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ON THE TRACE-FREE CHARACTERS

FUMIKAZU NAGASATO

1. INTRODUCTION

In this paper, we give a set of polynomials associated to a Wirtinger presentation of
knot group G(K) such that the locus of their zeros gives an “embedding” (one to one
correspondence) of the set of trace-free characters of G(K) in a complex space (Theorem
1.1). This set, denoted by Sp(K), is an algebraic subset of the character variety of G(K).
The framework of character varieties [4] has been giving powerful tools and is now play-
ing important roles mainly in geometry and topology. An underlying idea of character
varieties is simple, though it is not easy to calculate them and thus to investigate their
geometric structures in general. Let G be a finitely presented group generated by n el-
ements g1, -+, gs. For a representation p : G — SLy(C), the character x, of p is the
function on G defined by x,(g) := tr(p(9)) (Vg € G). By (4, 7], the SLy(C)-trace identity

tr(AB) = tr(A)tr(B) — tr(AB™') (A, B € SLy(C))

shows that tr(p(g)) for an unspecified representation p and any g € G is expressed by a
polynomial in {tr(p(¢:))}1<i<n, {tr(0(9:9;))hi<icjcn and {tr(A(9:9;9k)) }1<icjck<n- Then
the character variety of G, denoted by X(G), is basically the image of the set of characters
X(@) of SLy(C)-representations of G under the map

t: £(G) - CG)*G), ¢(x,) := (br(p(9:)); tr(o(0:95)); tr(p(gigsgs))) -

The resulting set turns out to be a closed algebraic set (refer to [4]). By definition, the
coordinates of X (G) varies by a bipolynomial map if we change the choice of generating set
of G, however, the geometric structures do not depend on the choice. Here a polynomial
map f : V — W between two algebraic sets V and W in complex spaces are said to
be isomorphism or bipolynomial if there exist a polynomial map g : W — V such that
go f =tdy, fog =idw. Hence X(G) is an invariant of G up to bipolynomial map of
algebraic sets. From now, we consider character varieties up to bipolynomial maps.

Now let us focus on the character varieties of knot groups. For a knot K in 3-sphere
S%, we denote by Ex the knot exterior S* — N(K), where N(K) is an open tubular
neighborhood of K in S?, and by G(K) the knot group, i.e., the fundamental group m (Ek)
of the knot exterior Fx. Given a knot diagram Dy with n crossings, by Wirtinger’s
algorithm we can always obtain so-called the Wirtinger presentation associated to Dk:

G(K)=(m1$"'amn,rlzlv"°)rn—1=1>’
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where m; is a meridian on the ith arc of Dg, and 7; is a word in my, - -, m,, associated
to the jth crossing (refer to [3, 8] etc.). If the sth crossing in Dy is seen as

(l/\

m"\/\-m,- :
\ -

we call the triple (1, j, k) a Wirtinger triple' and then ry = m;m;jm;'m;! holds. By the
Culler-Shalen theory mentioned above, we can construct the character variety X (K) :=
X(G(K)) associated with the above Wirtinger presentation of G(K).

This paper focuses on a special class of representations of a knot group, called trace-free
representations. Let p be a meridian of G(K). Then a representation p : G(K) — SLy(C)
is said to be trace-free if tr(p(u)) = 0 holds. Then we call its character x, a trace-free
character. The set of trace-free characters gives us a subset of the set of characters X(K),
denoted by Sy (K):

So(K) = {x, € X(K) | x,(1) = 0}.
Again, by the Culler-Shalen theory, Go(K) can be realized as an algebraic subset of the
character variety X (K, which is denoted by Sy(K). By definition, the subset So(K) of

X(K) can be thought of as a slice by the hyperplane tr(p(u)) = 0. Since any meridians
are conjugate, tr(p(u)) = 0 means tr(p(m;)) = 0 for any 1 < i < n. So we have

Xy € GO(K)}.

We call this slice the trace-free slice. In general, the map ¢ in Section 1 is not injective and
thus the character variety X (G) is not a genuine embedding (not a one-to-one correspon-
dence) of x(G), however, for the characters of irreducible representations ¢ is injective.
Since the knot determinant [A_; (K)| is non-zero, by [2, 5] there does not exist reducible
non-abelian trace-free representations. So the trace-free slice Sy(K) turns out to be a
genuine embedding of the trace-free characters Sy (K).

