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LINEAR REPRESENTATIONS OF A KNOT GROUP OVER A FINITE
RING AND ALEXANDER POLYNOMIAL AS AN OBSTRUCTION

TERUAKI KITANO

1. INTRODUCTION
Let K be a knot in §% and G(K) its knot group m1(S® — K). Here we write a : G(K) —
Z = (t) for the abelianization of G(K). In this paper, we assume

e any presentation of G(K) is a Wirtinger presentation,
e its Alexander polynomial A (t) is a polynomial, that is, its lowest degree term is
a constant term.

There are many studies on linear representations of G(K) over a finite field or a fi-
nite ring. In general it is not easy to see when the set of non commutative SL(2,Z/d)-

representations is not empty.
Then we consider the following problem to be easier.

Problem 1.1. Does there exist a non commutative representation of G(K) in SL(2,Z/d)
for infinitely many integersd € Zy = {n € Z | n > 0}?

~ We can prove the following by using zeros of Alexander polynomial.

Theorem 1.2. If Ak (t) # 1, then there ezists a non commutative representation G(K) —
GL(2,Z/d) for infinitely many d € Z...

Further if the Alexander polynomial has a special form, we can prove the following.

Theorem 1.3. If Ag(t) can be decomposed to a product f(t)g(t) of polynomials with
f(t) =at? ~bt+a,b>a >0 and 2a — b = +1, then there exists a non commutative
representation G(K) — SL(2,Z/p) for infinitely many prime numbers p € Z,..

Remark 1.4. If there exists an epimorphism G(K) — G(K’), then Ag(t) has the form
as above.

2. THEOREM OF DE RHAM

We recall a formulation of the Alexander polynomial by de Rham from the point of
deformations of linear representations.
We fix a Wirtinger presentation of K as

G(K)=<.’E1,...,.’L’n|’l"1,...,7"n_1 >

Under this presentation, we can assume a(z1) = - - - = a(z,) = t.
Any homomorphism ¢, : G(K) — C* = C — {0} can be decomposed to @y = B, 0 &
where @ : (t) = Z — C* because C* is an abelian group.
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Now we take a map ¢ : {z1,...,2n} = GL(2;C) as

() = (8 bf) v p(T) = (g bl")

where a = @o(z;) = -+ = @o(z,) € C* and by,...,b, € C.
We consider the problem when ¢ can be extended to the whole G(K) as a homomor-
phism. We put
b="%®,...,b,) €C™

Remark 2.1. If by =--- = b, = b € C, thatis, b="%b,b,...,b), then it can be done as
an abelian representation, because ¢(z;) = - -+ = ¢(zn).

From now we assume that b # (b, b, . ..,b). Here we define amap ¢ : {z1,...,2,} = C
by ¥(z:) = bi.

Definition 2.2. A map x : G(K) — C is called to be a crossed homomorphism with
respect to yy if it satisfies x(zy) = x(z) + po(z)x(y) for any z,y € G(K).

Lemma 2.3. The above map ¢ can be extended to G(K) as a homomorpshim if and only
if Y can be extended to G(K) as a crossed homomorphism.

Hence we consider when 1 can be done to G(K) as a crossed homomorphism.
Let F,, denote the free group of rank n generated by zj,...,z,. We fix a natural
surjection F,, = G(K).

Definition 2.4. The ZF,-module DF, is defined as follows.
e generators:dg (g € F,,),
e relators:d(g9g’) = dg + gdg’' (9,9’ € F7.).
Remark 2.5. DF,, is the free ZF,-module generated by dz,,...,dz,.

