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1. INTRODUCTION
Let $K$ be a knot in $S^{3}$ and $G(K)$ its knot group $\pi_{1}(S^{3}-K)$ . Here we write $\alpha$ : $G(K)arrow$

$\mathbb{Z}=\langle t\rangle$ for the abelianization of $G(K)$ . In this paper, we assume
$\bullet$ any presentation of $G(K)$ is a Wirtinger presentation,
$\bullet$ its Alexander polynomial $\triangle_{K}(t)$ is a polynomial, that is, its lowest degree term is

a constant term.
There are many studies on linear representations of $G(K)$ over a finite field or a fi-

nite ring. In general it is not easy to see when the set of non commutative $SL(2, \mathbb{Z}/d)-$

representations is not empty.
Then we consider the following problem to be easier.

Problem 1.1. Does there exist a non commutative representation of $G(K)$ in $SL(2, \mathbb{Z}/d)$

for infinitely many integers $d\in \mathbb{Z}_{+}=\{n\in \mathbb{Z}|n>0\}$ ?

We can prove the following by using zeros of Alexander polynomial.

Theorem 1.2. If $\triangle_{K}(t)\neq 1$ , then there exists a non commutative representation $G(K)arrow$

$GL(2, \mathbb{Z}/d)$ for infinitely many $d\in \mathbb{Z}+\cdot$

Further if the Alexander polynomial has a special form, we can prove the following.

Theorem 1.3. If $\triangle_{K}(t)$ can be decomposed to a product $f(t)g(t)$ of polynomials with
$f(t)=at^{2}-bt+a,$ $b\geq a>0$ and $2a-b=\pm 1$ , then there exists a non commutative
representation $G(K)arrow SL(2, \mathbb{Z}/p)$ for infinitely many prime numbers $p\in \mathbb{Z}_{+}.$

Remark 1.4. If there exists an epimorphism $G(K)arrow G(K’)$ , then $\triangle_{K}(t)$ hae the form
as above.

2. THEOREM OF DE RHAM

We recall a formulation of the Alexander polynomial by de Rham from the point of
deformations of linear representations.

We fix a Wirtinger presentation of $K$ as
$G(K)=\langle x_{1}, \ldots, x_{n}|r_{1}, \ldots, r_{n-1}\rangle.$

Under this presentation, we can assume $\alpha(x_{1})=\cdots=\alpha(x_{n})=t.$

Any homomorphism $\varphi_{0}$ : $G(K)arrow \mathbb{C}^{*}=\mathbb{C}-\{0\}$ can be decomposed to $\varphi_{0}=\overline{\varphi}_{0}\circ\alpha$

where $\overline{\varphi}_{0}:\langle t\rangle\cong \mathbb{Z}arrow \mathbb{C}^{*}$ because $\mathbb{C}^{*}$ is an abelian group.
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Now we take a map $\varphi$ : $\{x_{1}, \ldots, x_{n}\}arrow GL(2;\mathbb{C})$ as

$\varphi(x_{1})=(\begin{array}{ll}a b_{1}0 1\end{array}), \cdots, \varphi(x_{n})=(\begin{array}{ll}a b_{n}0 1\end{array})$

where $a=\varphi_{0}(x_{1})=\cdots=\varphi_{0}(x_{n})\in \mathbb{C}^{*}$ and $b_{1},$
$\ldots,$

$b_{n}\in \mathbb{C}.$

We consider the problem when $\varphi$ can be extended to the whole $G(K)$ as a homomor-
phism. We put

$b=t(b_{1}, \ldots, b_{n})\in \mathbb{C}^{n}.$

Remark 2.1. If $b_{1}=\cdots=b_{n}=b\in \mathbb{C}$, that is, $b=t(b, b, \ldots, b)$ , then it can be done as
$an$ abelian representation, because $\varphi(x_{i})=\cdots=\varphi(x_{n})$ .

Rom now we assume that $b\neqt(b, b, \ldots, b)$ . Here we define a map $\psi$ : $\{x_{1}, \ldots, x_{n}\}arrow \mathbb{C}$

by $\psi(x_{i})=b_{i}.$

Definition 2.2. $A$ map $\chi$ : $G(K)arrow \mathbb{C}$ is called to be a crossed homomorphism with
respect to $\varphi_{0}$ if it satisfies $\chi(xy)=\chi(x)+\varphi_{0}(x)\chi(y)$ for any $x,$ $y\in G(K)$ .