The trace-free slices have several interesting properties, for example, a relationship
to the knot signature [9], a 2-fold branched covering structure coming from metabelian
representations [9, 14] etc. However, it is also not easy to calculate them in general. The
main result in the present paper is to give a set of polynomials whose common zeros
coincide with the trace-free slice So(K') of the character variety X (K) of a knot K.

So(K) = {(0, -, 05 tr(p(mimy)); tr(p(mym,my))) € c+(3)+()

Theorem 1.1. Let G(K) = (my, -+ ,mp |11 =1,-++ ,rn_1 = 1) be a Wirtinger presen-
2

tation. Then So(K) is given as the following algebraic set in c(O)+6).

{(-TIZ’ r yTpun—1,T123," " * ’xn—Zn—ln) € C(;)+(g) (1)> (2)1 (3)} ’
where (1), (2) and (3) are the equations defined as follows:

IThe positive integers ¢, § and k in (4, j, k) are ordered such that the meridian m; is on the overarc
and the others m; and my, are on the underarcs, respectively.
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Type (1): the fundamental relations (F)
Tka = TijTia — Tja (F2), Tkab = TijTiab — Tjap (F3),
(1 <a,b<n, (ij,k): any Wirtinger triple),
Type (2): the hezagon relations (H)

X Tivjr Tiyja Tirgs
Tivigiz * Tjrjajs = 3| Tigji  Tigga Tings |
Zizjr Tigje Liajs
(1<i1<ia<i3<n, 1<j; <ja<js<n),
Type (3): the rectangle relations (R)

2 ZTi2 T Tw
Tor 2 Tog T
Ta1 Ta2 2 Zap
Toy Th2 Tha 2

=0 (3<a<b<n)

In fact, the coordinates z;; and z;j; correspond to —tr(p(m;m;)) and —tr(p(m;m;m;))
for an unspecified representation p : G(K) — SLy(C). So we have z;; = 2, zj; = z;;
and ;. i, oios = sign(0)x;, i, Where o is an element in the symmetric group of degree
three.

2. BACKGROUNDS AND MOTIVATIONS

2.1. Backgrounds and Motivations of Theorem 1.1. We first observe the slice
So(Km) for twist knots K, shown in Figure 1.

FIGURE 1. Twist knot K,, and loops Z and y parametrizing X (K,,)

Let m; and m, be meridians shown in Figure 1, respectively. These loops give a
presentation G(K,) = (my, mg | w(my, my) = 1), where w(m;, my) be a word in m, and
my associated to this diagram. Let = and y be the following trace functions:

z 1= ~tr (p(F)) = —tr (p(m1)) , y = ~tr (p(¥)) = —tr (p(mumy")).

These functions give the parameters of the character variety X (K,,) as follows. Let S;(2)
be the Chebyshev polynomial of the second kind defined recursively by

Snt2(2) = 28p41(2) — Sal2), S1(2) = 2, So(2) = 1



for any integers n. Then we define a polynomial
m—1

(1) R (z,y) = (y +2) { Sm(®¥) = Sm-1(v) + 22 Y, Si(y)
=0

In fact, this gives us the trace-free slice Sy(Ky,) for any positive integer m.

Theorem 2.1 ([6, 11]). For any positive integer® m, the character variety X (K,,) is given
by the algebraic set® {(z,y) € C* | Ru(—z, —y) = 0}.

Note that the expression in (1) is the prime decomposition over the complex number
field C. (See [12] for the case where 2m + 1 is prime. For general cases, refer to [13].)
S0 R (—z, —y) = 0 gives the prime decomposition of X (K,). In the case of trefoil knot
31, which is K;, we have Ri(—z,—-y) = (y — 2)(—y + 22 — 1) and thus it follows from
Theorem 2.1 that

X(3) ={(z,y) €C|(y-2)(~y+2*-1)=0}.
Hence we obtain Sy(3;) = {2, ~1}.

—y+2° -1 J = —tr(p(mim;"))

T = —tr(p(m1))

For the figure-8 knot 4;, which is K5, we have Ry(—z, ~y) = (y —2)(y? — 2%y +y+ 22 —1)
and thus it follows from Theorem 2.1 that

X)) ={(z,1) e C| (y -2 +y—1-2’y+2%) = 0}.
Hence we obtain Sp(41) = {2, (—1 £ v/5)/2}.
Y+y—1-zy+22=0 y

tr(p(mimz*))

T = -tr(p(m1))

These calculations can be done because we have the defining polynomial of X (K,,). We
want to calculate So(K') directly without the calculation of X(K). Theorem 1.1 gives us
a way to do it.