The ZG(K)-module DG(K) can be defined similarly by adding relations dry = --- =
dr n—1 — 0.
Here we consider a map
d:F,>gw—dg € DF,.
This is a crossed homomorphism with respect to the natural action of F, on DF;, because
d(gg’) = dg + gdg’ in DF,,. The following equality is well known in the theory of Fox’s
free derivatives;

By the natural map F,, - G(K), we consider ¢ and 1 as maps on F;,. We use the

same symbol for them. _
Now we define ZF,-homomorphism v : DF,, — C by

P (Z )\,'g,-dxi> = Z Aipo(g:)¥(z:)

= Nipo(g)b:
i=1
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for any Z/\igidx,- € DFn where \; € Z,g; € F,.
i=1
Lemma 2.6. The composite map
Y=vod: F, »C
s a crossed homomorphism with respect to q.

Proof. For any g,g’ € F,, we have

Y(9g') = ¥(d(99')

WP
P(dg + gdg')
P
()

(dg) + ¥(gdg")
(9) + wo(9)¥(d).

O

Lemma 2.7. The map 9 gives a ZG(K)-homomorphism on DG(K) if and only if (dr;) =
0 for any relator r; of G(K). This is also equivalent to

¢Q_% ) ﬁﬁ«mv oley) =

Remark 2.8. Here we use the same symbol g to the extended map ZG(K) — ZC* =C
on the integral group ring ZG(K).

Proof. Recall that any relator of DG(K) can be given from relators of G(K), and

in DF,,. By using them, it is easily seen. O

Now we define an (n — 1) x n-matrix A,, € M(n — 1,n;C) as follows:

o= (3 (3))

It is clear that A, can be obtained from the Alexander matrix of G(K') by substituting
t = a. From the above argument, the condition for 1 to be a crossed homomorphism as
follows.

Lemma 2.9. v is a crossed homomorphism if and only if A,,b = 0.

de Rham proved the following [3]. From this theorem, we see that there exists a
representation when Ag(a) = 0 and can say the Alexander polynomial is an obstruction
for the existence of representations. See also [1, 6].

Theorem 2.10 (de Rham). The map
w:{zy,...,zn} DT > (8 lb(fz)) € GL(2;C)

can be extend to G(K) as a homomorphism if and only if Ay,b = 0. In particular then it
holds a = po(x;) = Py(t) is a zero of Ag(t) =0. ;
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Proof. First we note that a map ¢ can be extend to the G(K) as a homomorphism if and
only if the image of any relator is the identity matrix F.
For example, we take a relator r; = z;z;z; 'z;'. Then the condition is

o(rs) = o(x:)p(e;)e(x:) " o(zk) ™
—E.

This is equivalent to ¢(z;)¢(z;) = ¢(zk)p(z;). Then we compute the both sides.

ootz = (5 3) (6 )= (5 ™)

dwe== (5 %) (5 %) = (5 ™).

By comparing entries of the both, we have
(1 - a)bi +abj - bk = 0.
By Fox’s free differential calculus

0
a, (3?2(:5,:1:3 - :zkx,»)) =1-t,

0

Qx <5x_J($1$J - $k$i)) =1
0

Q, ((—9-1:—15(.'111;.’12_,' - xw,-)) = —1.

we see the above condition (1 — a)b; + ab; — by = 0 is the same with the i-th entry of
A|s=6b equals zero. Therefore the condition to be extended is given by the following linear

system
AIt:ab = 0.

Hence it is seen that t = a is a zero of Ag(t) = 0 and then

a bi
@:{z1,...,Tn} I (0 1)

can be extended to G(K) as a homomorphism. O

Note that the condition for the extension is given by linear equations. Then if ¢ can
be done to G(K) as a homomorphism

oz = (5 7)

can also be done to G(K) for any s € C*. Then ¢, is a deformation of the direct sum of
o and the 1-dimensional trivial representation in GL(2;C).
Now we consider deformations in SL(2;C).

The map
¢ :{z1,...,zn} = SL(2;C)

is given by o(z;) = (8 a[fl) and
wo:{r1,..., 2.} = C
by po(z1) = -+ = po(zs) = a.
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Starting from this map ¢, the condition for ¢ to be a homorphism on G(K) can be

obtaiend as follows.
b; b; a’? ab; + a1y,
90(3%')%0(95]') = (g a“l) < 31) = (O ! a1 ) )

deeta)= (5 ) (5 )= (5 “Ea™).

