTRODUCTION

A cyclic surgery is a Dehn surgery along a knot or link that yields a closed 3-manifold
with cychc fundamental group. The surgery slope, i.e., the image of the meridian of
the surgery, is called a cyclic slope. $A$ central problem in low-dimensional topology is
to characterize the 3-manifolds that can be obtained by Dehn surgeries along a given
knot. In the celebrated paper of Culler, Gordon, Luecke and Shalen [8], the authors
prove the Cyclic Surgery Theorem: if a knot complement is not a Seifert fibered space
then it has at most three cyclic slopes. The $SL(2, \mathbb{C})$-representations of the fundamental
group and the associated character varieties play an important role in the first chapter of
their paper. Cooper, Culler, Gillet, Long and Shalen then introduced the $A$-polynomial
as a plane curve that carries information about the character varieties [5]. Boyer and
Zhang next used the precise relationship between character varieties and $A$-polynomiaJs
in their study of finite surgeries, i.e., Dehn surgeries that yield closed -manifolds with
finite fundamental groups [3].

In [16], we studied the factorization of A-polynomials of knots in $S^{3}$ that have a specific
tangle presentation. As usual in knot theory, we denote by $N(T)$ and $D(T)$ the numer-
ator and denominator closures of a tangle $T$ , respectively, and by $N(S+T)$ the knot
resulting from the sum of two tangles $S$ and $T$ . Let $A_{K}(\mathfrak{l}, m)$ denote the A-polynomial of
a knot $K$ in $S^{3}$ and $A_{\mathring{K}}(\mathfrak{l},m)$ denote the product of the factors of $A_{K}(1, \mathfrak{m})$ containing the
variable $\mathfrak{l}$ . Note that $A_{K}(\mathfrak{l}, \mathfrak{m})/A_{K}^{O}(\mathfrak{l}, m)$ is a polynomial with only one variable $m$ . In [16,
Theorem 1.2], we proved that if $N(S+T)$ and $N(T)$ are knots and $N(S)$ is a split link in
$S^{3}$ then $A_{N(T)}^{o}(\mathfrak{l}, m)$ is a factor of $A_{N(S+T)}(\mathfrak{l}, m)$ . For example, the knot shown in Figure 1
satisfies these conditions. As a consequence, we obtain information about Dehn surgeries
of $N(S+T)$ from those of $N(T)$ . In this note, we explain what we can say about cyclic
surgeries of $N(T)$ and $N(S+T)$ .

Suppose $N(T)$ is hyperbolic. In this case, the $SL(2, \mathbb{C})$-character variety $X(M_{N(T)})$ of
$N(T)$ has an irreducible curve component $X_{0}$ containing the character of a discrete faithful
representation of $\pi_{1}(M_{N(T)})$ , where $M_{K}$ denotes the complement of a small open tubular
neighborhood of a knot $K$ in $S^{3}$ . Let $M_{K}(\alpha)$ denote the closed 3-manifold obtained from
$M_{K}$ by Dehn filhng with slope $\alpha\in \mathbb{Q}\cup\{\infty\}$ . Here $\mathbb{Q}\cup\{\infty\}$ is canonically identified with
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FIGURE 1. $N(T)=4_{1},$ $N(S)$ is a trivial link and $N(S+T)=9_{24}.$

the set of primitive elements of $H_{1}(\partial M_{K};\mathbb{Z})mo$dulo the $sign\pm.$ $A$ primitive element
$\alpha\in H_{1}(\partial M_{K};\mathbb{Z})$ is called a boundary class of $K$ if there is an essential surface in $M_{K}$

with boundary $\alpha$ , and called a strict boundary class if it is not a boundary class of the
boundary of the fiber of any fibration in $M_{K}$ over $S^{1}$ . The slope $\infty$ corresponds to the
meridian $\mu$ as usual. For each boundary class $\alpha$ , define $\Vert\alpha\Vert_{X_{0}}$ to be the degree of a certain
function $f_{\alpha}$ : $\tilde{X}_{0}arrow \mathbb{C}\mathbb{P}^{1}$ on the smooth model $\tilde{X}_{0}$ of the projective completion of $X_{0}$ , called
the Culler-Shalen norm of $\alpha$ on $X_{0}$ . The function $f_{\alpha}$ and the Culler-Shalen norm will
be explained in Section 2. The minimal value of $\Vert\alpha\Vert_{X_{0}}$ among $\alpha\in H_{1}(\partial M_{K};\mathbb{Z})\backslash \{0\}$ is
called the minimal norm of $\Vert\cdot\Vert_{X_{0}}$ . The meridian $\mu$ attains the minimal norm, i.e., $\Vert\mu\Vert_{X_{0}}$

is minimal, since the Dehn surgery with slope $\infty$ yields $S^{3}.$

Theorem 1.1. Suppose that $N(S+T)$ is a knot, $N(T)$ is a hyperbolic knot and $N(S)$

is a split link in $S^{3}$ . Let $X_{0}$ be the irreducible component of $X(M_{N(T)})$ containing the
character of a discrete faithful representation of $\pi_{1}(M_{N(T)})$ . If $\alpha$ is not a strict boundar
class of $N(T)$ associated with an ideal point of $X_{0}$ and satisfies $\Vert\alpha\Vert_{X_{0}}>\Vert\mu\Vert_{X_{0}}$ then
neither $\pi_{1}(M_{N(T)}(\alpha))$ nor $\pi_{1}(M_{N(S+T)}(\alpha))$ is cyclic.

The point is that, by [16], the curve $X_{0}$ also appears in the character variety of $N(S+$
$T)$ , but this curve usually consists of the characters of non-faithful representations of
$\pi_{1}(M_{N(S+T)})$ . In particular, it generally does not contain a discrete faithful representation
of $\pi_{1}(M_{N(S+T)})$ even if that knot is hyperbolic, and hence we need to be careful when we
apply the argument in [8] to this curve. $A$ weaker assertion still holds even if we drop the
assumption that $N(T)$ is hyperbolic. This will be discussed in Section 4. Note also that
this curve may not be a component of $X(M_{N(S+T)})$ , i.e., may be a curve on a component
of $X(M_{N(S+T)})$ of higher dimension. Because of this, we need to define norm curves as
1-dimensional algebraic subsets of character varieties. This will be done in Section 2.

As a corollary, we have a criterion for cyclic surgeries under the assumption that $N(S+$
$T)$ is small. $A$ knot $K$ is said to be small if there is no closed essential surface in its
complement. If $N(S+T)$ is small then we can use [8, Theorem 2.0.3] to argue that strict
boundary slopes cannot yield cyclic fundamental groups. As mentioned, $\infty$ is obviously
a cychc slope since $M_{K}(\alpha)=S^{3}.$ $A$ cychc slope is said to be non-trivial if it is not $\infty.$

Corollary 1.2. Suppose that $N(S+T)$ is a small knot, $N(T)$ is a hyperbolic knot and
$N(S)$ is a split link in $S^{3}$ . Let $X_{0}$ be the irreducible component $ofX(M_{N(T)})$ containing the
chamcter of a discrete faithful representation of $\pi_{1}(M_{N(T)})$ . If every $\alpha\in H_{1}(\partial M_{N(T)};\mathbb{Z})\backslash$

$\{0\}$ that is not a strict boundary class of $N(T)$ satisfies $\Vert\alpha\Vert_{X_{0}}>\Vert\mu\Vert_{X_{0}}$ then $N(S+T)$
has no non-trivial cyclic slope.
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We have the same criterion for cychc surgeries in the context of $A$-polynomials. For a
two variable polynomial $A(\mathfrak{l},m)$ , we define $\Vert\alpha\Vert_{A}$ by the integral lattice width of the two
lines of slope $\alpha$ tangent to the Newton polygon of $A(\mathfrak{l},\mathfrak{m})$ . More precisely, the width $\Vert\alpha\Vert_{A}$

of $\alpha\in H_{1}(\partial M_{K};\mathbb{Z})$ is $2(\ell-1)$ , where $\ell$ is the number of lines of slope $\alpha$ that intersect
the Newton polygon of $A(\mathfrak{l}, \mathfrak{m})$ and pass through integral lattice points. Note that $\Vert\cdot\Vert_{A}$

is a norm if and only if the Newton polygon of $A(\mathfrak{l}, \mathfrak{m})$ has a positive volume.
Let $A_{K}(\downarrow, m)$ denote the $A$-polynomial of a knot $K$ in $S^{3}$ . Each norm curve $X_{1}$ of $X(M_{K})$

corresponds to the product of some factors of the $A$-polynomial with suitable multiplicities
$d$ , which we denote by $A_{1}^{d}(\mathfrak{l},\mathfrak{m})$ . This correspondence appears in [3], in which they proved
that the two norms $\Vert\cdot\Vert_{A_{1}^{d}}$ and $\Vert\cdot\Vert_{X_{1}}$ coincide. Therefore we can replace the inequality
$\Vert\alpha\Vert_{X_{0}}>\Vert\mu\Vert_{X_{0}}$ in Theorem 1.1 and Corollary 1.2 by $\Vert\alpha\Vert_{A_{0}^{d}}>\Vert\mu\Vert_{A_{0}^{d}}.$

This paper is organized as follows. In Section 2, we define norm curves and explain their
properties. The statements in this section appear originally in [8] and [2]. In Section 3, we
state the corresponding statements in the context of $A$-polynomials. Section 4 deals with
knots in $S^{3}$ of the type $N(S+T)$ . In that section, we show theorems conceming norm
curves and cychc surgeries, and then give the proofs of Theorem 1.1 and Corollary 1.2. In
Section 5, we focus on $r$-curves and give some simple observations about cyclic surgeries.
In the last section, we check the factors of $A$-polynomials using Culler’s calculations and
give a few remarks and questions about $A$-polynomials and their factorization.