Lemma 2.3. The above map $\varphi$ can be extended to $G(K)$ as a homomorpshim if and only
if $\psi$ can be extended to $G(K)$ as a crossed homomorphism.

Hence we consider when $\psi$ can be done to $G(K)$ as a crossed homomorphism.
Let $F_{n}$ denote the free group of rank $n$ generated by $x_{1},$ $\ldots,$

$x_{n}$ . We fix a natural
surjection $F_{n}arrow G(K)$ .

Definition 2.4. The $\mathbb{Z}F_{n}$-module $DF_{n}$ is defined as follows.
$\bullet$ generators:dg $(g\in F_{n})$ ,
$\bullet$ relat$ors:d(gg’)=dg+gdg’(g, g’\in F_{n})$ .

Remark 2.5. $DF_{n}$ is the free $\mathbb{Z}F_{n}$-module generated by $dx_{1},$
$\ldots,$

$dx_{n}.$

The $\mathbb{Z}G(K)$-module $DG(K)$ can be defined similarly by adding relations $dr_{1}=\cdots=$

$dr_{n-1}=0.$

Here we consider a map
$d:F_{n}\ni g\mapsto dg\in DF_{n}.$

This is a crossed homomorphism with respect to the natural action of $F_{n}$ on $DF_{n}$ because
$d(gg’)=dg+gdg’$ in $DF_{n}$ . The following equality is well known in the theory of Fox’s
free derivatives;

$dg= \sum_{i=1}^{n}\frac{\partial g}{\partial x_{i}}dx_{i}.$

By the natural map $F_{n}arrow G(K)$ , we consider $\varphi$ and $\psi$ as maps on $F_{n}$ . We use the
same symbol for them.

Now we define $\mathbb{Z}F_{n}$-homomorphism $\overline{\psi}:DF_{n}arrow \mathbb{C}$ by

$\overline{\psi}(\sum_{i=1}^{n}\lambda_{ig_{i}}dx_{i})=\sum_{i=1}^{n}\lambda_{i\varphi 0}(g_{i})\psi(x_{i})$

$= \sum_{i=1}^{n}\lambda_{i}\varphi_{0}(g_{i})b_{i}$
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for any $\sum_{i=1}^{n}\lambda_{i}g_{i}dx_{i}\in DF_{n}$ where $\lambda_{i}\in \mathbb{Z},$ $g_{i}\in F_{n}.$

Lemma 2.6. The composite map
$\psi=\overline{\psi}\circ d:F_{n}arrow \mathbb{C}$

is a crossed homomorphism with respect to $\varphi_{0}.$

Proof. For any $g,$ $g’\in F_{n}$ , we have
$\psi(gg’)=\overline{\psi}(d(gg’))$

$=\overline{\psi}(dg+gdg’)$

$=\overline{\psi}(dg)+\overline{\psi}(gdg’)$

$=\psi(g)+\varphi_{0}(g)\psi(g’)$ .
$\square$

Lemma 2.7. The map $\overline{\psi}$ gives a $\mathbb{Z}G(K)$ -homomorphism on $DG(K)$ if and only if $\overline{\psi}(dr_{i})=$

$0$ for any relator $r_{i}$ of $G(K)$ . This is also equivalent to

$\overline{\psi}(\sum_{j=1}^{n}\frac{\partial r_{i}}{\partial x_{j}}dx_{j})=\sum_{j=1}^{n}\varphi_{0}(\frac{\partial r_{i}}{\partial x_{j}})\psi(x_{j})=0.$

Remark 2.8. Here we use the same symbol $\varphi_{0}$ to the extended map $\mathbb{Z}G(K)arrow \mathbb{Z}\mathbb{C}^{*}=\mathbb{C}$

on the integral group ring $\mathbb{Z}G(K)$ .

Proof. Recall that any relator of $DG(K)$ can be given from relators of $G(K)$ , and

$dr_{i}= \sum_{j=1}^{n}\frac{\partial r_{i}}{\partial x_{j}}dx_{j}$

in $DF_{n}$ . By using them, it is easily seen. $\square$

Now we define an $(n-1)\cross n$-matrix $A_{\varphi 0}\in M(n-1, n;\mathbb{C})$ as follows:

$A_{\varphi 0}=( \tilde{\varphi}_{0}(\frac{\partial r_{i}}{\partial x_{j}}))$ .

