
A VERY BRIEF INTRODUCTION TO VIRTUAL HAKEN
CONJECTURE

YASUSHI YAMASHITA

This note is a brief summary of my talk that I gave at RIMS Seminar “Representa-
tion spaces, twisted topological invariants and geometric structures of 3-manifolds” on
May 30, 2012. The aim of this survey is to give an overview of works used to prove
so-called virtu ally Haken conjecture. When I was preparing for my talk, the paper by
$Aschenbremer-Riedl-$Wilton [$6]$ was very useful and I leamed a lot from this.

1. $THURSTON’ S$ QUETIONS

In 1982, Thurston asked 24 questions, saying “Here are a few questions and projects
conceming -manifolds and Kleinian groups which I find fascinating.” The first question
was the famous geometrization conjecture and the questions (15)$-(18)$ were the following
[19]:

(15) Are finitely-generated Kleinian groups LERF?
A group $G$ is LERF if for every finitely generated subgroup $L<G$ , and for all $g\in G\backslash L,$

there exists a finite group $K$ and a homomorphism $\phi$ : $Garrow K$ such that $\phi(g)\not\in\phi(L)$ .
See section 2 for more details.

(16) Does every hyperbolic -manifold have a finite-sheeted cover which is
Haken?

A compact, orientable, irreducible 3-manifold $M$ is called Haken if $M$ contains an ori-
entable, incompressible surface. $M$ is called virtually Haken if $M$ has a finite-sheeted
cover that is Haken. Waldhausen asked whether every compact, orientable, irreducible
-manifold with infinite fundamental group is virtually Haken [20]. After the proof of the

geometrization conjecture, the conjecture was only open for hyperbolic 3-manifolds.
(17) Does every aspherica13-manifold have a finite-sheeted cover with pos-
itive first Betti number?

A -manifold $M$ is called aspherical if all its higher homotopy groups $(\pi_{i}(M)$ for $i\geq 2)$

vanish. $A$ group $G$ is said to have positive first Betti number if $\beta_{1}(G)=$ rank $H_{1}(G;\mathbb{Q})>$

$0.$ $A$ group $G$ is said to have virtually positive first Betti number if $G$ has a finite index
subgroup $G’<G$ with $\beta_{1}(G’)>0.$ $A$ group $G$ is said to have virtually infinite first Betti
number if, for any $k>0$ , there exists finite index subgroup $G’<G$ with $\beta_{1}(G’)>k.$

A group $G$ is called large if it has a finite index subgroup $G’<G$ and a epimorphism
$\phi:Garrow \mathbb{Z}*\mathbb{Z}.$ $A$ -manifold $M$ is said to have corresponding properties if $\pi_{1}(M)$ has.

(18) Does every hyperbolic 3–manifold have a finite-sheeted cover which
fibers over the circle?1

Received December 31, 2012
This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research (C), No.23540088.

lAfter this question, Thurston wrote, “This dubious-sounding question seems to have a definite chance
for a positive answer”
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Let $\Sigma$ be a surface and $\phi$ : $\Sigmaarrow\Sigma$ a homeomorphism. The mapping torus $T_{\phi}$ of $\phi$ is the
manifold

$T_{\phi}=\Sigma\cross[O, 1]/(x, 0)\sim(\phi(x), 1)$ .
A 3-manifold $M$ is said to fiber over the circle if $M$ can be obtained as a mapping torus.
$M$ is called virtually fibered if $M$ has a finite-sheeted cover which fibers over the circle.
There are examples of graph manifolds which are not virtually fibered [15].

Now, we have the following:

Theorem 1.1 (Agol [3]). All these conjectures are vahd.

2. LOCALLY EXTENDED RESIDUALLY FINITE

We want to know when one can lift $\pi_{1}$ -injective immersions to embeddings in finite-
sheeted covers, and LERF allows this (Scott [18]).

2.1. Residually finite. $A$ group $G$ is residually finite ($RF$ ) if for every nontrivial $g\in G,$

there exists a finite group $K$ and a homomorphism $\phi:Garrow K$ such that $\phi(g)\neq 1.$

Facts 2.1. Suppose that $G$ is residually finite and finitely genemted. Then following hold;
(1) $G$ is Hopfian2 (Mal’cev).
(2) Aut $(G)$ is residually finite. (Baumslag)
(3) $G$ has a solvable word problem.