The first author would like to thank Profs. T. Kitano, T. Morifuji and Y. Yamashita
for inviting him to the RIMS seminar in Hakone and giving him an opportunity to discuss
this topic.

2. NORM CURVES AND CYCLIC SURGERIES

Let $M$ be a compact, connected, irreducible and $\partial$-irreducible 3-manifold whose bound-
ary $\partial M$ is a torus. We denote by $R(M)=Hom(\pi_{1}(M), SL(2, \mathbb{C}))$ the set of representa-
tions of $\pi_{1}(M)$ into $SL(2, \mathbb{C})$ , called the representation variety of $M$ . Let $t$ : $R(M)arrow$

$X(M)$ be the map which sends a representation $\rho$ to its character $\chi_{\rho}$ . The image $X(M)$

is called the chamcter variety of $M$ . Note that $R(M)$ and $X(M)$ are complex affine alge-
braic sets. For each $\gamma\in\pi_{1}(M)$ , denote by $I_{\gamma}$ : $X(M)arrow \mathbb{C}$ the regular function defined
by $I_{\gamma}(\chi_{\rho})=\chi_{\rho}(\gamma)$ and by $f_{\gamma}$ : $X(M)arrow \mathbb{C}$ the function given by $f_{\gamma}=I_{\gamma}^{2}-4.$

In [8], the authors study cychc surgeries using character varieties. In the first chapter of
their paper, $M$ is assumed to be hyperbohc since they focused on the irreducible compo-
nents of the character variety containing the character of a discrete faithful representation
of $\pi_{1}(M)$ . Their results generalize to norm curve components, introduced by Boyer and
Zhang in [3] in the proof of the finite filling conjecture. Here a norm curve component is a
1-dimensional irreducible component of the character variety on which $I_{\alpha}$ is not constant
for every $\alpha\in H_{1}(\partial M;\mathbb{Z})\backslash \{0\}.$

In this note, we relax two words in this definition; irreducible and component.

Definition 2.1. $A$ 1-dimensional algebraic subset $X_{1}$ of $X(M)$ is called a norm curve if
$f_{\alpha}$ is non-constant on $X_{1}$ for every $\alpha\in H_{1}(\partial M;\mathbb{Z})\backslash \{0\}$ . Remark that $X_{1}$ need not be
irreducible.

Let $X_{1}$ be a norm curve with irreducible components $X_{1}^{(1)},$ $X_{1}^{(2)},$
$\cdots,$

$X_{1}^{(k)}$ and $\tilde{X}_{1}$ be
the smooth model of the projective completion of $X_{1}$ with smooth model $\tilde{X}_{1}^{(i)}$ of $X_{1}^{(i)}$

for each $i=1,$ $\cdots,$
$k$ . The function $f_{\alpha}$ is regarded as a function on $\tilde{X}_{1}$ canonically. For
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each $i=1,$ $\cdots,$
$k$ , let $R_{1}^{(i)}$ denote the algebraic subset of the representation variety of $M$

whose image is $X_{1}^{(i)}$ . The birational equivalence from $\tilde{X}_{1}$ to $X_{1}$ is regular except at a
finite number of points of $\tilde{X}_{1}.$ $A$ non-regular point on $\tilde{X}_{1}$ is called an ideal point of $\tilde{X}_{1}.$

For each ideal point $x,$ $f_{\gamma}$ : $\tilde{X}_{1}arrow \mathbb{C}\mathbb{P}^{1}$ may have a pole, in which case we denote the order
of the pole by $\Pi_{x}(f_{\gamma})$ . If it has no pole at $x$ then we set $\Pi_{x}(f_{\gamma})=0.$

Lemma 2.2 ([8], cf. [2] Proposition 4.7). For each ideal point $x$ of $\tilde{X}_{1}^{(i)}$ there is a linear
function $\phi_{x}:H_{1}(\partial M;\mathbb{Z})arrow \mathbb{Z}$ satisfying the following:

(1) $\Pi_{x}(f_{\alpha})=|\phi_{x}(\alpha)|$ for each $\alpha\in H_{1}(\partial M;\mathbb{Z})$ .
(2) If $\phi_{x}\equiv 0$ then there is a closed essential surface in $M$ associated to $x.$

(3) If $\phi_{x}\not\equiv 0$ then there is a unique boundary class $\alpha$ with $\phi_{x}(\alpha)\equiv 0.$

Proof. This is proved in [8] for an irreducible component $X_{0}$ of $X(M)$ containing the
character of a discrete faithful representation. As is mentioned in [2, Proposition 4.7] in
the context of $PSL(2, \mathbb{C})$-character varieties, this assertion holds for any curve in $X(M)$ .
We here explain the proof in our setting. Let $P$ : $\pi_{1}(M)arrow SL(2, F)$ be the tautological
representation of $R_{1}^{(i)}$ , where $F=\mathbb{C}(R_{1}^{(i)})$ . Let $\{\alpha_{1}, \alpha_{2}\}$ be a basis of $H_{1}(\partial M;\mathbb{Z})$ . Suppose
that $P(\alpha_{1})$ and $P(\alpha_{2})$ are diagonahzable over some extension $E$ of the field $F$ . In this
case, we set

$P(\alpha_{i})=(\begin{array}{ll}a_{i} 00 a_{i}^{-1}\end{array})\in SL(2, E)$

for $i=1,2$ . Then for any element $\alpha=m\alpha_{1}+n\alpha_{2}$ in $H_{1}(\partial M;\mathbb{Z})$ , we have

$\Pi_{x}(f_{\alpha})=\frac{2}{d}|mv_{x}(a_{1})+nv_{x}(a_{2})|,$

where $v_{x}$ is the valuation induced by the ideal point $x$ and the extension, and $d$ is some
positive integer depending on the extension. Then we set $\phi_{x}(\alpha)=(2/d)(mv_{x}(a_{1})+$

$nv_{x}(a_{2}))$ . This is the linear function in the assertion.
Suppose that $P(\alpha_{1})$ is not diagonalizable. Up to conjugation, we may assume that

$P(\alpha_{1})=(^{a_{0}}1 a^{\frac{1}{1}1)}\in SL(2, E’) , a_{1}=\pm 1,$

where $E’$ is an extension of the field $F$ . Since $P(\alpha_{1})$ and $P(\alpha_{2})$ commute, $P(\alpha_{2})$ must
be an upper triangular matrix with diagonal, say, $\{a_{2}, a_{2}^{-1}\}$ . We then set $\phi_{x}(\alpha)=$

$(2/d’)(mv_{x}(a_{1})+nv_{x}(a_{2}))$ , where $d’$ is some integer depending on the extension.
If $v_{x}(a_{1})=v_{x}(a_{2})=0$ then $\phi_{x}\equiv 0$ , in which case a closed essential surface is detected by

the ideal point $x$ because any $\alpha\in\pi_{1}(\partial M)$ must be disjoint from the surface. Otherwise,

$\alpha=\frac{1}{gcd(v_{x}(a_{2}),v_{x}(a_{1}))}(v_{x}(a_{2})\alpha_{1}-v_{x}(a_{1})\alpha_{2})$

is the unique boundary class with $\phi_{x}(\alpha)\equiv 0$ , and the valuation at $x$ detects an essential
surface with boundary class $\alpha$ as in [9, 8]. $\square$

For each $\alpha\in H_{1}(\partial M;\mathbb{Z})$ , define $\Vert\cdot\Vert_{X_{1}}$ by

$\Vert\alpha\Vert_{X_{1}}=\sum_{i=1}^{k}$ (the degree of $f_{\alpha}$ on $\tilde{X}_{1}^{(i)}$ ).

