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1. INTRODUCTION

In this paper, we give a set of polynomials associated to a Wirt inger presentation of
knot group $G(K)$ such that the locus of their zeros gives an “embedding” (one to one
correspondence) of the set of tmce-free chamcters of $G(K)$ in a complex space (Theorem
1.1). This set, denoted by $S_{0}(K)$ , is an algebraic subset of the chamcter variety of $G(K)$ .
The framework of character varieties [4] has been giving powerful tools and is now play-
ing important roles mainly in geometry and topology. An underlying idea of character
varieties is simple, though it is not easy to calculate them and thus to investigate their
geometric structures in general. Let $G$ be a finitely presented group generated by $n$ el-
ements $g_{1},$ $\cdots,$ $g_{n}$ . For a representation $\rho$ : $Garrow SL_{2}(\mathbb{C})$ , the character $\chi_{\rho}$ of $\rho$ is the
function on $G$ defined by $\chi_{\rho}(g)$ $:=$ tr $(\rho(g))(\forall g\in G)$ . By [4, 7], the $SL_{2}(\mathbb{C})$-trace identity

tr$(AB)=$ tr $(A)$ tr$(B)-$ tr $(AB^{-1})$ $(A, B\in SL_{2}(\mathbb{C}))$

shows that tr $(\rho(g))$ for an unspecified representation $\rho$ and any $g\in G$ is expressed by a
polynomial in $\{$tr $(\rho(g_{i}))\}_{1<i\leq n},$ $\{$tr $(\rho(g_{i}g_{j}))\}_{1\leq i<j\leq n}$ and $\{$tr $(\dot{\rho}(g_{i}g_{j}g_{k}))\}_{1\leq i<j<k<n}$ . Then
the character variety of $G,$

$\overline{d}$enoted by $X(G)$ , is basically the image of the set of $c$haracters-
$\mathfrak{X}(G)$ of $SL_{2}(\mathbb{C})$ -representations of $G$ under the map

$t$ : $\mathfrak{X}(G)arrow\alpha^{+(_{2}^{n})+(_{3}^{n})},$ $t(\chi_{\rho})$ $:=(tr(\rho(g_{i})); tr(p(g_{i}g_{j})); tr(\rho(g_{i}g_{j}g_{k})))$ .

The resulting set turns out to be a closed algebraic set (refer to [4]). By definition, the
coordinates of $X(G)$ varies by a bipolynomial map if we change the choice of generating set
of $G$ , however, the geometric structures do not depend on the choice. Here a polynomial
map $f$ : $Varrow W$ between two algebraic sets $V$ and $W$ in complex spaces are said to
be isomorphism or bipolynomial if there exist a polynomial map $g$ : $Warrow V$ such that
$g\circ f=id_{V},$ $f\circ g=id_{W}$ . Hence $X(G)$ is an invariant of $G$ up to bipolynomial map of
algebraic sets. From now, we consider character varieties up to bipolynomial maps.

Now let us focus on the character varieties of knot groups. For a knot $K$ in 3-sphere
$S^{3}$ , we denote by $E_{K}$ the knot exterior $\mathbb{S}^{3}-N(K)$ , where $N(K)$ is an open tubular
neighborhood of $K$ in $\mathbb{S}^{3}$ , and by $G(K)$ the knot group, i.e., the fundamental group $\pi_{1}(E_{K})$

of the knot exterior $E_{K}$ . Given a knot diagram $D_{K}$ with $n$ crossings, by Wirtinger’s
algorithm we can always obtain so-called the Wirtinger presentation associated to $D_{K}$ :

$G(K)=\langle m_{1}, \cdots, m_{n}|r_{1}=1, \cdots, r_{n-1}=1\rangle,$
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where $m_{i}$ is a meridian on the ith arc of $D_{K}$ , and $r_{j}$ is a word in $m_{1},$ $\cdots,$ $m_{n}$ associated
to the jth crossing (refer to [3, 8] etc.). If the sth crossing in $D_{K}$ is seen as

we call the triple $(i,j, k)$ a Wirtinger triplel and then $r_{s}=m_{i}m_{j}m_{i}^{-1}m_{k}^{-i}$ holds. By the
Culler-Shalen theory mentioned above, we can construct the character variety $X(K)$ $:=$

$X(G(K))$ associated with the above Wirtinger presentation of $G(K)$ .
This paper focuses on a special class of representations of a knot group, called tmce-free

representations. Let $\mu$ be a meridian of $G(K)$ . Then a representation $\rho:G(K)arrow SL_{2}(\mathbb{C})$

is said to be trace-free if tr $(\rho(\mu))=0$ holds. Then we call its character $\chi_{\rho}$ a trace-free
character. The set of trace-free characters gives us a subset of the set of characters $\mathfrak{X}(K)$ ,
denoted by $\mathfrak{S}_{0}(K)$ :