2For a negative integer —m (m > 1), taking the mirror image of K_,, and arranging it, we can obtain
X(K_m) = X(Km-1) and thus a similar result to Theorem 2.1. In that case, R_m(z,y) will shift to
Rm—l (l’ ’ y) .

3We can replace Ry (—2, —y) with Ry, (z,y). The negative signs are just for a convention.
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2.2. An observation of Theorem 1.1. Theorem 1.1 uses a handle decomposition of
the exterior Fx. Let H, be a handlebody of genus n. Then the exterior Ex can be
decomposed into 2-handles and a 3-handle and a handlebody H,,. In the case of 4;, that
decomposition can be seen as below.

=p=
U U= U@

< B ey
U VES snanae

2-handles

From now on, we use this example to discuss the mechanism of Theorem 1.1. First, we
isotope the handlebody Hj to the product of a 4-punctured disk D, and an interval [0, 1].
Along with this isotopy, the attaching curves of 2-handles on the boundary of Hy can
be seen as curves on the boundary of Dy X [0,1]. In this situation, we will project the
attaching curves to the punctured disk Dy x {0} as a code (see Figure 2). Note that in
the projection we do not have to care about the sign of a crossing, since we will look at
the relations in the fundamental group.

Now, let us observe the mechanism which generates the equations giving Sp(Ky). First,
the attaching curves (codes) themselves give the following equations:

T13T23 — T12 = 2, T13 = ZTa3,
T19T24 — Ti4 = 2, T12 = Toy,
T13T14 — T34 = 2, T13 = T4,
T4T34 — T2z = 2, To3 = Tos.

To observe this, for example, we focus on the attaching curve corresponding to the code
connecting @ and @. Since the attaching curve is trivial in Ey,, we have




FIGURE 2. Depictions of attaching curves as codes. A cross “x” on a code
presents a half-twist of the attaching curve.

This means 1 = mgmym3'm;" in the language of the fundamental group. For an arbitrary
trace-free character x,, this gives us —2 = —tr (p(mgm;mz'm3;")). By the SLy(C)-trace
identity with trace-free condition tr(p(m;)) = 0, we obtain the following equation

(2) —2 = —tr (pmamymz ")) tr (p(m3")) +tr (p(msmymy ' ma)) = tr (p(msmymy™ms)

In fact, this operation can be done through the Kauffman bracket skein relation at ¢ = —1
with the trace-free condition:

The first and the second equations are the Kauffman bracket skein relations at ¢ = —1.
The third equation corresponds to the trace-free condition. Again, we do not have to care
about the sign of a crossing in the Kauffman bracket skein relations. To see (2),

where this resulting loop presents mam;m3'm,. In general, a loop v in Ex up to the
Kauffman bracket skein relations at ¢ = —1 corresponds to ~tr(7y) ([1], see also Theorem
3.1). Basically, we will apply this skein theoretic method throughout this paper instead
of the SLo(C)-trace identity.
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Now, by the skein relations, we obtain

3) @=@+g+DOC’

@@71

This means that —2 = —tr(p(mym3))tr(p(mams)) + tr(p(m;mz)) holds.

O-Zoll &

Setting the followings

D) D ®
T; = =0, z; = / ) Tijg = ',
(©) &

—tr(p(m;)) =0 —tr(p(mim;)) —tr(p(mim;mi))

we obtain one of the desired equations —2 = —z 3293 + Z12.