It is clear that $A_{\varphi 0}$ can be obtained from the Alexander matrix of $G(K)$ by substituting
$t=a.$ $\mathbb{R}om$ the above argument, the condition for $\psi$ to be a crossed homomorphism as
follows.

Lemma 2.9. $\psi$ is a crossed homomorphism if and only if $A_{\varphi 0}b=0.$

de Rham proved the following [3]. From this theorem, we see that there exists a
representation when $\Delta_{K}(a)=0$ and can say the Alexander polynomial is an obstruction
for the existence of representations. See also [1, 6].

Theorem 2.10 (de Rham). The map

$\varphi$ : $\{x_{1}, \ldots, x_{n}\}\ni x_{i}\mapsto(_{0}^{a}\psi(x_{i})1)\in GL(2;\mathbb{C})$

can be extend to $G(K)$ as a homomorphism if and only if $A_{\varphi 0}b=0$ . In particular then it
holds $a=\varphi_{0}(x_{i})=\overline{\varphi}_{0}(t)$ is a zero of $\triangle_{K}(t)=0.$
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Proof. First we note that a map $\varphi$ can be extend to the $G(K)$ as a homomorphism if and
only if the image of any relator is the identity matrix $E.$

For example, we take a relator $r_{i}=x_{i}x_{j}x_{i}^{-1}x_{k}^{-1}$ . Then the condition is
$\varphi(r_{i})=\varphi(x_{i})\varphi(x_{j})\varphi(x_{i})^{-1}\varphi(x_{k})^{-1}$

$=E.$

This is equivalent to $\varphi(x_{i})\varphi(x_{j})=\varphi(x_{k})\varphi(x_{i})$. Then we compute the both sides.

$\varphi(x_{i})\varphi(x_{j})=(\begin{array}{ll}a b_{i}0 1\end{array})(_{0}^{a}b_{j)=}1(^{a_{0}^{2}} ab_{j_{1}}+b_{i)}$

$\varphi(x_{k})\varphi(x_{i})=(\begin{array}{ll}a b_{k}0 1\end{array})(\begin{array}{ll}a b_{i}0 1\end{array})=(\begin{array}{ll}a^{2} ab_{i}+b_{k}0 1\end{array}).$

By comparing entries of the both, we have
$(1-a)b_{i}+ab_{j}-b_{k}=0.$

By Fox’s free differential calculus

$\alpha_{*}(\frac{\partial}{\partial x_{i}}(x_{i}x_{j}-x_{k}x_{i}))=1-t,$

$\alpha_{*}(\frac{\partial}{\partial x_{j}}(x_{i}x_{j}-x_{k}x_{i}))=t,$

$\alpha_{*}(\frac{\partial}{\partial x_{k}}(x_{i}x_{j}-x_{k}x_{i}))=-1.$

we see the above condition $(1-a)b_{i}+ab_{j}-b_{k}=0$ is the same with the i-th entry of
$A|_{t=a}b$ equals zero. Therefore the condition to be extended is given by the following linear
system

$A|_{t=a}b=0.$

Hence it is seen that $t=a$ is a zero of $\Delta_{K}(t)=0$ and then

$\varphi:\{x_{1}, \ldots, x_{n}\}\ni\mapsto(\begin{array}{ll}a b_{i}0 1\end{array})$

can be extended to $G(K)$ as a homomorphism. $\square$

Note that the condition for the extension is given by linear equations. Then if $\varphi$ can
be done to $G(K)$ as a homomorphism

$\varphi_{s}(x_{i})=(\begin{array}{ll}a sb_{i}0 1\end{array})$

can also be done to $G(K)$ for any $s\in \mathbb{C}^{*}$ . Then $\varphi_{s}$ is a deformation of the direct sum of
$\varphi_{0}$ and the 1-dimensional trivial representation in $GL(2;\mathbb{C})$ .

Now we consider deformations in $SL(2;\mathbb{C})$ .
The map

$\varphi:\{x_{1}, \ldots, x_{n}\}arrow SL(2;\mathbb{C})$

is given by $\varphi(x_{i})=(\begin{array}{ll}a b_{i}0 a^{-1}\end{array})$ and

$\varphi_{0}:\{x_{1}, \ldots, x_{n}\}arrow \mathbb{C}^{*}$

by $\varphi_{0}(x_{1})=\cdots=\varphi_{0}(x_{n})=a.$
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Starting from this map $\varphi$ , the condition for $\varphi$ to be a homorphism on $G(K)$ can be
obtaiend as follows.