$\mathfrak{S}_{0}(K)=\{\chi_{\rho}\in \mathfrak{X}(K)|\chi_{\rho}(\mu)=0\}.$

Again, by the Culler-Shalen theory, $\mathfrak{S}_{0}(K)$ can be realized as an algebraic subset of the
character variety $X(K)$ , which is denoted by $S_{0}(K)$ . By definition, the subset $S_{0}(K)$ of
$X(K)$ can be thought of as a slice by the hyperplane tr $(\rho(\mu))=0$ . Since any meridians
are conjugate, tr $(\rho(\mu))=0$ means tr $(\rho(m_{i}))=0$ for any $1\leq i\leq n$ . So we have

$S_{0}(K)=\{(0, \cdots, 0; tr(\rho(m_{i}m_{j})); tr(\rho(m_{i}m_{j}m_{k})))\in \mathbb{C}^{n+(_{2}^{n})+(_{3}^{n})}|\chi_{\rho}\in \mathfrak{S}_{0}(K)\}.$

We call this slice the tmce-free slice. In general, the map $t$ in Section 1 is not injective and
thus the character variety $X(G)$ is not a genuine embedding (not a one-to-one correspon-
dence) of $\chi(G)$ , however, for the characters of irreducible representations $t$ is injective.
Since the knot determinant $|\triangle_{-1}(K)|$ is non-zero, by [2, 5] there does not exist reducible
non-abelian trace-free representations. So the trace-free slice $S_{0}(K)$ turns out to be a
genuine embedding of the trace-free characters $\mathfrak{S}_{0}(K)$ .

The trace-free slices have several interesting properties, for example, a relationship
to the knot signature [9], a 2-fold branched covering structure coming from metabelian
representations [9, 14] etc. However, it is also not easy to calculate them in general. The
main result in the present paper is to give a set of polynomials whose common zeros
coincide with the trace-free slice $S_{0}(K)$ of the character variety $X(K)$ of a knot $K.$

Theorem 1.1. Let $G(K)=\langle m_{1},$ $\cdots,$ $m_{n}|r_{1}=1,$ $\cdots r_{n-1})=1\rangle$ be a Wirtinger presen-
tation. Then $S_{0}(K)$ is given as the following algebraic set in $\mathbb{C}(_{2}^{n})+(_{3}^{n})_{;}$

$\{(x_{12}, \cdots, x_{nn-1};x_{i23}, \cdots, x_{n-2n-1n})\in \mathbb{C}(_{2}^{n})+(_{3}^{n})|(1),$ (2)
$,$ (3) $\},$

where (1), (2) and (3) are the equations defined as follows:
$1_{The}$ positive integers $i,$ $j$ and $k$ in $(i,j, k)$ are ordered such that the meridian $m_{i}$ is on the overarc

and the others $m_{j}$ and $m_{k}$ are on the underarcs, respectively.
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Type (1): the fundamental relations (F)

$x_{ka}=x_{ij}x_{ia}-x_{ja}$ (F2), $x_{kab}=x_{ij}x_{iab}-x_{jab}$ (F3),
$(1\leq a, b\leq n, (i,j, k)$ : any Wirtinger $tr^{l}iple$),

Type (2): the hexagon relations (H)

$x_{i_{1}i_{2}i_{3}} \cdot x_{j_{1}j_{2}j_{3}}=\frac{1}{2}|\begin{array}{lll}x_{i_{1}j_{1}} x_{i_{1}j_{2}} x_{i_{1}j_{3}}x_{i_{2}j_{1}} x_{i_{2}j_{2}} x_{i_{2}j_{3}}x_{i_{3}j_{1}} x_{\dot{|}sj_{2}} x_{i_{S}j_{3}}\end{array}|,$

$(1\leq i_{1}<i_{2}<i_{3}\leq n, 1\leq j_{1}<j_{2}<j_{3}\leq n)$ ,

Type (3): the rectangle relations (R)

$|\begin{array}{llll}2 x_{12} x_{la} x_{ib}x_{21} 2 x_{2a} x_{2b}x_{a1} x_{a2} 2 x_{ab}x_{b1} x_{b2} x_{ba} 2\end{array}|=0 (3\leq a<b\leq n)$ .

In fact, the coordinates $x_{ij}$ and $x_{ijk}$ correspond $to-$ tr $(\rho(m_{i}m_{j}))and-$ tr $(\rho(m_{i}m_{j}m_{k}))$

for an unspecified representation $\rho$ : $G(K)arrow SL_{2}(\mathbb{C})$ . So we have $x_{ii}=2,$ $x_{ji}=x_{ij}$

and $x_{i_{\sigma(1)}i_{\sigma(2)}i_{\sigma(S)}}=sign(\sigma)x_{i_{1}i_{2}i_{S}}$ , where $\sigma$ is an element in the symmetric group of degree
three.