Example 2.2. (1) Finitely-generated subgroup of $GL(n, k)$ , where $k$ is a field. (Mal’cev)
(2) The fundamental group of any compact 3-manifold. (Hempel [13] and geometriza-

tion)
(3) Mapping class group of surfaces

It is known that the group $\langle a,$ $b|b^{-1}a^{2}b=b^{3}\rangle$ is not Hopfian, in particular, not residually
finite.

Question 2.3. Is every hyperbolic group residually finite 9

The expected answer seems to be $NO$ , but$\ldots$

Theorem 2.4 (Agol Groves-Manning [5]). If every hyperbolic group $\dot{u}$ residually finite,
then evew quasi-convex subgroup of a hyperbolic group is sepamble.

2.2. LERF. $A$ group $G$ is LERF (locally extended residually finite) if for every finitely
generated subgroup $L<G$ , and for all $g\in G\backslash L$ , there exists a finite group $K$ and a
homomorphism $\phi:Garrow K$ such that $\phi(g)\not\in\phi(L)$ .

Examples 2.5. (1) free group (Hall)
(2) surface group (Scott [18]),
(3) Bianchi groups $(Agol-Long$-Reid[1] $)$

(4) Quasiconvex subgroups of word-hyperbolic Coxeter group (Haglund-Wise [12])

Not a113-manifold groups are LERF (Bums–Karrass Solitar [8]).

3. CUBE COMPLEX

Surprisingly, cube complexes play an essential rule to solve Thurston’s questions (15)-
(18). Let us begin with the basic definitions.

$2A$ group $G$ is Hopfian if every homomorphic mapping of $G$ onto itself is an automorphism.
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FIGURE 1. The link of a $0$-cube

FIGURE 2. Hyperplane
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FIGURE 3. Immersed Hyperplane Pathologies

3.1. Basic definitions. An $n$-cube is a copy of $[$ -1, $1]^{n}$ and a -cube is a single point. $A$

cube complex is a cell complex formed from cubes by identifying subcubes. The link of a
0–cube $v$ is a complex of simplices whose $n$-simplices correspond to comers of $n+1$-cubes
meeting at $v$ . See Figure 1. $A$ flag complex is a simplicial complex such that $n+1$

vertices span an $n$-simplex if and only if they are pairwise adjacent. $A$ cube complex $C$ is
nonpositively curved if link(v) is a flag complex for each $0$-cube $v\in C^{0}.$ $A$ cube complex
$X$ is CAT(0) if it is simply connected and nonpositively curved.

A midcube in $[$-1, $1]^{n}$ is a subspace obtained by restricting one coordinate to $0$ . We
then glue together midcubes in adjacent cubes whenever they meet, to get the hyperplanes
of $X$ . See Figure 2.

Definition 3.1 ([11]). $A$ cube complex is spacial if all the following hold: See Figure 3.
(1) No immersed hyperplane crosses itself.
(2) Each immersed hyperplane is 2-sided.
(3) No immersed hyperplane self-osculates.
(4) No two immersed hyperplanes inter-osculate.

Theorem 3.2 (Haglund-Wise [11]). If $X$ is a compact special cube complex and its
fundamental group $\pi_{1}(X)$ is word-hyperbolic, then every quasiconvex subgroup is separable.

3.2. Salvetti complex. Let $\Sigma$ be any graph. We build a cube complex $S_{\Sigma}$ as follows:
(1) $S_{\Sigma}$ has one -cell;
(2) $S_{\Sigma}$ has one (oriented) 1-cell $e_{v}$ for each vertex $v$ of $\Sigma$ ;
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(3) $S_{\Sigma}$ has a square 2-cell with boundary reading $e_{u}e_{v}\overline{e_{u}e_{v}}$ whenever $u$ and $v$ are joined
by an edge in $\Sigma$ ;

(4) for $n>2$ , the $n$-skeleton is defined inductively – attach an $n$-cube to any sub-
complex isomorphic to the boundary of $n$-cube which does not already bound an
$n$-cube.