Lemma 2.3. $\Vert\cdot\Vert_{X_{1}}$ is a norm.
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Proof. Since $\Vert\cdot\Vert_{X_{1}}$ is a sum of absolute values of linear functions, positive homogeneity
and sub-additivity hold. Hence, it is enough to show that $1\alpha\Vert_{X_{1}}>0$ for $\alpha\neq 0$ . From
the definition of norm curves, $f_{\alpha}$ is non-constant on $X_{1}$ for every $\alpha\in H_{1}(\partial M;\mathbb{Z})\backslash \{0\}.$

Hence $\Vert\alpha\Vert_{X_{1}}>0.$ $\square$

Lemma 2.4. The unit ball for $\Vert\cdot\Vert_{X_{1}}$ is a finite-sided polygon whose vertices are mtional
multiples of boundary classes of $M.$

Proof. Let $\Phi_{x}:\mathbb{R}^{2}arrow \mathbb{R}$ be the linear function obtained by extending $\phi_{x}:H_{1}(\partial M;\mathbb{Z})arrow \mathbb{Z}$

hnearly. Each vertex on the boundary of the unit ball corresponds to a boundary class $\alpha$

with $\Phi_{x}(\alpha)=0$ for some ideal point $x$ , i.e., $\Pi_{x}(f_{\alpha})=0$ . Hence $\alpha$ is a boundary slope by
Lemma 2.2 (3). $\square$

The minimal value of $\Vert\alpha\Vert_{X_{i}}$ among $\alpha\in H_{1}(\partial M;\mathbb{Z})\backslash \{0\}$ is called the minimal norm of
$\Vert\cdot\Vert_{X_{1}}$ . We denote it by $s_{X_{1}}$ . For a primitive element $\alpha$ in $H_{1}(\partial M;\mathbb{Z})$ , let $M(\alpha)$ denote
the closed 3-manifold obtained from $M$ by Dehn filling with slope $\alpha.$

Proposition 2.5 (cf. [8] Proposition 1.1.3). Let $M$ be a compact, connected, irreducible
and $\partial$ -irreducible 3-manifold utth torus boundary $\partial M$ and $X_{1}$ be a norm curve of $M.$

Assume that each irreducible component of $X_{1}$ contains the chamcter of an irreducible
representation of $\pi_{1}(M)$ . If $\alpha$ is not a boundary class associated with an ideal point of $X_{1}$

and satisfies $\Vert\alpha\Vert_{X_{1}}>s_{X_{1}}$ then $\pi_{1}(M(\alpha))$ is not cyclic.

Proof. The assertion corresponds to [8, Proposition 1.1.3] and the main part of the proof
is written in Section 1.5 and 1.6 of that paper. The proof goes through for the norm curve
$X_{1}$ except for Proposition 1.5.5. In the proof of Proposition 1.5.5, they use the property
that the discrete faithful representation of the hyperbolic manifold $M$ is irreducible. In
our case, the representation is irreducible by assumption.

We also need to be careful about the difference in hypotheses. In [8, Proposition 1.1.3],
it’s assumed $\alpha$ is not a strict boundary class. In our statement, we assume it is not a
boundary class associated with an ideal point of $X_{1}$ . In the proof of [8, Proposition 1.3.9],
their hypothesis is used to conclude that $\alpha$ is a strict boundary class”, and we replace
it by $\alpha$ is a boundary class associated with an ideal point” so that we do not use [8,
Proposition 1.2.7]. The hypothesis is used again in 1.6,2 and in page 264. In both parts,
we can easily verify that the proofs work in our case. $\square$

3. $A$-POLYNOMIALS AND CYCLIC SURGERIES

We introduce the $A$-polynomial of a norm curve following [3]. We need to modify
the setting shghtly since $X_{1}$ may not be irreducible. Fix a basis $\{\mu, \lambda\}$ of $\pi_{1}(\partial M)$ . Let
$\iota^{*}:X(M)arrow X(\partial M)$ be the regular map induced by the homomorphism $\iota_{\#}$ : $\pi_{1}(\partial M)arrow$

$\pi_{1}(M),$ $\Lambda$ be the set of diagonal representations of $\pi_{1}(\partial M)$ , which is an algebraic subset
of $R(\partial M)$ and $t|_{\Lambda}$ : $\Lambdaarrow X(\partial M)$ , which is surjective and of degree two. We then define
$p:\Lambdaarrow \mathbb{C}^{*}\cross \mathbb{C}^{*}$ by taking the top-left entries of $\rho(\mu)$ and $\rho(\lambda)$ . Now let $X_{1}$ be a norm
curve of $M$ with irreducible components $X_{1}^{(i)}$ for $i=1,$ $\cdots,$

$k$ . For each $i$ , the algebraic
closure $Y_{1}^{(i)}$ of $\iota^{*}(X_{1}^{(i)})$ in $X(\partial M)$ is an irreducible curve in $X(\partial M)$ . We then define
$D_{1}^{(i)}$ to be the algebraic closure of $p(t|_{\Lambda}^{-1}(Y_{1}^{(i)}))$ in $\mathbb{C}^{2}$ . Let $A_{1}^{(i)}(\mathfrak{l}, m)$ denote the defining
equation of $D_{1}^{(i)}$ and $d_{1}^{(i)}$ denote the degree of the map $\iota^{*}|_{X_{1}^{(i)}}$ : $X_{1}^{(i)}arrow X(\partial M)$ . Then the
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$A$ -polynomial $A_{1}^{d}(1, \mathfrak{m})$ of $X_{1}$ is defined as

$A_{1}^{d}( \mathfrak{l}, \mathfrak{m})=\prod_{i=1}^{k}A_{1}^{(i)}(\mathfrak{l},m)^{d_{1}^{(i)}}$

By construction, the variables $\mathfrak{m}$ and $\mathfrak{l}$ correspond to the eigenvalues of $\rho(\mu)$ and $\rho(\lambda)$

respectively. Let $A_{1}( \mathfrak{l}, \mathfrak{m})=\prod_{i=1}^{k}A_{1}^{(i)}(1, \mathfrak{m})$, denote the $A$-polynomial without multiphci-
ties.

For the $A$-polynomial $A_{1}^{d}(\mathfrak{l}, m)$ , the width $\Vert\alpha\Vert_{A_{1}^{d}}$ of $\alpha\in H_{1}(\partial M_{K};\mathbb{Z})$ is defined by
$2(\ell-1)$ , where $\ell$ is the number of lines of slope $\alpha$ that intersect the Newton polygon of
$A_{1}^{d}(\mathfrak{l}, m)$ and pass through integral lattice points. Since $X_{1}$ is a norm curve, the Newton
polygon of $A_{1}^{d}(\mathfrak{l}, m)$ has a positive volume, otherwise there is an $\alpha\in H_{1}(\partial M;\mathbb{Z})$ with $f_{\alpha}$

constant. Therefore $\Vert\cdot\Vert_{A_{1}^{d}}$ is a norm. It is proved in [3] that the two norms $\Vert\cdot\Vert_{A_{1}^{d}}$ and
$\Vert\cdot\Vert_{X_{1}}$ coincide. In particular, the assertion in Proposition 2.5 can also be stated in terms
of $A$-polynomials by replacing the inequality $\Vert\alpha\Vert_{X_{1}}>s_{X_{1}}$ by $\Vert\alpha\Vert_{A_{1}^{d}}>s_{A_{1}^{d}}$ , where $s_{A_{1}^{d}}$ is
the minimal norm of $\Vert\cdot\Vert_{A_{1}^{d}}.$

If $M$ is a knot complement in a homology 3-sphere, we usually set the basis $\{\mu, \lambda\}$ to be
the meridian and longitude pair of the knot. In this case, as mentioned in [5, Section 2.5],
if $X_{1}^{(i)}$ contains the character of an irreducible representation then the curve $A_{1}^{(i)}(\mathfrak{m}, \mathfrak{l})=0$

is different from the line $\mathfrak{l}=1$ . In particular, Proposition 2.5 can be restated as follows.
Proposition 3.1. Let $M$ be a knot complement in a homology 3-sphere, $X_{1}$ a norm curve
of $M$ and $A_{1}^{d}(1, \mathfrak{m})$ be the $A$ -polynomial corresponding to $X_{1}$ . Suppose that $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ has
no factor $1-\mathfrak{l}$ . If $\alpha$ is not a boundary class associated with an ideal point of $X_{1}$ and
satisfies $\Vert\alpha\Vert_{A_{1}^{d}}>s_{A_{1}^{d}}$ then $\pi_{1}(M(\alpha))$ is not cyclic.

