ON PSEUDO-MERIDIANS OF THE TREFOIL KNOT GROUP

MASAAKI SUZUKI

1. INTRODUCTION

Let G(K) be the knot group of a knot K. We call a word $w \in G(K)$ a pseudo-meridian if G(K) is normally generated by w, that is, $G(K)/\langle w \rangle$ is trivial where $\langle w \rangle$ is the normal closure of w in G(K). For example, a meridian of each knot group is a pseudo-meridian. Moreover, the image of a meridian under any automorphism of G(K) is also a pseudomeridian.

Silver-Whitten-Williams showed in [2] that the knot group G(K) contains infinitely many non-equiavalent pseudo-meridians if K is a non-trivial two bridge knot or a torus knot, or a hyperbolic knot with unknotting number one. Furthermore, they conjectured that every knot group has infinitely many non-equivalent pseudo-meridians.

In this short note, we will consider the trefoil knot 3_1 and determine which word of $G(3_1)$ is a pseudo-meridian up to a certain word length.

2. CRITERION

First, we fix the following presentation of the knot group of the trefoil:

$$G(3_1) = \langle x, y \, | \, xyx = yxy \rangle.$$

The generators x and y are meridians. Under this presentation, we investigate which word of $G(3_1)$ is a pseudo-meridian.

If x or y can be written as a product of conjugates of a word w and the inverse \bar{w} in $G(3_1)$, then x and y belong to the normal closure $\langle w \rangle$. Therefore w is a pseudo-meridian. For example, $xx\bar{y}$ is a pseudo-meridian, since

$$x(xx\bar{y})\bar{x}\cdot\bar{y}(xx\bar{y})y\cdot\bar{x}(xx\bar{y})x = xxx\bar{y}\bar{x}\bar{y}xy\bar{x} = xxx\bar{x}\bar{y}\bar{x}xy\bar{x} = x.$$

Here \overline{z} is the inverse of z.

On the other hand, if the exponent sum of a word w is neither 1 nor -1, then x and y cannot be written as a product of conjugates of w and \bar{w} in $G(3_1)$. Hence w is not a pseudo-meridian. In addition, the following is a useful criterion to show that a word is not a pseudo-meridian.

Lemma 2.1. Let w be a word of $G(3_1)$. If there exists a non-trivial representation ρ : $G(3_1) \rightarrow SL(2; \mathbb{Z}/p\mathbb{Z})$ such that $\rho(w)$ is the identity matrix, then w is not a pseudo-meridian.

Proof. By the assumption that $\rho(w)$ is the identity matrix, ρ factors through $G(3_1)/\langle w \rangle$. Namely, ρ induces a representation

$$\bar{\rho}: G(3_1)/\langle w \rangle \longrightarrow SL(2; \mathbb{Z}/p\mathbb{Z}).$$

Received December 25, 2012.

	pseudo-meridians
1	x, y
3	$xxar{y},ar{x}yy$
5	$xxxar{y}ar{y},xxyar{x}ar{y},xxar{y}xar{y},xxar{y}ar{x}y,xyxar{y}ar{y},xyar{x}ar{x}y,xyyar{x}ar{y},xar{y}ar{x}yy,ar{x}ar{x}yyy,ar{x}ar{x}yyy$
7	$xxxxar{y}ar{x}ar{y}, xxxxar{y}ar{y}ar{y}, xxxyar{x}ar{y}ar{y}, xxxyar{x}ar{y}ar{y}, xxxar{y}ar{x}ar{y}ar{y}, xxxar{y}ar{x}ar{x}y, xxxar{y}ar{x}ar{x}y, xxxar{y}ar{y}ar{x}y, xxxar{y}ar{y}ar{x}y, xxxar{y}ar{y}ar{x}y, xxxar{y}ar{y}ar{x}y, xxxar{y}ar{y}ar{y}xy, xxxar{y}ar{y}ar{x}y, xxxar{y}ar{y}ar{y}xy, x$
	$\left xxyxar{y}ar{x}ar{y}, xxyxar{y}ar{y}ar{y}, xxyar{x}yar{x}ar{y}, xxyar{x}ar{y}xar{y}, xxyar{x}ar{y}ar{x}y, xxyyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{y}ar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{y}ar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{x}ar{y}ar{y}, xxyar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y}, xxyar{y}ar{y}ar{y} ar{y} ar$
	$xxar{y}xyar{x}ar{y}, xxar{y}xar{y}xar{y}, xxar{y}xar{y}ar{x}y, xxar{y}ar{x}ar{y}y, xxar{y}ar{x}yxar{y}, xxar{y}ar{x}yar{x}y, xxar{y}ar{x}yar{x}y, xxar{y}ar{x}yar{x}y, xxar{y}ar{x}yar{x}y, xxar{y}ar{x}yxar{y}, xxar{y}ar{x}yar{x}y, xxar{y}ar{x}yxar{y}, xxar{y}ar{x}yar{x}y, xxar{y}ar{x}yxar{y}, xxar{y}ar{y}xy, xxar{y}ar{x}yxar{y}, xxar{y}ar{x}yxar{y}, xxar{y}ar{x}yxar{y}, xxar{y}ar{x}yxar{y}, xxar{y}ar{y}xy, xxar{y}ar{y}xy, xxar{y}ar{y}xy, xxar{y}ar{y}xy, xxar{y}ar{y}xy, xxar{y}xy, xxar$
	$xxar{y}ar{y}ar{y}xy, xyxyar{x}ar{x}ar{y}, xyxyar{x}ar{y}ar{y}, xyxar{y}xar{y}ar{y}, xyxar{y}ar{x}ar{x}y, xyxar{y}ar{y}ar{x}y, xyxar{y}ar{y}ar{x}y, xyxar{y}ar{y}ar{x}y, xyar{x}ar{y}ar{y}y, xyar{x}ar{x}ar{x}yy,$
	$xyar{x}ar{y}ar{x}y, xyar{x}yar{x}ar{y}, xyar{x}yar{x}ar{y}, xyar{x}ar{y}ar{x}yy, xyyxar{y}ar{x}ar{y}, xyyar{x}ar{x}ar{x}y, xyyar{x}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y}, xyyar{x}ar{y}ar{x}ar{y} ar{y} ar$
	$xyyar{x}ar{y}ar{x}y, xyyyar{x}ar{x}ar{y}, xyyyar{x}ar{y}ar{y}, xar{y}xar{y}ar{x}yyy, xar{y}ar{x}ar{x}yyy, xar{y}ar{x}yar{x}yy, xar{y}ar{x}yyar{y}xy, xar{y}ar{x}yyy, xar{y}ar{y}ar{x}yyy, xar{y}ar{y}ar{x}yyy, xar{y}ar{y}ar{y}xyy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yyy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}yy, xar{y}yy, xar{y}ar{y}yy, xar{y}ar{y}yy, xar{y}yy, xar$
	$ar{x}ar{x}ar{y}yyy,ar{x}ar{x}yar{x}yyy,ar{x}ar{x}yyar{x}yy,ar{x}ar{x}yyyar{x}y,ar{x}yar{x}yar{x}yyar{x}yar{x}yar{y}yar{x}ar{y}ar{x}yyyar{x}ar{y}ar{x}yyar{x}y$
	non-pseudo-meridians
7	$xxy\overline{x}\overline{x}\overline{y}, xy\overline{x}\overline{y}x\overline{y}, xy\overline{x}yx\overline{y}, xy\overline{y}\overline{y}, xyyx\overline{y}\overline{y}$