2. BACKGROUNDS AND MOTIVATIONS

2.1. Backgrounds and Motivations of Theorem 1.1. We first observe the slice
$S_{0}(K_{m})$ for twist knots $K_{m}$ shown in Figure 1.

$m$

FIGURE 1. Twist knot $K_{m}$ and loops $\tilde{x}$ and $\tilde{y}$ parametrizing $X(K_{m})$

Let $m_{1}$ and $m_{2}$ be meridians shown in Figure 1, respectively. These loops give a
presentation $G(K_{m})=\langle m_{1},$ $m_{2}|w(m_{1}, m_{2})=1\rangle$ , where $w(m_{1}, m_{2})$ be a word in $m_{1}$ and
$m_{2}$ associated to this diagram. Let $x$ and $y$ be the following trace functions:

$x:=-$tr $(\rho(\tilde{x}))=-$ tr $(\rho(m_{1})),$ $y:=-$tr $(\rho(y\gamma)=-$ tr $(\rho(m_{1}m_{2}^{-1}))$ .

These functions give the parameters of the character variety $X(K_{m})$ as follows. Let $S_{n}(z)$

be the Chebyshev polynomial of the second kind defined recursively by

$S_{n+2}(z)=zS_{n+1}(z)-S_{n}(z), S_{1}(z)=z, S_{0}(z)=1$
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for any integers $n$ . Then we define a polynomial

(1) $R_{m}(x, y):=(y+2)(S_{m}(y)-S_{m-1}(y)+x^{2} \sum_{i=0}^{m-1}S_{i}(y))$ .

In fact, this gives us the trace-free slice $S_{0}(K_{m})$ for any positive integer $m.$

Theorem 2.1 ([6, 11]). For any positive $integep_{m}$, the chamcter variety $X(K_{m})$ is given
by the algebmic set3 $\{(x, y)\in \mathbb{C}^{2}|R_{m}(-x, -y)=0\}.$

Note that the expression in (1) is the prime decomposition over the complex number
field $\mathbb{C}.$ $(See [12] for the case$ where $2m+1 is$ prime. $For$ general cases, refer $to [13].)$

So $R_{m}(-x, -y)=0$ gives the prime decomposition of $X(K_{m})$ . In the case of trefoil knot
$3_{1}$ , which is $K_{1}$ , we have $R_{1}(-x, -y)=(y-2)(-y+x^{2}-1)$ and thus it follows from
Theorem 2. 1 that

$X(3_{1})=\{(x, y)\in \mathbb{C}^{2}|(y-2)(-y+x^{2}-1)=0\}.$

Hence we obtain $S_{0}(3_{1})=\{2, -1\}.$

$-y$

$*$
$-tr(\rho(m1))))$

For the figure-8 knot $4_{1}$ , which is $K_{2}$ , we have $R_{2}(-x, -y)=(y-2)(y^{2}-x^{2}y+y+x^{2}-1)$

and thus it follows from Theorem 2.1 that
$X(4_{1})=\{(x, y)\in \mathbb{C}^{2}|(y-2)(y^{2}+y-1-x^{2}y+x^{2})=0\}.$

Hence we obtain $S_{0}(4_{1})=\{2, (-1\pm\sqrt{5})/2\}.$

$y^{2}+y-1-$

$y$

$-tr(\rho(m_{1}))$

These calculations can be done because we have the defining polynomial of $X(K_{m})$ . We
want to calculate $S_{0}(K)$ directly without the calculation of $X(K)$ . Theorem 1.1 gives us
a way to do it.

2For a negative $integer-m(m>1)$ , taking the mirror image of $K_{-m}$ and arranging it, we can obtain
$X(K_{-m})=X(K_{m-1})$ and thus a similar result to Theorem 2.1. In that case, $R_{-m}(x, y)$ will shift to
$R_{m-1}(x,y)$ .

$3We$ can replace $R_{m}(-x, -y)$ with $R_{m}(x, y)$ . The negative signs are just for a convention.
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2.2. An observation of Theorem 1.1. Theorem 1.1 uses a handle decomposition of
the exterior $E_{K}$ . Let $H_{n}$ be a handlebody of genus $n$ . Then the exterior $E_{K}$ can be
decomposed into 2-handles and a 3-handle and a handlebody $H_{n}$ . In the case of $4_{1}$ , that
decomposition can be seen as below.