Proof. Since the line $\mathfrak{l}=1$ is excluded from $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})=0,$ ae mentioned in [5, Section 2.5],
each irreducible component $X_{1}^{(i)}$ contains the character of an irreducible representation
of $\pi_{1}(M)$ . Hence the assertion follows from Proposition 2.5 and the coincidence of $\Vert\cdot\Vert_{A^{d}}$

and $\Vert\cdot\Vert_{X_{1}}.$
$\square ^{1}$

Remark 3.2. The boundary class associated with an ideal point of $X_{1}$ corresponds to a
slope of the boundary of the Newton polygon of $A_{1}(\mathfrak{l}, \mathfrak{m})$ . More precisely, if the boundary
class is $\alpha=p\mathfrak{m}+q\mathfrak{l}$ then the boundary of the Newton polygon has a segment with the
slope $p/q$ , see [5, Theorem 3.4].

We close this section by introducing a simple sufficient condition for the inequality
$\Vert\alpha\Vert_{A_{1}^{d}}>s_{A_{1}^{d}}$ in the case of the complement of a knot in $S^{3}.$

Lemma 3.3. Let $M_{K}$ be the complement of a knot $K$ in $S^{3},$ $X_{1}$ a norm curve of $M_{K}$

and $A_{1}^{d}(\mathfrak{l}, m)$ the $A$ -polynomial corresponding to $X_{1}$ . Suppose that $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ has no factor
1–1. Let $d_{\mathfrak{l}}$ be the degree of $A_{1}^{d}(\mathfrak{l},\mathfrak{m})$ as a polynomial in [ and $(x_{0}, y_{0})$ be the center of
the Newton polygon of $A_{1}^{d}(1, \mathfrak{m})$ , where $(x, y)$ are the coordinates on which we describe the
Newton polygon. If the point $(x_{0}, y_{0}-d_{\mathfrak{l}}/2)$ is contained in the interior of the Newton
polygon then any $\alpha\in H_{1}(\partial M_{K};\mathbb{Z})\backslash \{0\}$ except for $\mu$ satisfies $\Vert\alpha\Vert_{A_{1}^{d}}>s_{A_{1}^{d}}(=\Vert\mu\Vert_{A_{1}^{d}})$ . In
particular, if the knot $K$ is small then $K$ has no non-trivial cyclic slopes.

Proof. Let $\ell_{\mu}$ be the number of lines with slope $\infty$ which pass through the integral points
and intersect the Newton polygon of $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ . Suppose that $d_{t}$ is even. Then, since
$(x_{0}, y_{0}-d_{\mathfrak{l}}/2)$ is an interior point of the Newton polygon, we can easily see that there
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are at least $\ell_{\mu}$ integral points on the line $x=x_{0}$ in the interior of the Newton polygon.
If $d_{|}$ is odd then there are at least $\ell_{\mu}-1$ integral points on the line $x=x_{0}+1/2$ in the
interior of the Newton polygon and we can find at least one another integral point on the
line $x=x_{0}-1/2$ in the interior of the polygon. Therefore $\Vert\alpha\Vert_{A_{1}^{d}}>\Vert\mu\Vert_{A_{1}^{d}}$ holds for any
$\alpha\neq\mu.$ $\square$

Example 3.4. The $A$-polynomial of $4_{1}$ is calculated in [8] as
$A_{4_{1}}(\mathfrak{l}, m)=\mathfrak{m}^{4}+\mathfrak{l}(-1+\mathfrak{m}^{2}+2m^{4}+m^{6}-\mathfrak{m}^{8})+\mathfrak{l}^{2}\mathfrak{m}^{4}.$

The Newton polygon of this polynomial is shown in Figure 2. As mentioned in Remark 3.2,
the slopes $\pm 4$ on the boundary of this polygon correspond to the boundary slopes of
essential surfaces in $M_{4_{1}}$ . Since $A_{4_{1}}(1, \mathfrak{m})=0$ is irreducible, $\Vert\alpha\Vert_{A_{4_{1}}^{d}}>\Vert\mu\Vert_{A_{4_{1}}^{d}}$ if and only
if $\Vert\alpha\Vert_{A_{4_{1}}}>\Vert\mu\Vert_{A_{4_{1}}}.$

Now we use Lemma 3.3. The center of the polygon is (1, 4) and $d_{1}=2$ , hence $(x_{0},$ $y_{0}-$

$d_{1}/2)=(1,3)$ , which is a point in the interior of the polygon. Thus, by Lemma 3.3,
$\Vert\alpha\Vert_{A_{1}^{d}}>s_{A_{1}^{d}}=\Vert\mu\Vert_{A_{i}^{d}}$ for any $\alpha\neq\mu$ . Since $4_{1}$ is small, it has no non-trivial cychc slopes.

FIGURE 2. The Newton polygon of $A_{4_{1}}(\mathfrak{l}, \mathfrak{m})$ .

4. KNOTS OF TYPE $N(S+T)$ AND CYCLIC SURGERIES

In this section, we focus on the knots $N(T)$ and $N(S+T)$ explained in the introduction.
Recall that the main theorems are stated under the assumption that $N(S+T)$ and $N(T)$

are knots and $N(S)$ is a spht hnk in $S^{3}$ . We will assume this throughout this section.
We denote by $M_{K}$ the complement of a knot $K$ in $S^{3}.$ $A$ norm curve of $K$ means a norm
curve of $M_{K}$ in $X(M_{K})$ .
Lemma 4.1. Let $X_{1}$ be a nom curve of $N(T)$ and suppose that $f_{\mu}$ is not constant on
any irreducible component of $X_{1}$ . Then $X_{1}$ appears in $X(M_{N(S+T)})$ and is a nom curve
of $N(S+T)$ .

Proof. In [16], it is proved that a $SL(2, \mathbb{C})$-representation of $\pi_{1}(M_{N(T)})$ extends to one
of $\pi_{1}(M_{N(S+T)})$ if $f_{\mu}$ is not locally constant in $R(M_{N(T)})$ . Therefore $X_{1}$ appears in
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$X(M_{N(S+T)})$ , where we denote it as $\hat{X}_{1}$ . In the construction of the extension, $\pi_{1}(\partial M_{N(S+T)})$

is identified with $\pi_{1}(\partial M_{N(T)})$ by sending the generators of the Wirtinger presentation of
$\pi_{1}(\partial M_{N(S+T)})$ in the tangle $S$ to suitable elements in $\pi_{1}(\partial M_{N(S+T)})$ so that they are glob-
ally canceled, while the generators in the tangle $T$ are unchanged. Therefore, we have a
canonical identification of $H_{1}(\partial M_{N(S+T)};\mathbb{Z})$ and $H_{1}(\partial M_{N(T)};\mathbb{Z})$ . In particular, for each
$\alpha\in H_{1}(\partial M_{N(T)};\mathbb{Z})=H_{1}(\partial M_{N(S+T)};\mathbb{Z})$ , we have $f_{\alpha}=\hat{f}_{\alpha}$ , where $\hat{f}$ is the corresponding
function on the character variety of $N(S+T)$ . Hence $\hat{X}_{1}$ is a norm curve of $N(S+T)$ . $\square$

Theorem 4.2. Suppose that $N(S+T)$ and $N(T)$ are knots and $N(S)$ is a split link in
$S^{3}$ . Let $X_{1}$ be a norm curve of $N(T)$ . Suppose that each irreducible component of $X_{1}$

contains the chamcter of an irreducible representation and that $f_{\mu}$ is not constant on any
irreducible component of $X_{1}$ . If $\alpha$ is not a boundary class of $N(T)$ associated with an ideal
point of $X_{1}$ and satisfies $\Vert\alpha\Vert_{X_{1}}>\Vert\mu\Vert_{X_{1}}$ then neither $\pi_{1}(M_{N(T)}(\alpha))$ nor $\pi_{1}(M_{N(S+T)}(\alpha))$

is cyclic.

Pmof. The conclusion for $\pi_{1}(M_{N(T)}(\alpha))$ follows directly from Proposition 2.5. To show the
assertion for $\pi_{1}(M_{N(S+T)}(\alpha))$ note that, by Lemma 4.1, the norm curve $X_{1}$ also appears
in $X(M_{N(S+T)})$ as a norm curve of $N(S+T)$ . $\square$

Theorem 4.3. Suppose that $N(S+T)$ and $N(T)$ are knots and $N(S)$ is a split link in $S^{3}.$

Let $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ be the $A$ -polynomial corresponding to a norm curve $X_{1}$ of $N(T)$ . Suppose
that $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ does not contain the factor $1-\mathfrak{l}$ nor factors that depend only on the variable

$\mathfrak{m}$ . If $\alpha$ is not a boundary slope of $N(T)$ associated with an ideal point of $X_{1}$ and satisfies
$\Vert\alpha\Vert_{A_{1}^{d}}>\Vert\mu\Vert_{A_{1}^{d}}$ then neither $\pi_{1}(M_{N(T)}(\alpha))$ nor $\pi_{1}(M_{N(S+T)}(\alpha))$ is cyclic.