Also we can get ;3 = To3, T12 = To4, T13 = T4, To3 = To4. In general, handle-slides
along the attaching curves generate all equations giving the trace-free slice So(K2). Note
that a handle-slide of a loop in H, along a attaching curve can be considered as a band-
sum* between them. For example, a handle-slide sly(z13) of z15 along a band b connecting
z13 to an attaching curve gives

@
T13 = sly(z13) == = @1} = T3.
(( ® © @

4Since a twisted band-sum can be reduced to a sum of band sums by resolving the twists, we only
consider non-twisted band-sums.
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Other relations 1, = z3; — 2, 254 = 2%, — 2, T34 = 23, — 2 can be obtained like this.
b g ’ @

T2 = shy(z19) =
b(Z1 5 a d

Then by relation (3) the resulting loop is equal to

Continuing this work, we obtain all (F2):

T13T23 —T12 = 2, T19T4 — T14 = 2, T13T14 — T34 = 2, Tp4T3g — Loz = 2
- — — - _ 2
T13 = T93, | T12 = T |, [T13 = T14|, T3 = Ty, [T12 = T73 — 2

— 2 2 —
To = Tiz — 2, Ty = T3 ~ 2, |T13 = T1aTpq — 12|
T14 = T23%34 — T24, T13 = T23L2q4 — T34, To3 = T12T14 — T24

Here we define the algebraic set F3(4;) which is the common zeros of the fundamental
relations (F2):

Fy(4,) := {(xu, co+, Ty5) € CHO | Tha = TikTia — Tja (FQ)} .
By reducing the variables in (F2), we see that F3(4,) is parametrized by z,3 and

Z13 = T14%24 — Z12,
T3 = zis(zl; —2) — (235 — 2),
0 = (2}'13 — 2)(.’E%3 + T3 — 1)

Hence we get Fi(41) = {2, (—1+ v/5)/2}. This shows that Fy(4;) coincides with So(4;).
The reason is as follows. First, we see that (F3) become trivial:

» Z123 = 0, T124 = 0,
ZTi34 = 0, T34 = 0.

Indeed, for a Wirtinger triple (3, j, k)

b
® p ®) (@ ®
Tijk = Slb(xijk) = = = = —ZiTij — T; = 0.
®
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We can also check this by the hexagon relation (H):

.’E. . z. . x. . . . .
IR (1<i1<iz<izg<4)
Tiyigiz * Tjyjajs = '2' Tizjy  Tizje Tizgs (1 <j1<ja<ijz< 4)
Tigjr  Tizjz  Tisjs

For example, a Wirtinger triple (1, 2, 3) gives us

. 2 zp zy3 . .
= - — 2
= T3 = 5 To1 2 Toy | = T12T13To3 — Tip — Ti3 — Ty + 4

O\ @ Ty Tz 2
= (2l - 2)aly — (25 -2)" —~ah — a3 +4=0.
Then we can check that all point in F5(4;) satisfy (H) and the rectangle relations (R):

2 T2 Tia Tw
321 2 -T2a x?b — 0 (3 < a < b < 4)
Ta1 Ta2 2 Tab - - )
Ty T2 Tpa 2

Hence every point in F3(4,) lifts to a point in Sp(41) and thus F5(4;) = So(41) and the
main theorem holds for Ky = 4,. We remark that to get So(4;) we calculate F3(4;) first
and then we check the liftability second.

c(®

Fy(4) = *——o

We can also observe the case of K = 5,.




Then we obtain 50(52) = F2(52) = {3314 eC | (.’IJ14 - 2) (1':1;4 + 1’%4 - 2.’1714 - 1) = 0}

5

So(52) = c(3)

| | | |
1 | | !
| | | |
Fy(52) = ‘———e}} (2)
Note that every point in F5(5;) also lifts to a point in Sy(5;). Again we remark that to
get So(52) we calculate Fy(5) first and then we check the liftability second.

We also observe the case of K = 85. F5(8;) consists of 11 points and Sy(8s) consists of
12 points.

c(3)

£
(OO p
\3 -

F>(85) -

Note that there exists a point in F5(85) which lifts to two points in Sp(85) and so Fy(8s) #
So(85). Again we remark that to obtain Sy(85) we calculate Fy(8s) first and then we check
the liftability second.

So far, any point of F3(K) can lift to So(K). It would be interesting to research whether
or not any point of F3(K) can lift to So(K) for any knot K. In the next section, we first
show a sketch of the proof of Theorem 1.1 in Subsection 3.1 and then we will speculate
this question in Subsection 3.2.

| |
| I
| |
| |

c®

&

3. A SKETCH OF THE PROOF OF THEOREM 1.1

3.1. A sketch of the proof of Theorem 1.1. In general, the skein theory observed in
Subsection 2.2 is realized as the Kauffman bracket skein algebra® (KBSA for short) of a
3-manifold. The KBSA of a 3-manifold M, denoted by K£_;(M), is the quotient of the
module over C generated by all free homotopy classes of loops in M by the Kauffman
bracket skein relations:

< - - ~ PN
k4 A
/ \ / AN / N\
|‘ v ¢ 1 l \
e -~ = -
\ ) | | | = =2
\ K \ ' \ s 0 )
\ ‘ ,
, . , \/\
. . .