From now on, we use this example to discuss the mechanism of Theorem 1.1. First, we
isotope the handlebody $H_{4}$ to the product of a -punctured disk $D_{4}$ and an interval $[0,1].$

Along with this isotopy, the attaching curves of 2-handles on the boundary of $H_{4}$ can
be seen as curves on the boundary of $D_{4}\cross[0,1]$ . In this situation, we will project the
attaching curves to the punctured disk $D_{4}\cross\{0\}$ as a code (see Figure 2). Note that in
the projection we do not have to care about the $sign$ of a crossing, since we will look at
the relations in the fundamental group.

Now, let us observe the mechanism which generates the equations giving $S_{0}(K_{4})$ . First,
the attaching curves (codes) themselves give the following equations:

$X_{13}=x_{23},$

$X_{12}=X_{24},$

$X_{13}=X_{14},$

$X_{23}=x_{24}.$

To observe this, for example, we focus on the attaching curve corresponding to the code
connecting $1$ and $2$ . Since the attaching curve is trivial in $E_{4_{1}}$ , we have
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FIGURE 2. Depictions of attaching curves as codes. $A$ cross $”\cross$ ” on a code
presents a half-twist of the attaching curve.

This means $1=m_{3}m_{1}m_{3}^{-1}m_{2}^{-1}$ in the language of the fundamental group. For an arbitrary
trace-free character $\chi_{\rho}$ , this gives us $-2=-$tr $(\rho(m_{3}m_{1}m_{3}^{-1}m_{2}^{-1}))$ . By the $SL_{2}(\mathbb{C})$-trace
identity with trace-free condition tr $(\rho(m_{i}))=0$ , we obtain the following equation

(2) $-2=-tr(\rho(m_{3}m_{1}m_{3}^{-1}))$ tr $(\rho(m_{2}^{-1}))+$ tr $(\rho(m_{3}m_{1}m_{3}^{-1}m_{2}))=$ tr $(\rho(m_{3}m_{1}m_{3}^{-1}m_{2}))$

In fact, this operation can be done through the Kauffman bracket skein relation at $t=-1$
with the trace-free condition:

$\prime\prime\backslash \prime\backslash \prime\cross^{\backslash },\backslash ,t\prime\backslash \prime\wedge^{---\backslash --\vee---}\backslash --\backslash \prime\prime\backslash \prime\backslash /|\prime)_{\backslash }’(^{\backslash \prime\grave{\grave{}}_{\backslash }},I$

The first and the second equations are the Kauffman bracket skein relations at $t=-1.$
The third equation corresponds to the trace-free condition. Again, we do not have to care
about the $sign$ of a crossing in the Kauffman bracket skein relations. To see (2),

where this resulting loop presents $m_{3}m_{1}m_{3}^{-1}m_{2}$ . In general, a loop $\gamma$ in $E_{K}$ up to the
Kauffman bracket skein relations at $t=-1$ corresponds $to-$tr $(\gamma)$ ([1], see also Theorem
3.1). Basically, we will apply this skein theoretic method throughout this paper instead
of the $SL_{2}(\mathbb{C})$-trace identity.
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Now, by the skein relations, we obtain

(3)

so we have

$2$

$\circ$

This means that-2 $=-$tr $(\rho(m_{1}m_{3}))$ tr $(\rho(m_{2}m_{3}))+$ tr $(\rho(m_{1}m_{2}))$ holds.

$\gamma_{\fcircle 3}$

$\sim$

Setting the followings

$=0$we obtain one of the desired equations-2 $=-x_{13}x_{23}+x_{12}.$

Also we can get $x_{13}=x_{23},$ $x_{12}=x_{24},$ $x_{13}=x_{14},$ $x_{23}=x_{24}$ . In general, handle-slides
along the attaching curves generate all equations giving the trace-free slice $S_{0}(K_{2})$ . Note
that a handle-slide of a loop in $H_{4}$ along a attaching curve can be considered as a band-
sum4 between them. For example, a handle-slide $sl_{b}(x_{13})$ of $x_{13}$ along a band $b$ connecting
$x_{13}$ to an attaching curve gives

$=x_{23}.$

4Since a twisted band-sum can be reduced to a sum of band sums by resolving the twists, we only
consider non-twisted band-sums.
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Other relations $x_{12}=x_{13}^{2}-2,$ $x_{24}=x_{13}^{2}-2,$ $x_{34}=x_{13}^{2}-2$ can be obtained like this.