Let $V(\Sigma)=\{v_{1}, \ldots, v_{k}\}$ be the vertex set of the graph $\Sigma$ . The right-angled Artin group
(RAAG) associated to $\Sigma$ is the group given ae follows:

$A_{\Sigma}=\langle v_{1},$
$\ldots,$

$v_{k}|[v_{i}, v_{j}]=1$ if $v_{i}$ and $v_{j}$ are connected by an edge $\rangle$

The fundamental group of the Salvetti complex $S_{\Sigma}$ is right-angled Artin group.
The hyperplane graph of a cube complex $X$ is the graph $\Sigma(X)$ with vertex-set equal

to the hyperplanes of $X$ , and with two vertices joined by an edge if and only if the
corresponding hyperplanes intersect.

Typing map $\phi_{X}$ : $Xarrow S_{\Sigma(X)}$ is defined as follows:
(0) Each $0$-cell of $X$ maps to the unique $0$-cell $x_{0}$ of $S_{\Sigma(X)}$

(1) Each 1-cell $e$ of $X$ goes to the unique 1-cell in $S_{\Sigma(X)}$ which corresponds to the
unique hyperplane that $e$ crosses.

(2) $\phi_{X}$ is defined inductively on higher dimensional cubes.

Theorem 3.3 (Haglund-Wise [11]). Let $X$ be a non-positively $cu7^{v}ved$ cube complex. Then
$Xi_{!}s$ special if and only if there exists a graph $\Sigma$ and there is an immersion $Xarrow S_{\Sigma}$ that
is a local isometryt at the level of the 2-skeleta.

3.3. Compact special group. $A$ group is called (compact) special if it is the fundamen-
tal group of a non-positively curved (compact) special cube complex.

Let $X$ be a geodesic metric space. $A$ subspace $Y$ is said to be quasi-convex if there
exists $\kappa\geq 0$ such that any geodesic in $X$ with endpoints in $Y$ is contained within the
$\kappa$-neighborhood of $Y.$

Let $\pi$ be a group with a fixed generating set $S.$ $A$ subgroup $H\subset\pi$ is said to be quasi-
convex if it is a quasi-convex subspace of $Cay_{S}(\pi)$ , the Cayley graph of $\pi$ with respect to
the generating set $S.$

Corollary 3.4. (See Corollary 5.8 and Corollaw 5.9 in [6].) $A$ group is special if and
only if it is a subgroup of a Right-Angled Artin Group. $\mathcal{A}$ group is compact special if and
only if it is a quasi-convex subgroup of a Right-Angled Artin Group.

3.4. Virtually Compact Special Theorem. Let $(X, d_{X})$ and $(Y, d_{Y})$ be metric spaces.
A function $f$ : $Xarrow Y$ is called a quasi-isometric embedding3 if there exist constants
$K\geq 1$ and $C\geq 0$ such that

$\frac{1}{K}d_{X}(x, y)-C\leq d_{Y}(f(x), f(y))\leq Kd_{X}(x,y)+C$

for any $x,$ $y\in X.$

Definition 3.5 (Quasiconvex hierarchy). The class $\mathcal{Q}H$ is defined to be the smallest class
of finitely generated groups that is closed under isomorphism and satisfies the following
properties.

(1) The trivial group 1 is in $\mathcal{Q}H.$

$3Here$ , it is not required to preserve any algebraic structure
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(2) Amalgamated product $G\cong A*c^{B}$ is in $\mathcal{Q}H$ if $A,$ $B\in \mathcal{Q}H$ and $C$ is finitely
generated and the inclusion map $C\hookrightarrow A*c^{B}$ is a quasi-isometric embedding.

(3) HNN extension $G\cong A*c$ is in $\mathcal{Q}H$ if $A\in \mathcal{Q}H$ and $C$ is finitely generated and the
inclusion map $C\hookrightarrow A*c$ is a quasi-isometric embedding.

Theorem 3.6 (Virtually Compact Special Theorem for $QH$ [21]). If $G\in \mathcal{Q}H$ is word-
hyperbolic, then $G$ is nirtually compact special.

This theorem has an application to one-relater groups.

Corollary 3.7 ([21]). Every one-relater group snith torsion is virtually compact special.