$\varphi(x_{i})\varphi(x_{j})=(\begin{array}{ll}a b_{i}0 a^{-1}\end{array})(_{0}^{a}a^{-1)=}b_{j}(\begin{array}{ll}a^{2} ab_{j}+a^{-1}b_{i}0 a^{-1}\end{array}),$

$\varphi(x_{k})\varphi(x_{i})=(\begin{array}{ll}a b_{k}0 a^{-1}\end{array})(\begin{array}{ll}a b_{i}0 a^{-1}\end{array})=(\begin{array}{ll}a^{2} a^{-1}ab_{i}+b_{k}0 a^{-1}\end{array}).$

By comparing of entries,
$(1-a^{2})b_{i}+a^{2}b_{j}-b_{k}=0$

is obtained as a condition. By similar arguments, we obtain the following condition
$A|_{t=a^{2}}b=0.$

In particular we have
$\triangle_{K}(a^{2})=0,$

that is, $t=a^{2}$ is a zero of $\triangle_{K}(t)=0$ . Then

$\varphi_{0}\oplus\varphi_{0}^{-1}:G(K)\ni x\mapsto(\begin{array}{ll}\varphi_{0}(x) 00 \varphi_{0}(x)^{-1}\end{array})\in SL(2;\mathbb{C})$

can be deformed in $SL(2;\mathbb{C})$ to $\varphi$ : $G(K)arrow SL(2;\mathbb{C})$ .

3. CONSTRUCTION OF A HOMOMORPHISM OF $G(K)$ INTO SYMMETRIC GROUPS

We can construct a deformation of an abelian represenation in $GL(2, \mathbb{C})$ , or $SL(2, \mathbb{C})$ .
From the above observation, we can get also a homomorphism of $G(K)$ into symmetric
groups. This argument was given in [4],

We recall $\triangle_{K}(t)$ is well defined up to $\pm t^{k}$ . Namely it depends on a Wirtinger presen-
tation of $G(K)$ . When we change a presentation, the new one equals to the $\pm t^{k}$ times old
one. It means special value of $\Delta_{K}(t)$ is not well-defined as a knot invariant in general.
However if we substitute an absolute value one complex number $\xi=e^{\sqrt{-1}\theta}$ to $t$ , then its
absolute value $|\Delta_{K}(\xi)|$ gives a knot invariant.

Remark 3.1. The integer $d_{K}=|\Delta_{K}(-1)|\in \mathbb{Z}$ is called the determinant of $K.$

Because the Alexander matrix $A$ of a Wirtinger presentation of $G(K)$ is a matrix over
$\mathbb{Z}[t, t^{-1}]$ , then by substituting $t=-1$ , we have a matrix over the integers

$A|_{t=-1}\in M((n-1)\cross n;\mathbb{Z})$ .
Then a linear equation system for the extension is defined over $\mathbb{Z}$ . When we consider

$A|_{t=-1}b=0$

over $\mathbb{Z}/d_{K}$ , any $(n-1)\cross(n-1)$ -minor $A|_{t=-1}$ is zero $mod d_{K}$ . Hence there exits the
solution

$b=t(b_{1}, \ldots, b_{n})\in(\mathbb{Z}/d_{K})^{n}$

At that time a representation

$\overline{\varphi}:G(K)arrow GL(2;\mathbb{Z}/d_{K})$

over $\mathbb{Z}/d_{K}$ can be given by

$\overline{\varphi}(x_{i})=(\begin{array}{ll}-1 b_{i}0 1\end{array}).$
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Here an affine transformation

$\overline{\varphi}(x_{i})=(\begin{array}{ll}-1 b_{i}0 1\end{array})$

can be consider a permutation
$\mathbb{Z}/d_{K}\ni m\mapsto-m+b_{i}\in \mathbb{Z}/d_{K}$

on $\mathbb{Z}/d_{K}$ . Therefore we obtain a homomorphism into a symmetric group,
$G(K)arrow \mathfrak{S}_{d_{K}}.$

Next we consider to substitute any positive integer to $t$ . If we put $t=m\in \mathbb{Z}$ and
consider the linear sytem $mod d_{K,m}=|\triangle_{K}(m)|$ , then

$A|_{t=m}b\equiv$ Omod $d_{K,m}$

has a solution over $\mathbb{Z}/d_{K,m}$ . Of course $d_{K,m}$ depends on the choice of a Wirtinger presen-
tation. However we can obtain a representation defined by using a fixed presentation.