Then by relation (3) the resulting loop is equal to

$=x_{13}^{2}-2.$

Continuing this work, we obtain all (F2):

$\{$

$X_{13}=x_{23,\fbox_{=x_{24}},\fbox,x_{23}=x_{24},\fbox_{x_{12}=x_{13}^{2}-2}}X_{i2}$

$x_{13}x_{23}-x_{12}=2,$ $x_{12}x_{24}-x_{14}=2,$ $x_{13}x_{14}-x_{34}=2,$

$x_{24}x_{34}-x_{23}=2\}.$
$x_{24}=x_{13}^{2}-2,$ $x_{34}=x_{13}^{2}-2,$

$X_{14}=X_{23}X_{34}-X_{24},$ $X_{13}=X_{23}X_{24}-X_{34},$ $X_{23}=X_{12}X_{14}-X_{24}$

Here we define the algebraic set $F_{2}(4_{1})$ which is the common zeros of the fundamental
relations (F2):

$F_{2}(4_{1}) :=\{(x_{12}, \cdots, x_{45})\in \mathbb{C}^{10}|x_{ka}=x_{ik}x_{ia}-x_{ja} (F2)\}.$

By reducing the variables in (F2), we see that $F_{2}(4_{1})$ is parametrized by $x_{13}$ and

$X_{13} = X_{14}X_{24}-X_{12},$

$X_{13} =x_{13}(x_{13}^{2}-2)-(x_{13}^{2}-2)$ ,
$0 = (x_{13}-2)(x_{13}^{2}+x_{13}-1)$ .

Hence we get $F_{2}(4_{1})=\{2, (-1\pm\sqrt{5})/2\}$ . This shows that $F_{2}(4_{1})$ coincides with $S_{0}(4_{1})$ .
The reason is as follows. First, we see that (F3) become trivial:

Indeed, for a Wirtinger triple $(i,j, k)$

$\otimes$

$x_{ijk}=sl_{b}(x_{ijk})=$ $=-x_{i}x_{ij}-x_{i}=0.$
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We can also check this by the hexagon relation (H):

$x_{i_{1}i_{2}i_{3}} \cdot x_{j_{1}j_{2}j_{3}}=\frac{1}{2}$

$x_{i_{1}j_{1}}$ $x_{i_{i}j_{2}}$ $x_{i_{1}j_{3}}$

$x_{i_{2}j_{1}}$ $x_{i_{2}j_{2}}$ $x_{i_{2}j_{3}}$

$x_{i_{3}j_{1}}$ $x_{i_{3}j_{2}}$ $x_{i_{3}j_{3}}$

$(1\leq i_{1}<i_{2}<i_{3}\leq 4)$

$(1\leq j_{1}<j_{2}<j_{3}\leq 4)$

For example, a Wirtinger triple (1, 2, 3) gives us

$2$

$=x_{123}^{2}= \frac{1}{2}$

$o_{1}$ $3$

2 $x_{12}X_{13}$

$x_{21}$ 2 $x_{23}$

$x_{3i}$ $X_{32}$ 2
$=x_{12}x_{13}x_{23}-x_{12}^{2}-x_{13}^{2}-x_{23}^{2}+4$

$= (x_{13}^{2}-2)x_{13}^{2}-(x_{13}^{2}-2)^{2}-x_{13}^{2}-x_{13}^{2}+4=0.$

Then we can check that all point in $F_{2}(4_{1})$ satisfy (H) and the rectangle relations (R):

$2 x_{12} x_{la} x_{lb}$

$x_{21} 2 x_{2a} x_{2b}$

$x_{a1} x_{a2} 2 x_{ab}$

$x_{b1} x_{b2} x_{ba} 2$

$=0$ $(3\leq a<b\leq 4)$ .

Hence every point in $F_{2}(4_{1})$ lifts to a point in $S_{0}(4_{1})$ and thus $F_{2}(4_{1})=S_{0}(4_{1})$ and the
main theorem holds for $K_{2}=4_{1}$ . We remark that to get $S_{0}(4_{1})$ we calculate $F_{2}(4_{1})$ first
and then we check the liftability second.

$\mathbb{C}(\begin{array}{l}43\end{array})$

$S_{0}(4_{1})=$
$\mathbb{C}(\begin{array}{l}42\end{array})$

$F_{2}(4_{1})=$
$\mathbb{C}(\begin{array}{l}42\end{array})$

We can also observe the case of $K=5_{2}.$
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Then we obtain $S_{0}(5_{2})=F_{2}(5_{2})=\{x_{14}\in \mathbb{C}|(x_{14}-2)(x_{14}^{3}+x_{14}^{2}-2x_{14}-1)=0\}.$

$\mathbb{C}3$

$S_{0}(5_{2})=$ $\mathbb{C}(_{2}^{5})$

$F_{2}(5_{2})=$ $\mathbb{C}(_{2}^{5})$

Note that every point in $F_{2}(5_{2})$ also lifts to a point in $S_{0}(5_{2})$ . Again we remark that to
get $S_{0}(5_{2})$ we calculate $F_{2}(5_{2})$ ftrst and then we check the liftability second.

We also observe the case of $K=8_{5}.$ $F_{2}(8_{5})$ consists of 11 points and $S_{0}(8_{5})$ consists of
12 points.