Let $N$ be a closed, hyperbolic 3-manifold which contains an incompressible geometri-
cally finite surface. Thurston showed that $N$ admits a hierarchy of geometrically finite
surfaces. $A$ subgroup of $\pi_{1}(N)$ is geometrically finite if and only if it is quasiconvex.
Combining these results and virtually compact special theorem, we get the following:

Theorem 3.8 (Wise). Let $N$ be a closed hyperbolic 3-manifold which contains an incom-
pressible geometrically finite surface, then $\pi_{1}(N)$ is virtually compact special.

3.5. Surface subgroups. Let us recall some notions in Kleinian group theory. $A$ lfuch-
sian group is a discrete subgroup of PSL$(2, \mathbb{R})$ . A Kleinian group is a discrete subgroup of
PSL$(2, \mathbb{C})$ . $A$ quasifuchsian group is a Kleinian group $G$ that is conjugate to a Fuchsian
group by a quasiconformal automorphism of $\hat{\mathbb{C}}.$

Fix an identffication of $\pi_{1}(N)$ with a discrete subgroup of PSL$(2, \mathbb{C})$ . $N$ is said to
contain a dense set of quasifuchsian surface groups if for each great circle $C$ of $\partial \mathbb{H}^{3}=S^{2}$

there exists a sequence of $\pi_{1}$-injective immersions $\iota;\Sigma_{i}arrow N$ of surfaces $\Sigma_{i}$ such that the
following hold:

(1) for each $i$ , the group $\iota_{*}(\pi_{1}(\Sigma_{i}))$ is a quasifuchsian surface group.
(2) the sequence $\partial\Sigma_{i}\subset\partial \mathbb{H}^{3}$ converges to $C$ in the Hausdorff metric.

Theorem 3.9 (Kahn-Markovic [14]). Every closed hyperbolic 3-manifold contains a dense
set of quasifuchsian surface groups.

3.6. Constructing cube complex. Let $G$ be a finitely generated group with Cayley
graph Cay$(G)$ . $A$ subgroup $H\subset G$ is codimension-l if it has a finite neighborhood
$N_{f}(H)$ such that Cay$(G)\backslash N_{f}(H)$ contains at least two components that are deep in the
sense that they do not he in any $N_{S}(H)$ .
Example 3.10. (1) $\mathbb{Z}^{n}$ in $\mathbb{Z}^{n+1}.$

(2) Any infinite cyclic subgroup of a closed surface subgroup.

Let $H_{1},$
$\ldots,$

$H_{k}$ be a collection of codimension-l subgroups. The wall associated to $H_{1}$

is a fixed partition $\{\pi_{1}, \pi_{i}\}$ of Cay$(G)$ . The translated wall associated to $gH_{1}$ is the
partition $\{g\pi_{1,g}\pi_{1}\}.$

The (1-skeleton of) “dual cube complex” due to Sageev is defined as follows:
(1) $A$ 0–cube is a choice of one halfspace from each wall such that each element of $G$

lies in all but finitely many of these chosen halfspaces.
(2) Two -cubes are joined by a 1-cube precisely when their choices differ on exactly

one wall.
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Let $G$ be a word-hyperbolic group, and $H_{1},$
$\ldots,$

$H_{k}$ be a collection of quasiconvex
codimension-l subgroups. Then the action of $G$ on the dual cube complex is cocom-
pact. (See Sageev [16], [17].)

Theorem 3.11 ([7]). Let $G$ be a word-hyperbolic group. Suppose that for each pair of dis-
tinct points $(u, v)\in(\partial G)^{2}$ there exists a quasiconvex codimension-l subgroup $H$ such that
$u$ and $v$ lie in distinct components of $\partial G\backslash \partial H$ . Then there is a finite collection $H_{1},$

$\ldots,$
$H_{k}$

of quasiconvex codimension-l subgroups such that $G$ acts properly and cocompactly on the
resulting dual CAT$(O)$ cube complex.

Combining theorem 3.9 and theorem 3.11, Bergeron and Wise showed that
Theorem 3.12 ([7]). Let $M$ be a closed hyperbolic 3-manifold. Then $\pi_{1}(M)$ acts properly
and cocompactly on a CAT$(O)$ cube complex.