Then we obtain a representation
$\overline{\varphi}:G(K)arrow GL(2;\mathbb{Z}/d_{K,m})$ .

For any generator, its image is given by

$G(K)\ni x_{i}\mapsto(\begin{array}{ll}m b_{i}0 1\end{array})$

and it gives
$\mathbb{Z}/d_{K,m}\ni k\mapsto mk+b_{i}\in \mathbb{Z}/d_{K,m}.$

Therefore we obtain a homomorphism of $G(K)$ into the symmetric group of degree $d_{K,m}$

$G(K)arrow \mathfrak{S}_{d_{K,m}}.$

$P9$
roblem 3.2. What kind of property does the above homomorphism $G(K)arrow \mathfrak{S}_{d_{K,m}}$ have

4. $SL(2, \mathbb{Z}/d)$ -REPRESENATION OF $G(K)$

In this section, we give a proof of Theorem 1.2.
We assume that the Alexander polynomial of $K$ is given by

$\Delta_{K}(t)=a_{2k}t^{2k}+a_{2k-1}t^{2k-1}+\cdots+a_{1}t+a_{0},$

where $a_{2k}=a_{0}>0,$ $\sum_{i=0}^{2k}a_{i}=\pm 1$ , and it can be defined by the Wirtinger presentation

$\langle x_{1}, \ldots, x_{n}|r_{1}\ldots., r_{n}\rangle.$

If we substitute $t=p^{2}$ for $\Delta_{K}(t)$ , then
$d_{p^{2}}=\Delta_{K}(p^{2})=a_{2k}p^{4k}+a_{2k-1}p^{4k-2}+\cdots+a_{1}p^{2}+a_{0}.$

If $p$ is a sufficient large prime number,
$d_{p^{2}}=\Delta_{K}(p^{2})>p^{2}>p.$

Further we put the condition $(a_{0},p)=1$ , then
$(d_{p^{2}},p)=1.$

Then for any prime number $p$ as above, $p$ is a unit in $\mathbb{Z}/d_{p^{2}}.$
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Since there exists a solution

$A|_{t=p^{2}}b=0$ mod $\mathbb{Z}/d_{p^{2}},$

then an abelian representation

$\rho$ : $G(K)\ni x_{i}\mapsto(\begin{array}{ll}p 00 p^{-1}\end{array})\in SL(2, \mathbb{Z}/d_{p^{2}})$

can be deformed to a non commutative representation

$\tilde{\rho}:G(K)\ni x_{i}\mapsto(\begin{array}{ll}p b_{i}0 p^{-1}\end{array})\in SL(2, \mathbb{Z}/d_{p^{2}}))$ .

Therefore we obtain the following.

Theorem 4.1. There exits a non commutative representation $G(K)arrow SL(2, \mathbb{Z}/d_{p^{2}})$ for
infinitely many $d_{p^{2}}=|\triangle_{K}(p^{2})|.$

Remark 4.2. It is not easy to see which $d_{p^{2}}$ is a prime number or not.

5. $GL(2, \mathbb{Z}/p)$ -REPRESENTATION OF $G(K)$

If $d_{p}$ is not a prime number, then we cannot consider the twisted Alexander polynomial
[7] for the representation as above. Then we want to consider the following problem.

Problem 5.1. Does there exit a non commutative representation $G(K)arrow SL(2, \mathbb{Z}/p)$ for
infinitely many prime number $p9$

In this section we prove the existence of $GL(2, \mathbb{Z}/p)$ -representations by using the Alexan-
der polynomial.