By comparing of entries,

o Q
s

Q
&

(1 - a2)b,- + a2bj - bk =0
is obtained as a condition. By similar arguments, we obtain the following condition
A|t=a2b == 0

In particular we have
A K(a2) = 0,
that is, ¢ = a? is a zero of Ag(t) = 0. Then

0 o(z)™
can be deformed in SL(2;C) to ¢ : G(K) — SL(2;C).

sooeasoalzG(K)BxH(%(x) 0 )ESL(2;(C)

3. CONSTRUCTION OF A HOMOMORPHISM OF G(K) INTO SYMMETRIC GROUPS

We can construct a deformation of an abelian represenation in GL(2,C), or SL(2,C).
From the above observation, we can get also a homomorphism of G(K) into symmetric
groups. This argument was given in [4].

We recall Ag(t) is well defined up to #t*. Namely it depends on a Wirtinger presen-
tation of G(K). When we change a presentation, the new one equals to the +t* times old
one. It means special value of Ag(t) is not well-defined as a knot invariant in general.
However if we substitute an absolute value one complex number £ = eV~ to ¢, then its
absolute value |Ag(€)| gives a knot invariant.

Remark 3.1. The integer dx = |Ag(—1)| € Z is called the determinant of K.

Because the Alexander matrix A of a Wirtinger presentation of G(K) is a matrix over
Z{t,t™'), then by substituting t = —~1, we have a matrix over the integers

Alt=—y € M((n— 1) x n; Z).
Then a linear equation system for the extension is defined over Z. When we consider
A|t=_1b == 0

over Z/dk, any (n — 1) X (n — 1)-minor Af;~_; is zero mod dg. Hence there exits the
solution

b="0,...,b) € (Z/dg)".
At that time a representation

¢:G(K) - GL(2;Z/dk)

@(zi) = (—01 ?)

over Z/dy can be given by
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Here an affine transformation

o@)= (3 %)

can be consider a permutation
Zldg d>mw— —m+b; € Z/dk
on Z/dk. Therefore we obtain a homomorphism into a symmetric group,
G(K) > Gq.
Next we consider to substitute any positive integer to ¢t. If we put t = m € Z and
consider the linear sytem mod dg,m = |Ag(m)|, then
Alt=mb = 0 mod dg ,

has a solution over Z/dk . Of course dg ., depends on the choice of a Wirtinger presen-
tation. However we can obtain a representation defined by using a fixed presentation.
Then we obtain a representation

% G(K) = GL( Z/dxm).

For any generator, its image is given by

G(K)>z;— (73 l;’)

and it gives
Z/dkm D k— mk+b; € Z/dkm.
Therefore we obtain a homomorphism of G(K) into the symmetric group of degree dgm
G(K) = Gy,
Problem 3.2. What kind of property does the above homomorphism G(K) — &g . have
2
4. SL(2,Z/d)-REPRESENATION OF G(K)
In this section, we give a proof of Theorem 1.2.
We assume that the Alexander polynomial of K is given by
Ak(t) = akt®™ + age—1t* 1 + - + ast + ao,
2k
where agr = ag > 0, Z a; = £1, and it can be defined by the Wirtinger presentation
i=0
(1, Tn | T2 Tn).
If we substitute ¢ = p? for Ag(t), then
dp = Ag (%) = apkp™ + age-1p™ 2+ -+ + a1p + ao.
If p is a sufficient large prime number,
dy2 = Ak (p®) > p* > p.
Further we put the condition (ag, p) = 1, then
(dp2,p) = 1.
Then for any prime number p as above, p is a unit in Z/d,,.
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Since there exists a solution
Alt=pzb =0 mod Z/d,p,
then an abelian representation

p: G(K) DT > (g pgl) € SL(2,Z/dp2)

can be deformed to a non commutative representation

p: G(K) 2T — <g pb_il) € SL(Z,Z/dpz))

Therefore we obtain the following.