$\mathbb{C}(\begin{array}{l}83\end{array})$

$S_{0}(8_{5})=$
$\mathbb{C}(_{2}^{8})$

$F_{2}(8_{5})=$
$\mathbb{C}(_{2}^{8})$

Note that there exists a point in $F_{2}(8_{5})$ which lifts to two points in $S_{0}(8_{5})$ and so $F_{2}(8_{5})\neq$

$S_{0}(8_{5})$ . Again we remark that to obtain $S_{0}(8_{5})$ we calculate $F_{2}(8_{5})$ first and then we check
the liftability second.

So far, any point of $F_{2}(K)$ can lift to $S_{0}(K)$ . It would be interesting to research whether
or not any point of $F_{2}(K)$ can lift to $S_{0}(K)$ for any knot $K$ . In the next section, we first
show a sketch of the proof of Theorem 1.1 in Subsection 3.1 and then we will speculate
this question in Subsection 3.2.

3. A SKETCH OF THE PROOF OF THEOREM 1. 1

3.1. $A$ sketch of the proof of Theorem 1.1. In general, the skein theory observed in
Subsection 2.2 is realized as the Kauffman bracket skein algebra5 (KBSA for short) of a
3-manifold. The KBSA of a 3-manifold $M$ , denoted by $\mathcal{K}_{-1}(M)$ , is the quotient of the
module over $\mathbb{C}$ generated by all free homotopy classes of loops in $M$ by the Kauffman
bracket skein relations:

$\iota\prime\prime\backslash /\prime\cross_{\ell}^{\backslash }\prime|\backslash \prime\prime\backslash _{\sim--\prime}-^{--\sim}\backslash \backslash \backslash \prime\backslash =-1|\prime\backslash \prime\backslash )_{---\prime}^{\prime^{\vee--\backslash }}(^{\backslash },\prime|\backslash \prime\prime-\backslash \backslash \prime-l\backslash \backslash \bigwedge’,\prime\grave{}_{\backslash }\prime\backslash \prime---\prime\vee--\backslash \prime\backslash |,$ $=-2,$

where in the first relation loops coincide each other outside dashed circles (refer to [1,
15, 16, 17] $)$ . Actually, a loop (a homotopy class of a loop) $s\in \mathcal{K}_{-1}(M)$ has the same

5This is the specialization of the Kauffman bracket skein module at the parameter $t=-1.$
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properties $as-$tr $(s)$ . In this correspondence, the Kauffman bracket skein relations can be
thought of as the $SL_{2}(\mathbb{C})$-trace identities. This gives a correspondence between $\mathcal{K}_{-1}(M)$

and the coordinate ring $\chi(M);=\chi(\pi_{1}(M))$ of the character variety $X(\pi_{1}(M))$ .

Theorem 3.1 ([1, 17]). There exists a surjective homomorphism $\varphi$ : $\mathcal{K}_{-1}(M)arrow\chi(M)$

defined by $\varphi(\gamma)$ $:=-t_{\gamma}$ for a loop $\gamma\in \mathcal{K}_{-1}(M)$ . Moreover $Ker(\varphi)$ is the nilmdical $\sqrt{0}.$

This gives $\mathcal{K}_{-1}(M)/\sqrt{0}=\chi(M)$ and thus a method to calculate the character varieties
using the Kauffman bracket skein theory. The next theorem is basic to calculate the
KBSA.

Theorem 3.2 (cf. [15]).

$\mathcal{K}_{-1}(E_{K})=\frac{\mathcal{K}_{-1}(H_{n})}{\langle z-sl_{b}(z)|z.\cdot anyloopin\mathcal{K}_{-1}(H_{n})\rangle}$

Theorem 3.2 immediately gives the trace-free version:

$\mathcal{K}_{-1,TF}(E_{K}):=\frac{\mathcal{K}_{-1.TF}(H_{n})}{\langle z-sl_{b}(z)|z:any1oopin\mathcal{K}_{-i,TF}(H_{n})\rangle},$

where $\mathcal{K}_{-1,TF}(H_{n})$ denotes the KBSA $\mathcal{K}_{-i}(H_{n})$ with the trace-free condition. Now we
define two ideals in $\mathcal{K}_{-1,TF}(H_{n})$ , the sliding ideal $S_{K}$ and the fundamental ideal $F_{K}$ :

$S_{K}$ $:=\langle z-sl_{b}(z)|z$ : any loop in $\mathcal{K}_{-1,TF}(H_{n})\rangle$

$F_{K}:=\langle x_{ka}-x_{ij}x_{ia}+x_{ja}$ ( $F$2), $x_{kab}-x_{ij}x_{iab}+x_{jab}(F3)\rangle$

By definition, $S_{K}\supset F_{K}$ holds. To show Theorem 1.1, we will first show that they coincide,
i.e., $S_{K}=F_{K}.$