TABLE 1. pseudo-meridians and non-pseudo-meridians

Since ρ is a non-trivial representation, $\rho(x)$ and $\rho(y)$ are not the identity matrix and then $\bar{\rho}(x), \bar{\rho}(y)$ are not the identity matrix too. Therefore $\bar{\rho}$ is also a non-trivial representation and $G(3_1)/\langle w \rangle$ is not trivial. This completes the proof.

For example, there exists a non-trivial representation

$$\rho: G(3_1) \longrightarrow SL(2; \mathbb{Z}/5\mathbb{Z})$$

defined by

$$ho(x)=\left(egin{array}{cc} 0&1\\ 4&3 \end{array}
ight),\quad
ho(y)=\left(egin{array}{cc} 0&4\\ 1&3 \end{array}
ight).$$

It is easy to see that $\rho(xxy\bar{x}\bar{x}\bar{x}y)$ is the identity matrix. Then $xxy\bar{x}\bar{x}\bar{x}y$ is not a pseudomeridian, though the exponent sum is 1.

3. Main result

By using the method shown in Section 2, we obtain Table 1 which shows pseudomeridians and non-pseudo-meridians up to word length 7. The first column on Table 1 is word length.

All words whose exponential sum are not ± 1 are not pseudo-meridians and then we enumerate only the words whose exponential sum are ± 1 . If a word is a pseudo-meridian, then the cyclic words and the inverses are also pseudo-meridians. For instance, $xx\bar{y}$ is a pseudo-meridian and then $x\bar{y}x, \bar{y}xx, y\bar{x}\bar{x}, \bar{x}\bar{x}y, \bar{x}y\bar{x}$ are so. The converse statement is also true. Therefore one of them is listed in Table 1. Besides, $xxyx\bar{y}\bar{x}\bar{y}$ is same as x for example. However, both of them are listed.

4. PROBLEMS

In Section 3, we determined which words of $G(3_1)$ up to the word length 7. Next, we want to consider the following.

Problem 4.1. Determine which word of $G(3_1)$ is a pseudo-meridian under the fixed presentation.

In this note, we deal only with the trefoil. However, we would like to consider all knot groups.

Problem 4.2. Characterize the words of pseudo-meridians for given knot groups. In other words, find a useful criterion to determine whether a word is a pseudo-meridian or not.

References

- [1] J. Simon, Wirtinger approximations and the knot groups of F^n in S^{n+2} , Pacific J. Math. **90** (1980), 177–189.
- [2] D. Silver, W. Whitten and S. Williams, Knot groups with many killers, Bull. Aust. Math. Soc. 81 (2010), 507-513.
- [3] C. Tsau, Nonalgebraic killers of knot groups, Proc. Amer. Math. Soc. 95 (1985), 139-146.

DEPARTMENT OF MATHEMATICS, AKITA UNIVERSITY E-mail address: macky@math.akita-u.ac.jp