.............

‘where in the first relation ’loops coincide each other outside dashed circles (refer to (1,
15, 16, 17]). Actually, a loop (a homotopy class of a loop) s € K_,(M) has the same

5This is the specialization of the Kauffman bracket skein module at the parameter t = —1.

119



120

properties as —tr(s). In this correspondence, the Kauffman bracket skein relations can be
thought of as the SLy(C)-trace identities. This gives a correspondence between K_; (M)
and the coordinate ring x(M) := x(m1(M)) of the character variety X (m (M)).

Theorem 3.1 ([1, 17]). There ezists a surjective homomorphism ¢ : K_i(M) — x(M)
defined by ¢(7y) := —t, for a loop v € K_1(M). Moreover Ker(y) is the nilradical /0.

This gives K_,(M)/+/0 = x(M) and thus a method to calculate the character varieties
using the Kauffman bracket skein theory. The next theorem is basic to calculate the
KBSA.

Theorem 3.2 (cf. [15]).
K_1(H,)
(2 — sly(2) | 2: any loop in K_,(H,))

K_i(Ek) =

Theorem 3.2 immediately gives the trace-free version:

’C—I.TF(Hn)
(z — slp(2) | z: any loop in K_y 7r(Hy))’

where K_, rr(H,) denotes the KBSA K_,(H,) with the trace-free condition. Now we
define two ideals in K_, rr(H,), the sliding ideal Sk and the fundamental ideal Fy:

K_irr(Ek) :=

Sk := (z — sly(2) | 2: any loop in K_; rr(Hy))

Fx = (Tka = TijTia + Tja (F2), Trap — TijTiap + Tjap (F3))
By definition, Sy O Fk holds. To show Theorem 1.1, we will first show that they coincide,
i.e., SK = F; K-

Stepl | For a loop z, take a band b for a handle-slide sl,(2)
resolve z by skein relations
s (2

z—sz,,(z)=z—.

Note that the dashed band in the band b express omitting the way of b. We first resolve
the loop z with b by the skein relations. Similar to the property on tr(p(g)) as seen in

Section 1, any loop can be presented by a sum @ f— Ei fi ——Ei,j,-j -X; a',k ik
where f, fi, fij, fijx are polynomials in C[z;;; zijx]. Here the rectangles means the loops
which connect to the band b. Then we see that sl;(z) is equal to

b §O1 b b ,
fi — Xij fii — Zijel & fijk-
@ L) @ L °)
So z — sly(2) turns out to be

(O = sb(ONf + Zilz: — slo(z:)) fi + T i (35 — slo(@i5)) fij + Tijix(Tijk — slo(Tiji)) fi-




Hence any handle-slide can be generated by O — sly(Q), slp(z:), zij — slp(zi;), Tije —
sly(ijx) and thus we obtain

SK = <O _ Slb(O), Slb(Ii), :L'ij - Slb(.’Eij), xijk —_ Slb(éﬂijk) | b: any band) .

Consider sly(z.) for z, € {O, i =0, z;j, x4} If the band b is “winding”,

i.e., b goes around at least a puncture, then we can actually “straighten” b by the skein

relations:

= (2dza) (—5l5(20)) — (2 — sly(2.)) — 2. (=2 - s;(O))

where z.fz, denotes the band sum between z, and z, in the above equation. Continuing
this work until the winding bands disappear, we obtain

Ty — Slb(.’B*) =3 (—sl*(a:,-)) f +2 (CL'* - Sl*(l‘*)) g+ z (_2 - Sl*(O)) h,

where sl, denotes the band-sum along an unspecified non-winding band *, and f, g and
h are polynomials in Cz;;; zjx]. Therefore we see that

Sk = (O — slk(QO), slu(®i), i — slu(®ij), Tijk — sl(xijk) | *: any non-winding band)

Since there exist only finitely many non-winding bands for a loop up to homotopy, this
shows that Sk is finitely generated. By the same argument® we can reduce the finitely
many generators to (F). Therefore, we obtain Sx = Fk.