Pmof. Since $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ does not contain factors that depend only on $\mathfrak{m},$ $f_{\mu}$ is not constant.
Hence the norm curve $X_{1}$ appears in $X(M_{N(S+T)})$ as a norm curve of $N(S+T)$ by
Lemma 4.1, denoted it by $\hat{X}_{1}$ . We can easily see that $\iota^{*}:X_{1}arrow X(\partial M_{N(T)})$ and $\hat{\iota}^{*}$ :
$\hat{X}_{1}arrow X(\partial M_{N(S+T)})$ have the same degree. Therefore, the multiphcities of the factors of
the $A$-polynomial of $\hat{X}_{1}$ are same as those of $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ . Hence the assertion follows from
Theorem 4.2 and the coincidence of the norms $\Vert\cdot\Vert_{X_{1}}$ and $\Vert\cdot\Vert_{A_{1}^{d}},$

$\square$

Pmof of Theorem 1.1. As in Lemma 4.1, there exists a norm curve $X_{1}$ of $N(S+T)$ which
is exactly same as the irreducible component $X_{0}$ of $X(M_{N(T)})$ containing the character of
a discrete faithful representation. Let $P$ : $\pi_{1}(M_{N(S+T)})arrow SL(2, F)$ be the tautological
representation of $X_{1}$ . Since $X_{0}$ contains the character of a discrete faithful representation,
$P$ is irreducible.

Let $\mathcal{T}$ be the tree associated with an ideal point $x$ of $X_{1}$ and $\mathcal{O}$ the induced valuation
ring. Suppose that there is a non-trivial normal subgroup of $\pi_{1}(M_{N(S+T)})$ which fixes
a vertex of $\mathcal{T}$ and let $N$ denote its image by the representation $P$ . Assume that $N$ is
contained in the center of $SL(2, F)$ , i.e. in $\pm$ the identity matrix. If the trace of $N$ is
not constant, $N$ is diagonalizable over an extension $E$ of the field $F$ . We can easily check
that this diagonal matrix and an element of $SL(2, F)$ commute only when it is diagonal.
Hence $SL(2, F)$ must be reducible. If the trace of $N$ is constant then $N$ is conjugate to

$(\begin{array}{ll}a 10 a\end{array})\in SL(2, E’) , a=\pm 1,$

where $E’$ is an extension of $F$ . Then an element of $SL(2, F)$ commutes with this matrix
only when it is upper-triangular. Hence $SL(2, F)$ is again reducible. Since $P$ is irreducible,
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we conclude that $N$ cannot be contained in the center of $SL(2, F)$ . Since $N$ fixes a vertex
of $\mathcal{T},$ $N$ is contained in a conjugate of $SL(2, \mathcal{O})$ .

By [8, Lemma 1.2.8], either every element of $P(\pi_{1}(M_{N(S+T)}))$ has a trace in $\mathcal{O}$ or
$P(\pi_{1}(M_{N(S+T)}))$ has an abelian subgroup of index at most 2. The first possibility implies
that for any element $\gamma\in\pi_{1}(M_{N(T)}),$ $f_{\gamma}$ is constant, but this is impossible. The second
possibility implies that, since $P$ is faithful for $N(T),$ $\pi_{1}(M_{N(T)})$ has an abelian subgroup
of index at most 2, contradicting the assumption that $N(T)$ is hyperbolic. This proves
that there is no non-trivial normal subgroup of $\pi_{1}(M_{N(S+T)})$ which fixes a vertex of $\mathcal{T}.$

In particular, $\alpha$ is not the boundary class of a fiber of any fibration of $N(T)$ over $S^{1}$ . As
consequence, we conclude that $\alpha$ is a strict boundary class in the proof of Proposition 2.5.
This completes the proof of Theorem 1.1. $\square$

Proof of Corollary 1.2. If $\alpha$ is not a boundary class associated with an ideal point of $X_{0}$

then the assertion follows from Theorem 1.1. If $\alpha$ is, then it is a boundary class of $N(S+T)$
because $X_{0}$ also appears in $X(M_{N(S+T)})$ . In particular, $\alpha$ is a strict boundary class. Since
$N(S+T)$ is small, by [8, Theorem 2.0.3 and Addendum 2.0.4], $\pi_{1}(M_{N(S+T)}(\alpha))$ is not
cychc. Therefore $N(S+T)$ has no non-trivial cyclic slope. $\square$

Example 4.4. In [16], there is a table of factorization of $A$-polynomials of RIII knots.
For example, $9_{24}$ has a knot diagram as in Figure 1, shown in the introduction, i.e.,
$9_{24}=N((1/3+(-1/3))+5/2)$ . Since $N(5/2)=4_{1},$ [ $16$ , Theorem 1.2] implies that
the $A$-polynomial of $4_{1}$ appears in the $A$-polynomial of $9_{24}$ as a factor. As explained
in Example 3.4, the Newton polygon of $A_{4_{1}}(\mathfrak{l}, m)$ ensures that $\Vert\alpha\Vert_{A_{4_{1}}^{d}}>\Vert\mu\Vert_{A_{4_{1}}^{d}}$ for any
$\alpha\in H_{1}(\partial M_{4_{1}};\mathbb{Z})\backslash \{0\}$ with $\alpha\neq\infty$ . Since $9_{24}$ is small, Corollary 1.2 and the coincidence
of the norms $\Vert\cdot\Vert_{X_{4_{1}}}$ and $\Vert\cdot\Vert_{A_{4_{1}}^{d}}$ show that $9_{24}$ has no non-trivial cychc surgery. Note
that cychc surgeries of Montesinos knots, such as $9_{24}$ , have been classified by Ichihara and
Jong [15] (cf. [10]).

Remark 4.5. Even if $N(S+T)$ is not small (i.e., is large), Theorem 4.2 and 4.3leave only
a few slopes of $N(S+T)$ as candidates for a cychc slope. For example, suppose that we
already know the $A$-polynomial $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ of a norm curve $X_{1}$ of $M_{N(T)}$ from which we can
deduce that $N(T)$ has no cychc slope. Then, Theorem 4.3 shows that $\pi_{1}(M_{N(S+T)}(\alpha))$

is not cychc for any $\alpha\in H_{1}(M_{N(S+T)})\backslash \{0\}$ except for the boundary classes of $N(T)$

associated with ideal points of $X_{1}$ . Therefore, if we want to determine the cychc surgeries
of $N(S+T)$ , we need only check the boundary classes of $N(T)$ appearing as the slopes
of the boundary of the Newton polygon of $A_{1}^{d}(\mathfrak{l}, \mathfrak{m})$ .

5. $r$-CURVES AND CYCLIC SURGERIES

Let $M$ be a compact, connected, irreducible and $\partial$-irreducible 3-manifold whose bound-
ary $\partial M$ is a torus. By definition, an irreducible component $X_{1}^{(i)}$ of a norm curve $X_{1}$ need
not be a norm curve. Let $Y$ be a 1-dimensional algebraic subset $Y$ of $X(M)$ ; for instance
$Y=X_{1}^{(i)}$ . For each $\alpha\in H_{1}(\partial M;\mathbb{Z})$ , define $\Vert\cdot\Vert_{Y}$ by

$\Vert\alpha\Vert_{Y}=$ the degree of $f_{\alpha}$ on $\tilde{Y},$

where $\tilde{Y}$ is the smooth model of the projective completion of $Y.$

Definition 5.1 (cf. [2], p.769). $A$ 1-dimensional algebraic subset $Y$ of $X(M)$ is called an
$r$ -curve if $\Vert\cdot\Vert_{Y}$ is non-zero, not a norm curve and $\Vert\alpha\Vert_{Y}=0$ only when $\alpha=r.$
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Lemma 5.2. Let $X_{1}$ be an algebmic curve in $X(M)$ whose irreducible components are
$r$ -curves. Suppose that $X_{1}$ has two $r$ -curves with different slopes, i. e., an $r_{1}$ -curve and an
$r_{2}$ -curve with $r_{1}\neq r_{2}$ . Then $X_{1}$ is a norm curve.