Theorem 4.1. There ezits a non commutative representation G(K) — SL(2,Z/d) for
infinitely many dy2 = |Ag(p?)|.

Remark 4.2. It is not easy to see which d2 is a prime number or not.

5. GL(2,Z/p)-REPRESENTATION OF G(K)

If d, is not a prime number, then we cannot consider the twisted Alexander polynomial
[7] for the representation as above. Then we want to consider the following problem.

Problem 5.1. Does there exit a non commutative representation G(K) — SL(2,Z/p) for
infinitely many prime number p ¢

In this section we prove the existence of GL(2,Z/p)-representations by using the Alexan-
der polynomial.

For any knot with the Alexander polynomial of degree 2, we can prove the problem for
GL(2,Z/p)-representations. We assume that the Alexander polynomial of K is given by
Ag(t) = at® — bt + a,

bt1
—
Theorem 5.2. There ezxits a non commutative representation G(K) — GL(2,Z/p) for
infinitely many prime number p.

where b > a > 0, Ag(1) = 2a — b= +1. Then by the condition 2a —b = %1, a =

If we can prove the following proposition, for such a prime number p and ¢t = n, an
abelian representation of G(K) over Z/p

p:G(K) Dz~ <6‘ (1)) € GL(2,Z/p)

can be deformed to a non commutative representation
5:G(K) > z; (6‘ ﬁ) € GL(2,Z/p),

and we get the theorem.

Proposition 5.3. There exists a solution of Ax(t) =0 mod p for infinitely many prime
numbers p.
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Let us consider the congruence
t?> — bt +a =0 mod p.

When we consider the equation

2 —bt+a=0

over C, then

b+ vb?2 — 4a?
2a

is the solutions. Here if D = b%? — 4a is a square number mod p, that is, a quadratic
residue mod p, then there exists a solution of the above congruence.

t =

Definition 5.4. For an integer k£ and a prime number p, the Legendre symbol (g) is
defined as follows.

Y _J1 if z? = k mod p has a solution
p) |-1 ifz?=k mod p has no solution

By using 2a — b = +1, we can eliminate a in D = b? — 4a? and obtain D = +2b— 1.
Then we put Dy =26 — 1 and D_ = —2b— 1 for the both. By using Legendre symbol,
we prove the following.

Proposition 5.5. For infinitely many prime numbers p, each of Legendre symbols of Dy

is
D
<.——i) - 1‘
p
We treat separately D, and D._.

1. The case of D, = 2b— 1.
Here we assume that

p=4(2b—1)n+1
is a prime number and not a divisor of a.

Remark 5.6. By the theorem of Dirichlet, there exisit infinitely many prime number as
above.

If p is a divisor of 2b — 1, then D, = 0 mod p. Hence there exists a solution of
Ak(t) = 0 mod p.
Assume that p is not a divisor of 2b — 1. By the reciprocity law of the Jacobi symbol,

(%) (#5)

2b11
)L

)2(2b 1)n(b—1)

(-1
= (=
1.
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Therefore we have

[

p
2b—-1

(25 (a2
(4(2172; P;H 1)
S

5-1)

Il

2. Thecase of D_ = -2b—1
Now assume that

p=4(2b+1)n+1

is a prime number and not a divisor of a.

(29)-(2) (%)

By the quadratic reciprocity law,

(3)-co

— (_1)2(2b+1)n
=1

() () (5 - (52)

By using the reciprocity law of the Jacobi symbol,

2b+1 D ____(_1)2%_1_%;21;1
P 2b+1

— (_ 1)2(2b+1)nb

=1.

(%1)
(4(2b241;i;z+ 1)
(&5

Hence

Therefore we have

(5°)

Il

1)

lI
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