Now we can show Theorem 1.1. It follows from the above argument that

K_1rr(Hy)
(Tka — TikTia + Tja (F2), Tkap — TikTiav + Tjap (F3))

K_1rr(Ek) =

By [7]", we have

Clzsj; Tijk)

K_1rr(Hy,)/V0 =

2 T2 T13 Tia
2 =z T
H), (R), (%) = | ° 2 T | (gcach<
<<)<>() 2 I I < chen)
Tpy T2 Th3 Tab

51f sl, (z.) is a band sum of z. € {O, =i =0, z;;, zijx} and an attaching curve disjoint from z., then
the resulting relation essentially comes from the fundamental relations (F). So we only need to focus on
the band-sums between z. and attaching curves intersecting with z.. Then the remaining generators
turns out to be essentially (F). We will omit the details.

"The relations given in [7, p.639] can be realized by the skein relations. So it follows from Theorem
3.1 that this equality holds.
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In fact, by taking (1,2, 3) as a Wirtinger triple, the relations (x) become trivial as follows:

2 T2 T3 2 Ty T,

(x) = ZTap| Tan 2 Toz |—Tps| Tax 2 o
T3 T3z 2 T3 T3z T3q

2 T3 Tia ZT12 T13 Zia

+Tp2| To1 Taa T2a |— Te1| 2 Tz Zog

T3 2 I3, Tz 2 T3

2
TabTiog — Tp3%123T12a + Tp2T123T13¢ — Tb1Z123T23a
= 123 (zabivlzs — ZTp3T12¢ + T2T13¢ — fl?bll'zsa) =0.

Therefore, we obtain Theorem 1.1 with the condition that (1,2, 3) is a Wirtinger triple.

3.2. Ghost characters and liftability problem of F;(K) to Sy(K). Can any point
of F(K) lift to So(K) for any knot? If there exists a point in F3(K) which does not lift
to So(K), then we call it a ghost character.

c(3)

So(K) =

Fy(K) =

More precisely, if a point (z;;) in F3(K) does not satisfy one of (F3), (H) and (R), then
(:;) does not lift to So(K') and thus (z;;) turns out to be a ghost character. Before we
look into ghost characters, we focus on the meanings of (H) from the algebraic set F5(K)
point of view.

First, for a point (z;;) in F3(K) the hexagon relations (H)

Zivjy  Tirgz Tirjs
Tirigis * Tjrjags = 3 | Tiajr Tizje Tizgs
Tisjy Tizjp Tizjs

(1<i1<ip<ig<n, 1<ji<jp<jz<n)

give a 2-fold branched covering structure to So(K), i.e., (H) show that a point in F5(K)
can lift at most two points. In particular, (H) give each z;;; two possibility as follows:

2 Ti; Tik
Tijp = £ 3 Tii 2 Tk |
Tkj Tkj 2

Next, the hexagon relations (H) give always a solution of (F3). Namely, if (;;; Zrm) €
Fy(K) x C(5) satisfies (H), then (zij; Tim) satisfies (F3), because
(1) if all Zgiy = 0, then (F3) are trivial.



(2) if there exists a coordinate x4, # 0, then it follows from (F2) and (H) that for
any Wirtinger triple (¢,7,k) and 1 < a,b<n

T Tsa Tsh ZijTsi — Tsj Tsa Tsh

1
Tstulkab = | Tik Tta T =§ TijTti — Tt Tta b
Zuk Tua Tub TijjTyi — Tuj Tua Tub
1 Tsi Tsa ZTsp 1 Tsj Tsa Tsbh
= xz’j§ Tyi Tia Tw —-5 Ty Tta Tup

Tyi Tua Tub Tyj Tua Tub
TijTstuTiab — Tstuljab
Tstu(TijTiab — Tjab)-
S0 ZTkap = ZijTiap — Zjap holds.
Therefore, the hexagon relations (H) and the rectangle relations (R) give an obstruction
to lift a point in F5(K) to So(K). Namely, we have the following.

Theorem 3.3. A point in F3(K) is a ghost character if and only if the point does not
satisfy (H) or (R).

We are now researching relationships between (H) and (R), and trying to find knots
with ghost characters. We will report this research in another paper.
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