Proof. For each $i=1,2$ , let $f_{\alpha}^{(i)}$ be the function $f_{\alpha}$ on the $r_{i}$-curve. If $f_{\alpha}^{(1)}$ and $f_{\alpha}^{(2)}$ are
both constant then we have $\alpha=r_{1}$ and $\alpha=r_{2}$ , which is a contradiction. $\square$

Proposition 5.3. Suppose that $X(M)$ contains an algebmic curve $X_{1}$ consisting of two r-
curves with different slopes, $r_{1}\neq r_{2}$ , each of which contains the character of an irreducible
representation. If $\alpha\neq r_{1},$ $r_{2}$ satisfies $\Vert\alpha\Vert_{X_{1}}>s_{X_{1}}$ then $\pi_{1}(M(\alpha))$ is not cyclic.

Pmof. The assertion follows from Lemma 5.2 and Proposition 2.5. $\square$

Remark 5.4. In the case where $M$ is a knot complement in a homology 3-sphere, if
$Y$ consists entirely of characters of reducible representations, then $A_{Y}(\mathfrak{l}, \mathfrak{m})=1-\mathfrak{l}[5,$

Section 2.5]. Therefore, if $r\neq 0$ then the $r$-curve contains the character of an irreducible
representation.

In [2], the character variety of $PSL(2, \mathbb{C})$ -representations of $\pi_{1}(M)$ is used in the study
of finite surgeries. We denote it by $X^{PSL}(M)$ . The $r$-curve appears in their paper in the
context of $PSL(2, \mathbb{C})$ -representations. We here introduce some of their results related to
$r$-curves. For two slopes $\alpha_{i}=p_{i}\mathfrak{m}+q_{i}1,$ $i=1,2$ , we denote $\triangle(\alpha_{1}, \alpha_{2})=\triangle(p_{1}/q_{1},p_{2}/q_{2})=$

$|p_{1}q_{2}-p_{2}q_{1}|.$

Theorem 5.5 ([2] Corollary 6.5 (1) with Remark 6.3 (i) and (iii)). Suppose that $X^{PSL}(M)$

has an $r$ -curve which contains the chamcter of an irreducible representation.
(1) If $\alpha$ is not a boundary slope and $\pi_{1}(M(\alpha))$ is cyclic then $\triangle(r, \alpha)\leq 1.$

(2) If there is no closed essential surface in $M$ which remains incompressible in $M(r)$

(for instance when $M$ is small) and $\pi_{1}(M(\alpha))$ is cyclic then $\triangle(r, \alpha)\leq 1.$

The next corollary is the $SL(2, \mathbb{C})$-version of [3, Corollary 6.7], and the proof is also
analogous.

Corollary 5.6. Let $K$ be a knot in $S^{3}$ . Suppose that the meri dian is not a boundary slope
of an essential surface (for instance when $K$ is small). If $X(M_{K})$ has an $r$ -curve then
$r\in \mathbb{Z}.$

Proof. Let $Y$ be an $r$-curve in $X(M_{K})$ . If $Y$ consists of the characters of reducible rep-
resentations, then $r=0\in \mathbb{Z}$ . Suppose that $Y$ contains the character of an irreducible
representation. There exists an $r$-curve in $X^{PSL}(M_{K})$ with the same $r$ . Since 1/0 is not a
boundary slope, $r\neq\infty$ . Moreover, since $M(1/O)=S^{3},$ $\alpha=1/0$ is a cyclic slope. Hence
we have $\triangle(p/q, 1/0)\leq 1$ by Theorem 5.5 (1), which is satisfied only when $q=1.$ $\square$

By an easy observation, we obtain the following simple sufficient condition for the
non-existence of cyclic slopes using $r$-curves.
Corollary 5.7. Let $K$ be a small knot in $S^{3}$ . Suppose that $X(M_{K})$ has an $r_{1}$ -curve and
an $r_{2}$ -curve with $r_{i}\neq 0$ for $i=1,2$ and $|r_{1}-r_{2}|>2$ . Then $K$ has no non-trivial cyclic
slope.

Proof. As before, there exist an $r_{1}$-curve and an $r_{2}$-curve in $X^{PSL}(M_{K})$ . By Corollary 5.6,
$r_{1},$ $r_{2}\in \mathbb{Z}$ . Since $r_{i}\neq 0$ , each $r_{i}$-curve contains the character of an irreducible represen-
tation. Assume that there exists a cyclic slope $p/q$ . Since $K$ is small, Theorem 5.5 (2)
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implies that $\triangle(r_{i},p/q)=|qr_{i}-p|\leq 1$ for each $i=1,2$ . In particular, we have

$|r_{i}- \frac{p}{q}|\leq\frac{1}{q}\leq 1.$

Hence, if $|r_{1}-r_{2}|>2$ then such a $p/q$ does not exist. $\square$

Example 5.8. The following is the list of $r$-curves of knots based on the calculation of
$A$-polynomials by Marc Culler, which can be found in [4]. Torus knots are not included
in the list. Note that the $A$-polynomial of $a(p, q)$-torus knot has $1+\mathfrak{l}m^{pq}$ as a factor,
see [5, Proposition 2.7].

$8_{11}:\mathfrak{l}+\mathfrak{m}^{6}$ $9_{48}:\mathfrak{l}-m^{4}$ $10_{144}:\mathfrak{l}-\mathfrak{m}^{12}$

$8_{21}:\mathfrak{l}+m^{2}$ $10_{61}:1-\mathfrak{l}\mathfrak{m}^{12}$ $10_{152}:(\mathfrak{l}+\mathfrak{m}^{11})(\mathfrak{l}-m^{11})$

$9_{23}:\mathfrak{l}+m^{18}$ $10_{139}:1-\mathfrak{l}\mathfrak{m}^{20}$ $10_{155}:\mathfrak{l}+\mathfrak{m}^{2}$

$9_{37}:\mathfrak{l}-m^{4}$ $10_{140}:1-\mathfrak{l}$ $12n_{475}:\mathfrak{l}-\mathfrak{m}^{4}$

$9_{38}:(1-m)^{2}(1+\mathfrak{m})^{2}$ $10_{141}:(\mathfrak{l}-\mathfrak{m}^{4})(1+\mathfrak{l}m^{2})$ $12n_{582}:1-\mathfrak{l}$

$9_{41}:1+\mathfrak{l}m^{2}$ $10_{142}:1-\mathfrak{l}\mathfrak{m}^{12}$ $12n_{725}:(1+\mathfrak{l}m^{15})(1-\mathfrak{l}m^{15})$

$9_{46}:1+\mathfrak{l}m^{2}$ $10_{143}:\mathfrak{l}-\mathfrak{m}^{8}$

Note that the $A$-polynomial of the mirror image $K^{mir}$ of a knot $K$ is given by $A_{K^{m\cdot r}}(1, m)=$

$m^{d}A_{K}(\mathfrak{l}, 1/m)$ , where $d$ is a suitable positive integer so that the right hand side becomes
a polynomial. In particular, if $K$ is amphichiral then we have $A_{K}(\mathfrak{l}, \mathfrak{m})=\mathfrak{m}^{d}A_{K}(\mathfrak{l}, 1/m)$ .
It is well-known that $4_{1}$ is amphichiral and this is why the Newton polygon in Figure 2 is
so symmetric.

Among the knots listed above, only $10_{141}$ has two $r$-curves with $r=-4$ and 2. Since
$10_{141}=N(1/4+2/3+(-1/3))$ is small, it has no cychc slope by Corollary 5.7. As men-
tioned above, this was previously shown in [15]. Remark that we cannot use Lemma 3.3
directly in this case because we need to know the multiplicities of these $r$-curves.

Remark 5.9. From the table of known $R\mathfrak{M}$ knots in [16], we can conclude that the
$A$-polynomiak of $8_{10},8_{11},10_{40},10_{59},10_{98},10_{99},10_{143}$ and $10_{147}$ have the factor $1+\mathfrak{l}m^{6},$

and the $A$-polynomials of $10_{21}$ and $10_{62}$ have the factor $1+\mathfrak{l}\mathfrak{m}^{10}$ . Among these, the A-
polynomials of $8_{10},8_{11},10_{21},10_{143}$ and $10_{147}$ are calculated by Culler, although the $r$-curve
factors are missing except in the case of $8_{11}$ . Note that $9_{24}=N(1/3+5/2+(-1/3))$ and
$9_{37}=N(1/3+5/3+(-1/3))$ with $N(5/2)=N(5/3)=4_{1}$ , and we can verify in Culler’s
calculation that the $A$-polynomial of $4_{1}$ appears in their $A$-polynomials as a factor.