For any knot with the Alexander polynomial of degree 2, we can prove the problem for
$GL(2,\mathbb{Z}/p)$-representations. We assume that the Alexander polynomial of $K$ is given by

$\triangle_{K}(t)=at^{2}-bt+a,$

where $b\geq a>0,$ $\triangle_{K}(1)=2a-b=\pm 1$ . Then by the condition $2a-b=\pm 1,$ $a= \frac{b\pm 1}{2}.$

Theorem 5.2. There exits a non commutative representation $G(K)arrow GL(2, \mathbb{Z}/p)$ for
infinitely many prime number $p.$

If we can prove the following proposition, for such a prime number $p$ and $t=n$ , an
abelian representation of $G(K)$ over $\mathbb{Z}/p$

$\rho$ : $G(K)\ni x_{i}\mapsto(\begin{array}{ll}n 00 1\end{array})\in GL(2, \mathbb{Z}/p)$

can be deformed to a non commutative representation

$\tilde{\rho}:G(K)\ni x_{i}\mapsto(\begin{array}{ll}n b_{i}0 1\end{array})\in GL(2, \mathbb{Z}/p)$,

and we get the theorem.

Proposition 5.3. There exists a solution of $\triangle_{K}(t)\equiv 0$ mod $p$ for infinitely many prime
numbers $p.$
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Let us consider the congruence

$at^{2}-bt+a\equiv$ Omod $p.$

When we consider the equation

$at^{2}-bt+a=0$

over $\mathbb{C}$ , then

$t= \frac{b\pm\sqrt{b^{2}-4a^{2}}}{2a}$

is the solutions. Here if $D=b^{2}-4a$ is a square number $mod p$, that is, a quadratic
residue $mod p$, then there exists a solution of the above congruence.

Definition 5.4. For an integer $k$ and a prime number $p$ , the Legendre symbol $( \frac{k}{p})$ is
defined as follows.

$( \frac{k}{p})=\{\begin{array}{ll}1 if x^{2}\equiv kmod p has asolution-1 if x^{2}\equiv kmod p hae no solution\end{array}$

By using $2a-b=\pm 1$ , we can eliminate $a$ in $D=b^{2}-4a^{2}$ and obtain $D=\pm 2b-1.$

Then we put $D_{+}=2b-1$ and $D_{-}=-2b-1$ for the both. By using Legendre symbol,
we prove the following.

Proposition 5.5. For infinitely many prime numbers $p$ , each of Legendre symbols of $D_{\pm}$

$is$

$( \frac{D\pm}{p})=1.$

We treat separately $D_{+}$ and $D_{-}.$

1. The case of $D_{+}=2b-1.$

Here we assume that

$p=4(2b-1)n+1$

is a prime number and not a divisor of $a.$

Remark 5.6. By the theorem of Dirichlet, there exisit infinitely many prime number as
above.

If $p$ is a divisor of $2b-1$ , then $D_{+}\equiv 0mod p$. Hence there exists a solution of
$\Delta_{K}(t)\equiv 0mod p.$

Assume that $p$ is not a divisor of $2b-1$ . By the reciprocity law of the Jacobi symbol,

$( \frac{2b-1}{p})(\frac{p}{2b-1})=(-1)^{L_{2}^{-\underline{1}_{\frac{2b-1-1}{2}}}}$

$=(-1)^{2(2b-1)n(b-1)}$

$=1.$
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Therefore we have

$( \frac{2b-1}{p})=(\frac{p}{2b-1})$

$=( \frac{4(2b-1)n+1}{2b-1})$

$=( \frac{1}{2b-1})$

$=1.$

2. The case of $D_{-}=-2b-1$

Now assume that
$p=4(2b+1)n+1$

is a prime number and not a divisor of $a.$

Now

$( \frac{-2b-1}{p})=(\frac{-1}{p})(\frac{2b+1}{p})$ .

By the quadratic reciprocity law,

$( \frac{-1}{p})=(-1)^{a_{2}^{-\underline{1}}}$

$=(-1)^{2(2b+1)n}$

$=1.$

Hence

$( \frac{-2b-1}{p})=(\frac{-1}{p})(\frac{2b+1}{p})=(\frac{2b+1}{p})$

By using the reciprocity law of the Jacobi symbol,

$( \frac{2b+1}{p})(\frac{p}{2b+1})=(-1)^{L_{2}^{-\underline{1}_{\frac{2b+1-1}{2}}}}$

$=(-1)^{2(2b+1)nb}$

$=1.$

Therefore we have

$( \frac{2b+1}{p})=(\frac{p}{2b+1})$

$=( \frac{4(2b+1)n+1}{2b+1})$

$=( \frac{1}{2b+1})$

$=1.$
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