Note that the dashed band in the band $b$ express omitting the way of $b$ . We first resolve
the loop $z$ with $b$ by the skein relations. Similar to the property on tr$(\rho(g))$ as seen in
Section 1, any loop can be presented by a sum $f-\Sigma_{i}x_{i}f_{i}-\Sigma_{i,j\fbox-\Sigma_{i_{\dot{\theta}},k^{X_{i}}\prodjkijk}_{X_{ijij}}},$

where $f,$ $f_{i},$ $f_{ij},$ $f_{ijk}$ are polynomials in $\mathbb{C}[x_{ij};x_{ijk}]$ . Here the rectangles means the loops
which connect to the band $b$ . Then we see that $sl_{b}(z)$ is equal to

So $z-sl_{b}(z)$ tums out to be$($
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Hence any handle-slide can be generated by $-sl_{b}($ $sl_{b}(x_{i}),$ $x_{ij}-sl_{b}(x_{ij}),$ $x_{ijk}-$

$sl_{b}(x_{ijk})$ and thus we obtain

$S_{K}=\langle$ $sl_{b}(x_{i}),$ $x_{ij}-sl_{b}(x_{ij}),$ $x_{ijk}-sl_{b}(x_{ijk})|b$ : any band$\rangle.$

Step2 Consider $sl_{b}(x_{*})$ for $x_{*}\in\{$ . If the band $b$ is “winding”,
i.e., $b$ goes around at least a puncture, then we can actually “straighten” $b$ by the skein
relations:

$= (x_{*}\# x_{a})(-sl_{\overline{b}}(x_{a}))-(x_{*}-sl_{b^{l}}(x_{*}))-x_{*}(-2-sl_{\hat{b}}($

where $x_{*}\# x_{a}$ denotes the band sum between $x_{*}$ and $x_{a}$ in the above equation. Continuing
this work until the winding bands disappear, we obtain

$x_{*}-sl_{b}(x_{*})=\Sigma_{i}(-sl_{*}(x_{i}))f+\Sigma(x_{*}-sl_{*}(x_{*}))g+\Sigma(-2-sl_{*}($

where $sl_{*}$ denotes the band-sum along an unspecified non-winding $band*$ , and $f,$ $g$ and
$h$ are polynomials in $\mathbb{C}[x_{ij};x_{ijk}]$ . Therefore we see that

$S_{K}=\langle$ $sl_{*}(x_{i}),$ $x_{ij}-sl_{*}(x_{ij}),$ $x_{ijk}-sl_{*}(x_{ijk})|*$ : any non-winding $band\rangle$

Since there exist only finitely many non-winding bands for a loop up to homotopy, this
shows that $S_{K}$ is finitely generated. By the same argument6, we can reduce the finitely
many generators to (F). Therefore, we obtain $S_{K}=F_{K}.$

Now we can show Theorem 1.1. It follows from the above argument that

$\mathcal{K}_{-1,TF}(E_{K})=\frac{\mathcal{K}_{-1,TF}(H_{n})}{\langle x_{ka}-x_{ik}x_{ia}+x_{ja}(F2),x_{kab}-x_{ik}x_{iab}+x_{jab}(F3)\rangle}.$

By $[7]^{7}$ , we have

$\mathcal{K}_{-1,TF}(H_{n})/\sqrt{0}=\frac{\mathbb{C}[x_{ij};x_{ijk}]}{\sqrt{\langle(H),(R),(\star)=|_{x_{b1}x_{b2}x_{b3}x_{ab}}^{2x_{12}x_{13}x_{1a}}x_{31}x_{32}2x_{3a}x_{21}2x_{23}x_{2a}|(4\leq a<b\leq n)\rangle}}.$

6If $sl_{*}(x_{*})$ is a band sum of $x_{*}\in\{$ and an attaching curve disjoint from $x_{*}$ , then
the resulting relation essentially comes from the fundamental relations (F). So we only need to focus on
the band-sums between $x_{*}$ and attaching curves intersecting with $x_{*}$ . Then the remaining generators
tums out to be essentially (F). We will omit the details.

7The relations given in [7, p.639] can be realized by the skein relations. So it follows from Theorem
3.1 that this equality holds.
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In fact, by taking (1, 2, 3) as a Wirtinger triple, the relations $(\star)$ become trivial as follows:

$(\star) = x_{ab}|\begin{array}{lll}2 x_{12} x_{13}x_{21} 2 x_{23}x_{31} x_{32} 2\end{array}|-x_{b3}|\begin{array}{lll}2 x_{l2} x_{1a}x_{21} 2 x_{2a}x_{31} x_{32} x_{3a}\end{array}|$

$+x_{b2}|\begin{array}{lll}2 x_{13} x_{1a}x_{21} x_{2a} x_{2a}x_{31} 2 x_{3a}\end{array}|-x_{b1}|\begin{array}{lll}x_{l2} x_{l3} x_{1a}2 X_{23} x_{2a}x_{32} 2 x_{3a}\end{array}|$

$= x_{ab}x_{i23}^{2}-x_{b3}x_{123}x_{12a}+x_{b2}x_{123}x_{13a}-x_{b1}x_{123}x_{23a}$

$= x_{123}(x_{ab}x_{123}-x_{b3}x_{12a}+x_{b2}x_{13a}-x_{b1}x_{23a})=0.$

Therefore, we obtain Theorem 1.1 with the condition that (1, 2, 3) is a Wirtinger triple.