6. SOME REMARKS AND QUESTIONS

In Culler’s calculations, the following knots have $A$-polynomials containing at least two
factors other than $r$-curves or $A_{4_{1}}(\mathfrak{l}, m)$ :

$7_{4},7_{7},8_{5},8_{15},8_{16},8_{18},9_{10},9_{16},9_{17},9_{23},9_{28},9_{29},9_{31},9_{35},9_{37},9_{38},9_{41},9_{47},9_{48},9_{49},$

$10_{61},10_{64},10_{136},10_{138},10_{142},10_{144},10_{145},10_{146},10_{147},10_{154},10_{155},10_{160},10_{163}.$

Sometimes we can find factors with a small number of monomials. We here list the knots
with such small factors. The left hand side of each column indicates a knot type and the
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right hand side is the small factor of its $A$-polynomial:
$7_{4}:1+\mathfrak{l}(-1+m^{2}+2\mathfrak{m}^{4}+\mathfrak{m}^{6}-\mathfrak{m}^{8})+\mathfrak{l}^{2}\mathfrak{m}^{8}$

$7_{7}:\mathfrak{m}^{4}+\mathfrak{l}(-1+2\mathfrak{m}^{2}+2\mathfrak{m}^{4}-\mathfrak{m}^{8}+\mathfrak{m}^{10})+\mathfrak{l}^{2}(1-m^{2}+2\mathfrak{m}^{6}+2m^{8}-\mathfrak{m}^{10})+\mathfrak{l}^{3}m^{6}$

85: $1+\mathfrak{l}(m^{2}-m^{4}+2m^{8}+2\mathfrak{m}^{10}-\mathfrak{m}^{12})+\mathfrak{l}^{2}(-\mathfrak{m}^{10}+2\mathfrak{m}^{12}+2m^{14}-\mathfrak{m}^{18}+\mathfrak{m}^{20})+\mathfrak{l}^{3}\mathfrak{m}^{22}$

$8_{18}:(m^{2}+\mathfrak{l}(1-2\mathfrak{m}^{2}-3\mathfrak{m}^{4}+2\mathfrak{m}^{6}+6\mathfrak{m}^{8}+2\mathfrak{m}^{10}-3\mathfrak{m}^{12}-2\mathfrak{m}^{i4}+\mathfrak{m}^{i6})+\mathfrak{l}^{2}\mathfrak{m}^{14})$

$\cross(\mathfrak{m}^{14}+\mathfrak{l}(1-2\mathfrak{m}^{2}-3m^{4}+2\mathfrak{m}^{6}+6\mathfrak{m}^{8}+2\mathfrak{m}^{10}-3\mathfrak{m}^{12}-2\mathfrak{m}^{14}+\mathfrak{m}^{16})+[^{2}\mathfrak{m}^{2})$

$9_{49}:1+\mathfrak{l}(-\mathfrak{m}^{4}+\mathfrak{m}^{6}+2\mathfrak{m}^{8}+\mathfrak{m}^{10}-\mathfrak{m}^{12})+\mathfrak{l}^{2}\mathfrak{m}^{16}$

$10_{136}:1+\mathfrak{l}(-1+2m^{2}+\mathfrak{m}^{4})+\mathfrak{l}^{2}(-\mathfrak{m}^{6}+\mathfrak{m}^{8})+\mathfrak{l}^{3}(-\mathfrak{m}^{10}-2\mathfrak{m}^{12}+\mathfrak{m}^{14})-\mathfrak{l}^{4}\mathfrak{m}^{14}$

$10_{142}:1+\mathfrak{l}(-\mathfrak{m}^{8}+\mathfrak{m}^{10}+2\mathfrak{m}^{12}+\mathfrak{m}^{14}-m^{16})+\mathfrak{l}^{2}\mathfrak{m}^{24}$

$10_{145}:\mathfrak{m}^{6}+\mathfrak{l}(1-\mathfrak{m}^{2}-2\mathfrak{m}^{4}-\mathfrak{m}^{6}+\mathfrak{m}^{8})+\mathfrak{l}^{2}\mathfrak{m}^{2}$

$10_{146}:\mathfrak{m}^{12}+\mathfrak{l}(\mathfrak{m}^{2}-\mathfrak{m}^{4}-2\mathfrak{m}^{6}-\mathfrak{m}^{8}+\mathfrak{m}^{10})+\mathfrak{l}^{2}$

$10_{147}:\mathfrak{m}^{2}+\mathfrak{l}(1-\mathfrak{m}^{2}-2m^{4}-\mathfrak{m}^{6}+\mathfrak{m}^{8})+\mathfrak{l}^{2}\mathfrak{m}^{6}$

$10_{155}:\mathfrak{m}^{10}+\mathfrak{l}(1-2\mathfrak{m}^{2}-3\mathfrak{m}^{4}+2\mathfrak{m}^{6}+6\mathfrak{m}^{8}+2m^{10}-3\mathfrak{m}^{12}-2\mathfrak{m}^{14}+\mathfrak{m}^{16})+\mathfrak{l}^{2}\mathfrak{m}^{6}$

$10_{160}:1+\mathfrak{l}(-\mathfrak{m}^{8}+2\mathfrak{m}^{10}+2\mathfrak{m}^{12}-\mathfrak{m}^{16}+\mathfrak{m}^{18})+\mathfrak{l}^{2}(\mathfrak{m}^{20}-\mathfrak{m}^{22}+2\mathfrak{m}^{26}+2m^{28}-\mathfrak{m}^{30})+\mathfrak{l}^{3}m^{38}$

$10_{163}:\mathfrak{m}^{12}+\mathfrak{l}(-\mathfrak{m}^{4}+2\mathfrak{m}^{6}+2\mathfrak{m}^{8}-\mathfrak{m}^{12}+\mathfrak{m}^{14})+\mathfrak{l}^{2}(1-\mathfrak{m}^{2}+2m^{6}+2\mathfrak{m}^{8}-\mathfrak{m}^{10})+\mathfrak{l}^{3}\mathfrak{m}^{2}$

The $A$-polynomial of $8_{18}$ has a pair of small factors, one of which is obtained from the
other by substituting $1/\mathfrak{m}$ for $\mathfrak{m}$ and multiplying a positive power of $\mathfrak{m}$ . This is because
$8_{18}$ is an amphichiral knot. Another remark is that the small factors of $10_{145}$ and $10_{147}$

coincide up to the substitution of $1/\mathfrak{m}$ for $\mathfrak{m}$ and a multiplication of a positive power of
$\mathfrak{m}$ . It would be interesting to understand why they have the same factor.

Question 6.1. Why do the $A$-polynomials of $10_{145}$ and $10_{147}$ have the same factor?
Next, we would like to point out that Culler’s program sometimes misses factors coming

from an epimorphism, not always but in many cases. It is shown in [14] that if there is an
epimorphism $\phi:\pi_{1}(M_{K_{1}})arrow\pi_{1}(M_{K_{2}})$ for two knots $K_{1}$ and $K_{2}$ which preserves peripheral
structure then their $A$-polynomials have the factorization
(1) $A_{K_{2}}(\mathfrak{l}, \mathfrak{m})|(\mathfrak{l}^{d}-1)A_{K_{1}}(t^{d},\mathfrak{m})$ ,

where $d$ is an integer given by $\phi(\lambda_{K_{1}})=\lambda_{K_{2}}^{d}$ . Here $\lambda_{K}$ represents the longitude of a
knot $K$ . In [18, 19], the existence of such epimorphisms is determined for any pairs of
knots in Rolfsen’s knot table. In particular, they conclude that there is an epimorphism
$\pi_{1}(M_{K})arrow\pi_{1}(M_{4_{1}})$ which preserves peripheral structure if and only if $K$ is in the following
list:

$8_{18},9_{37},9_{40},10_{58},10_{59},10_{60},10_{122},10_{136},10_{137},10_{138}.$

Among them, we can find the $A$-polynomials of $8_{18},9_{37},10_{136},10_{137},10_{138}$ in Culler’s cal-
culation.

As studied in [19], the epimorphism $\phi$ : $\pi_{1}(M_{8_{18}})arrow\pi_{1}(M_{4_{1}})$ satisfies $\phi(\lambda_{8_{18}})=\lambda_{4_{1}}^{2}.$

Therefore, factorization (1) ensures that $A_{8_{18}}(\mathfrak{l}^{2}, \mathfrak{m})$ must contain $A_{4_{1}}(\mathfrak{l}, \mathfrak{m})$ as a factor.
However we cannot find it in Culler’s calculation. The knots $10_{136}$ and $10_{138}$ are in the
same situation. The knot $9_{37}$ is an $R\mathfrak{M}$ knot with $N(T)=4_{1}$ and we can verify the
factorization $A_{4_{1}}(\mathfrak{l}, \mathfrak{m})|A_{8_{18}}(\mathfrak{l}, \mathfrak{m})$ in his calculation as already mentioned in Remark 5.9.
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The epimorphism for $10_{137}$ maps the longitude $\lambda_{10_{137}}$ to the trivial element in $\pi_{1}(M_{4_{i}})$

and hence factorization (1) does not work in this case.
By the way, we can see in Culler’s calculation that the $A$-polynomial of $10_{139}$ is quite

small:
$A_{10_{139}}(\mathfrak{l},m)=(1-\mathfrak{l}\mathfrak{m}^{20})$

$\cross(1+\mathfrak{l}(-m^{12}+7m^{14}-3\mathfrak{m}^{i6}+m^{18})+6\mathfrak{l}^{2}m^{28}+\mathfrak{l}^{3}(\mathfrak{m}^{38}-3m^{40}+7m^{42}-m^{44})+\mathfrak{l}^{4}m^{56})$ .