3.7. RFRS and virtual fiber. For a group $G$ , set $G_{r}^{(1)}=\{x\in G|\exists k\neq 0,$ $x^{k}\in[G, G]\}.$

Definition 3.13 (RFRS [4]). $A$ group $G$ is residually finite $\mathbb{Q}$-solvable (RFRS) if there
is a sequence of subgroups $G=G_{0}>G_{1}>G_{2}>\ldots$ such that $G\triangleright G_{i},$ $[G : G_{i}]<\infty,$

$\bigcap_{i}G_{i}=\{1\}$ and $G_{i+1}\geq(G_{i})_{r}^{(1)}.$

Theorem 3.14 (Agol [4]). The following hold;
$\bullet$ If $G$ is $RFRS_{f}$ then any subgroup $H<G\dot{w}$ as well.
$\bullet$ Right angled Artin groups are virtually RFRS. (Agol [4])

Examples 3.15. The following are other examples of (virtually) RFRS:
$\bullet$ surface groups,
$\bullet$ reflection groups,
$\bullet$ arithmetic hyperbolic groups defined by a quadratic.

Theorem 3.16 (Agol [4]). If $M$ is aspherical and $\pi_{1}(M)$ is RFRS, then $M$ virtually
fibers.

4. THE FINAL STEP

This is what Agol showed for the final step of the conjectures.

Theorem 4.1 (Agol [3]). Let $G$ be a word-hyperbolic group acting properly and cocom-
pactly on a CAT(0) cube complex X. Then $G$ has a finite index subgroup $F$ acting specially
on $X.$

Combining and theorem 3.8, 3.12, 4.1 and other cases, the situation can be described
in a very nice way.

Theorem 4.2 (Virtually Compact Special Theorem). If $N$ is a hyperbolic 3-manifold,
then $\pi_{1}(N)$ is virtually compact special.

If $\pi_{1}(N)$ is virtually (compact) special, then it is a subgroup of a RAAG (theorem3.3).
By theorem 3.14 and 3.16, $N$ virtually fibers.

To show that $\pi_{1}(M)$ is LERF, we need the next theorem.

Theorem 4.3 (Tameness [2],[9]). Let $N$ be a hyperbolic 3-manifold, not necessarily of
finite volume. If $\pi_{1}(N)$ is finitely generated, then $N$ is topologically tame, i.e., $N$ is
homeomorphic to the interior of a compact 3-manifold.
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A -manifold $N$ is fibered if there exists a fibration $Narrow S^{1}.$ $A$ surface fiber in a
-manifold $N$ is the fiber of a fibration $Narrow S^{1}.$ $\Gamma\subset\pi_{1}(N)$ is a surface fiber subgroup if

there exists a surface fiber $\Sigma$ such that $\Gamma=\pi_{1}(\Sigma)$ . $\Gamma\subset\pi_{1}(N)$ is a virtual surface fiber
subgroup if $N$ admits a finite cover $N’arrow N$ such that $\Gamma\subset\pi_{1}(N’)$ and such that $\Gamma$ is a
surface fiber subgroup of $N’.$

Theorem 4.4 (Subgroup Tameness Theorem). Let $N$ be a hyperbolic 3-manifold and let
$\Gamma\subset\pi_{1}(N)$ be a finitely genemted subgroup. Then either

(1) $\Gamma$ is a virtual surface fiber group, $or$

(2) $\Gamma$ is geometrically finite.
For the proof of the theorem, theorem 4.3 and the covering theorem (due to Canary)

is used.
Theorem 3.2 and 4.4 are used to show the next theorem.

Theorem 4.5 (Agol). Let $M$ be a closed hyperbolic 3-manifold. Then there is a finite-
sheeted cover $\tilde{M}arrow M$ such that $\overline{M}$ fibers over the circle. Moreover, $\pi_{1}(M)$ is LERF and
large.

Then, a standard argument in -mamifold theory shows the next theorem.

Theorem 4.6 (Agol). Let $M$ be a closed aspherical 3-manifold. Then there is a finite-
sheeted cover $\tilde{M}arrow M$ such that $\overline{M}$ is Haken.
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