3.2. Ghost characters and liftability problem of $F_{2}(K)$ to $S_{0}(K)$ . Can any point
of $F_{2}(K)$ lift to $S_{0}(K)$ for any knot? If there exists a point in $F_{2}(K)$ which does not lift
to $S_{0}(K)$ , then we call it a ghost chamcter.

$\mathbb{C}(_{3}^{n})$

$S_{0}(K)=$

character
$F_{2}(K)=$

More precisely, if a point $(x_{ij})$ in $F_{2}(K)$ does not satisfy one of (F3), (H) and (R), then
$(x_{ij})$ does not lift to $S_{0}(K)$ and thus $(x_{ij})$ turns out to be a ghost character. Before we
look into ghost characters, we focus on the meanings of (H) from the algebraic set $F_{2}(K)$

point of view.
First, for a point $(x_{*j})$ in $F_{2}(K)$ the hexagon relations (H)

$x_{i_{1}i_{2}i_{3}} \cdot x_{j_{1}j_{2}j_{3}}\equiv\frac{1}{2}|\begin{array}{lll}x_{i_{1}j_{1}} x_{i_{1}j_{2}} x_{i_{1}j_{3}}x_{i_{2}j_{l}} x_{i_{2J’2}} x_{i_{2}j_{3}}x_{i_{3}j_{1}} x_{i_{3}j_{2}} x_{i_{3}j_{3}}\end{array}|$

$(1\leq i_{1}<i_{2}<i_{3}\leq n, 1\leq j_{1}<j_{2}<j_{3}\leq n)$

give a 2-fold branched covering structure to $S_{0}(K)$ , i.e., (H) show that a point in $F_{2}(K)$

can lift at most two points. In particular, (H) give each $x_{ijk}$ two possibility as follows:

$x_{ijk}=\pm\sqrt{\frac{1}{2}|_{x_{kj}x_{kj}2}^{2x_{ij}x_{\iota k}}x_{ji}2x_{jk}|}.$

Next, the hexagon relations (H) give always a solution of (F3). Namely, if $(x_{ij};x_{klm})\in$

$F_{2}(K)\cross \mathbb{C}3$ satisfies (H), then $(x_{ij};x_{klm})$ satisfies (F3), because
(1) if all $x_{klm}=0$ , then (F3) are trivial.
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(2) if there exists a coordinate $x_{stu}\neq 0$ , then it follows from (F2) and (H) that for
any Wirtinger triple $(i, j, k)$ and $1\leq a,$ $b\leq n$

$x_{stu^{X}kab} = \frac{1}{2}|\begin{array}{lll}x_{sk} x_{sa} x_{sb}x_{tk} x_{ta} x_{tb}x_{uk} x_{ua} x_{ub}\end{array}|= \frac{1}{2}|\begin{array}{lll}x_{ij}x_{si}-x_{sj} x_{sa} x_{sb}x_{ij}x_{ti}-x_{tj} x_{ta} x_{tb}x_{ij}x_{ui}-x_{uj} x_{ua} x_{ub}\end{array}|$

$= x_{ij^{\frac{1}{2}}} |\begin{array}{lll}x_{si} x_{sa} x_{sb}x_{ti} x_{ta} x_{tb}x_{ui} x_{ua} x_{ub}\end{array}|-\frac{1}{2}|\begin{array}{lll}x_{sj} x_{sa} x_{sb}x_{tj} x_{ta} x_{tb}x_{uj} x_{ua} x_{ub}\end{array}|$

$= x_{ij}x_{stu}x_{iab}-x_{stu}x_{jab}$

$= x_{stu}(x_{ij}x_{iab}-x_{jab})$ .
So $x_{kab}=x_{ij}x_{iab}-x_{jab}$ holds.

Therefore, the hexagon relations (H) and the rectangle relations (R) give an obstruction
to lift a point in $F_{2}(K)$ to $S_{0}(K)$ . Namely, we have the following.
Theorem 3.3. $A$ point in $F_{2}(K)$ is a ghost chamcter if and only if the point does not
satisfy (H) or (R).

We are now researching relationships between (H) and (R), and trying to find knots
with ghost characters. We will report this research in another paper.
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