Another example of a knot with small $A$-polynomial is the $(-2,3,7)$-pretzel knot. Its
$A$-polynomial is

$A_{(-2,3,7)}$ -pretzel
$(\mathfrak{l}, \mathfrak{m})=1+\mathfrak{l}(-m^{16}+2\mathfrak{m}^{18}-\mathfrak{m}^{20})+\downarrow^{2}(-2\mathfrak{m}^{36}-m^{38})+\mathfrak{l}^{4}(\mathfrak{m}^{72}+2\mathfrak{m}^{74})$

$+\mathfrak{l}^{5}(m^{90}-2\mathfrak{m}^{92}+m^{94})-\mathfrak{l}^{6}m^{110},$

as calculated in [5]. We can easily check that all strict boundary classes of these knots
appear as the slopes of the Newton polygons of the above $A$-polynomials, which are the
slopes 12, 13, 18, 20 for $10_{139}$ and the slopes 16, 37/2, 20 for the $(-2,3,7)$-pretzel knot.

Both of them are fibered knots of slalom divides introduced by A’Campo in [1], which
are the slalom curves shown in Figure 3. There are several way to obtain a knot diagram
from a divide [12, 7, 11] and we can easily check that the knots of divides in Figure 3 are
$10_{139}$ and the $(-2,3,7)$-pretzel knot respectively. It is known that the knot of a divide is
strongly invertible and fibered, and its monodromy is represented as a product of right-
handed Dehn twists. Moreover, in the case of $10_{139}$ and the $(-2,3,7)$-pretzel knot, the
core curves of the Dehn twists lie on the fiber surface such that their intersection diagram
is a tree as shown in Figure 3. These knots have such particular properties. Remark
that the Alexander polynomial of the $(-2,3,7)$-pretzel knot is a famous polynomial in
Lehmer’s problem.

Question 6.2. Why are the $A$-polynomials of $10_{139}$ and the $(-2,3,7)$-pretzel knot so
small?

FIGURE 3. Slalom divides and their intersection diagrams of the core curves
of positive Dehn twists. The knot of the divide on the left is $10_{139}$ and the
one on the right is the $(-2,3,7)$-pretzel knot.

Finally, we return to the factorization of $A$-polynomials as in [16]. In [16, Theorem 1.2],
we proved that if $N(S+T)$ and $N(T)$ are knots and $N(S)$ is a split link in $S^{3}$ then
$A_{N(T)}^{O}(\mathfrak{l}, m)$ is a factor of $A_{N(S+T)}(\mathfrak{l}, m)$ , where $A_{N(T)}^{o}(\mathfrak{l}, m)$ is the product of factors of
$A_{N(S+T)}(\mathfrak{l}, m)$ containing the variable [. The next theorem shows that we can produce
infinitely many prime knots which have the $A$-polynomial of a given knot as a factor.
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Theorem 6.3. For any prime knot $K$ , there exist infinitely many prime knots $K_{n}$ of
different knot types such that $A_{K}^{o}(1, \mathfrak{m})|A_{K_{n}}(\mathfrak{l}, \mathfrak{m})$ .

Proof. $A$ marked tangle of an oriented link is a tangle whose four ends have specific ori-
entations as shown on the left in Figure 4. The sum of two marked tangles $S$ and $T$ is
a marked tangle obtained as shown on the right, denote by $S\dotplus T$ . Let $\triangle_{K}(t)$ denote the
Alexander polynomial of a link $K$ . As mentioned in [16], if $N(S)$ is split then the Alexan-
der polynomial of the knot $N(S\dotplus T)$ has the factorization $\triangle_{N(S\dotplus T)}(t)=\triangle_{N(T)}(t)\triangle_{D(S)}(t)$ .

FIGURE 4. $A$ marked tangle and the sum of marked tangles.

Let $T$ be a marked tangle such that $N(T)$ is isotopic to $K$ . Take $S_{n}$ to be the sum
of rational marked tangles with slope $1/(2n+1)$ and $-1/(2n+1)$ . Note that $N(S_{n})$

is a trivial link with two components, which is split. By [16, Theorem 1.2], we have
$A_{N(T)}^{o}(\mathfrak{l}, \mathfrak{m})|A_{N(S_{n}+T)}(\mathfrak{l}, \mathfrak{m})$ . We set $K_{n}=N(S_{n}+T)$ and check that these knots are
prime and not isotopic to each other.

The knots $K$ and the $K_{n}$ ’s are not isotopic because their Alexander polynomials are
$\triangle_{K_{n}}(t)=\triangle_{K}(t)\triangle_{K_{2,2n+1}}(t)^{2},$

where $K_{2,2n+1}$ represents the $(2, 2n+1)$-torus knot. The Alexander polynomial of $K_{2,2n+1}$

is given by the formula

$\triangle_{K_{2,2n+1}}(t)=\frac{(t^{2(2n+1)}-1)(t-1)}{(t^{2n+1}-1)(t^{2}-1)}$

and we can easily check that $\triangle_{K}(t)\neq\triangle_{K_{n}}(t)$ for any $n$ and that $\triangle_{K_{n}}(t)\neq\triangle_{K_{m}}(t)$ for
any $n$ and $m$ with $n\neq m.$

To complete the proof, it is enough to check the primeness of $K_{n}$ . Since $K$ is prime,
the tangle $T$ is also prime. Here a tangle is said to be prime if it is non-split, locally
trivial, indivisible, and it is not a trivial 1-string tangle, see [17, Definition 3.5.6]. We now
check that the tangle $S$ is also prime. The tangle $S$ is not split, otherwise $D(S)$ is split.
If it is not locally trivial then, since $D(S)$ is the connected sum of $K_{2,2n+1}$ and its mirror
image, it must have $K_{2,2n+1}$ as a factor of the prime decomposition, which implies that
$N(S)$ has $K_{2,2n+1}$ as a factor. However, $N(S)$ is a trivial link and cannot have $K_{2,2n+1}$ as
a factor, which is a contradiction. Therefore $S$ is locally trivial. Suppose that there exists
a properly embedded disk $D$ in the ball $B^{3}$ of the tangle such that $\partial D\subset\partial B^{3}$ and $D$

intersects $S$ at one point transversely. We can easily observe that one of the two tangles
obtained from $B^{3}$ by the division by $D$ is a trivial tangle with only one trivial strand. This
means that $S$ is indivisible. Finally it is obvious that $S$ is not a trivial 1-string tangle.
Thus we conclude that $S$ is prime. It is shown in [20] that a link obtained from two prime
tangles by any tangle sum is prime. This implies that $N(S+T)$ is a prime knot. $\square$

Remark 6.4. If we don’t require primeness in the theorem above, we can easily produce
such examples by connected sums. Note that for any knots $K_{1}$ and $K_{2},$ $A_{K_{1}}(\mathfrak{l}, \mathfrak{m})$ and
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$A_{K_{2}}(\mathfrak{l}, m)$ are factors of $A_{K_{1}\# K_{2}}(\mathfrak{l}, \mathfrak{m})$ , where $K_{1}\# K_{2}$ represents the connected sum of $K_{1}$

and $K_{2}$ . See [6, Proposition 4.3].

We conclude this paper with a question conceming factorization of $A$-polynomials.

Question 6.5. For any positive integer $n$ , does there exist a prime knot whose A-
polynomial has at least $n$ factors?

In the RIMS seminar, L. Paoluzzi gave a talk about non-standard components of the
character varieties of Montesinos knots. Her talk is based on joint work with J. Porti [21],
where they proved that for any positive integer $n$ , there exists a Montesinos knot whose
character variety has at least $n$ irreducible components. Question 6.5 is the same question
for $A$-polynomials, but it is more difficult since we need to prove that the irreducible
components of the character variety correspond to distinct algebraic curves of the A-
polynomial. If we could generalize the $N(S+T)$ construction to many tangles, then we
might have such examples.
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