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The curvature-dimension condition $CD(K, N)$ , introduced by Sturm and Lott-Villani,
is a generalized notion of the combination of a ‘lower Ricci curvature bound’ $(Ric\geq K)$

and an ‘upper dimension bound’ $(\dim\leq N)$ . Metric measure spaces satisfying $CD$ enjoy
many nice properties and well investigated from analytic and geometric points of view. In
this note we give a short review on $CD$ and heat flow on metric measure spaces satisfying
$CD$ . We refer to surveys [Lo], [Oh3] and the book [Vi2] for more about $CD$ , while this
note is also concemed with more recent development.

1 Prehistory

We begin with some precursors of the curvature-dimension condition.

1.1 Wasserstein spaces
We need to review basic notions in optimal transport theory, for which we refer to [Vil]
and [Vi2]. Let ( $X$ , d) be a complete separable metric space, and denote by $\mathcal{P}(X)$ the
space of Borel probability measures on $X$ . We also define $\mathcal{P}^{2}(X)$ as the subset of $\mathcal{P}(X)$

such that $\mu\in \mathcal{P}^{2}(X)$ if $\int_{X}d(x, y)^{2}\mu(dy)<\infty$ for some (and hence all) $x\in X.$

Definition 1.1 (Wasserstein spaces) For $\mu,$ $\nu\in \mathcal{P}^{2}(X)$ , the $L^{2}$ -Wasserstein distance
of $\mu$ and $\nu$ is defined by

$W_{2}( \mu, \nu) :=\inf_{\pi}(\int_{XxX}d(x, y)^{2}\pi(dxdy))^{1/2}$

where $\pi\in \mathcal{P}(X\cross X)$ runs over all couplings of $\mu$ and $v$ , i.e., $\pi(A\cross X)=\mu(A)$ and
$\pi(X\cross A)=\nu(A)$ for every Borel set $A\subset X$ . We call $(\mathcal{P}^{2}(X), W_{2})$ the $L^{2}$ -Wasserstein
space over $X.$

In view of optimal transport theory, $d(x, y)^{2}$ is the cost we pay for transporting the
unit mass from $x$ to $y,$ $\pi(x, y)$ represents the mass transported from $x$ to $y$ , and $W_{2}(\mu, v)^{2}$

is the least cost for transporting $\mu$ to $v.$ $A$ minimal geodesic with respect to $W_{2}$ (i.e.,
$(\mu_{t})_{t\in[0,1]}\subset \mathcal{P}^{2}(X)$ with $W_{2}(\mu_{s}, \mu_{t})=|s-t|W_{2}(\mu_{0}, \mu_{1})$ for all $s,$ $t\in[0,1])$ describes an
optimal way of transport.
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If we fix a Borel measure $\omega$ on $X$ , then $\mathcal{P}_{ac}(X, \omega)$ will denote the set of $\mu\in \mathcal{P}(X)$

which is absolutely continuous with respect to $\omega.$

Definition 1.2 (Relative entropy) Define the relative entropy $Ent_{\omega}(\mu)$ of $\mu\in \mathcal{P}(X)$

with respect to $\omega$ by

$Ent_{\omega}(\mu):=\int_{\sup p\rho}\rho\log\rho d\omega,$

provided that $\mu=\rho\omega\in \mathcal{P}_{ac}(X, \omega)$ and $\int_{\{\rho>1\}}\rho\log\rho d\omega<\infty$ . Otherwise, set $Ent_{\omega}(\mu)$ $:=$

$\infty.$

Observe that, for a Borel set $A\subset X$ with $0<\omega(A)<\infty$ , the uniform distribution
$\mu_{A}:=\omega(A)^{-1}\cdot\omega|_{A}$ on $A$ satisfies $Ent_{\omega}(\mu_{A})=-\log(\omega(A))$ .

1.2 McCann’s displacement convexity
Let $L$ be the Lebesgue measure on $\mathbb{R}^{n}$ . McCann’s following pioneering theorem means
that $\mathbb{R}^{n}$ is ‘nonnegatively curved’.

Theorem 1.3 (Convexity of $Ent_{L}$ ; [Mcl]) The relative entropy $Ent_{L}$ is convex $on$

$(\mathcal{P}^{2}(\mathbb{R}^{n}), W_{2})$ in the sense that

$Ent_{L}(\mu_{t})\leq(1-t)Ent_{L}(\mu_{0})+tEnt_{L}(\mu_{1})$ (1. 1)

for all $t\in[0,1]$ along any minimal geodesic $(\mu_{t})_{t\in[0,1]}\subset \mathcal{P}^{2}(\mathbb{R}^{n})$ with respect to $W_{2}.$

We sometimes call (1.1) the displacement convexity in order to emphasis the difference
from the convexity along the convex combination $t\mapsto(1-t)\mu_{0}+t\mu_{1}.$

One may understand the validity of the convexity of $Ent_{L}$ from the geometric viewpoint
as follows. The classical Brunn-Minkowski inequality on $\mathbb{R}^{n}$ asserts that, for any Borel
sets $A,$ $B\subset \mathbb{R}^{n}$ and $t\in[0,1],$

$L((1-t)A+tB)^{1/n}\geq(1-t)L(A)^{1/n}+tL(B)^{1/n}$ . (1.2)

Since the function $s\mapsto\log(s)$ is increasing and concave, (1.2) immediately implies

$Ent_{L}(\mu_{(1-t)A+tB})\leq(1-t)Ent_{L}(\mu_{A})+tEnt_{L}(\mu_{B})$ .

Hence (1.1) can be regarded as a weaker (dimension-free) form of the Brunn-Minkowski
inequality.

1.3 Ricci curvature and convexity of relative entropy
Let $(M, g)$ be a complete Riemannian manifold, and denote by $\omega_{g}$ its Riemannian volume
measure. We always assume that $M$ is connected and boudaryless.

In their influential paper [OV], Otto and Villani gave a heuristic argument (to be
made rigorous in [LV2] $)$ on how a lower Ricci curvature bound implies several functional
inequalities via the convexity of the relative entropy $Ent_{\omega_{g}}$ . Their discussion was based
on formal calculus in terms of Otto’s Riemannian structure of $(\mathcal{P}^{2}(M), W_{2})$ ([Ot]).
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Then, Cordero-Erausquin et al [CMS] showed up with a rigorous connection between
the lower Ricci curvature bound and the convexity of $Ent_{\omega_{9}}$ . We say that $Ric_{g}\geq K$

holds for some $K\in \mathbb{R}$ if $Ric_{g}(v, v)\geq K|v|^{2}$ for all $v\in TM$ , where $Ric_{g}$ denotes the Ricci
curvature tensor of $g.$

Theorem 1.4 (Ricci bound implies convexity; [CMS]) Let $(M, g)$ be compact. If
$Ric_{g}\geq K$ for some $K\in \mathbb{R}$ , then $Ent_{\omega_{g}}$ is $K$-convex on $(\mathcal{P}(M), W_{2})$ , i. e.,

$Ent_{\omega_{9}}(\mu_{t})\leq(1-t)Ent_{\omega_{g}}(\mu_{0})+tEnt_{\omega_{g}}(\mu_{1})-\frac{K}{2}(1-t)tW_{2}(\mu_{0}, \mu_{1})^{2}$ (1.3)

holds for all $t\in[O, 1]$ along any minimal geodesic $(\mu_{t})_{t\in[0,1]}\subset \mathcal{P}(M)$ .

We remark that, on a Riemannian manifold, any pair $\mu,$
$\nu\in \mathcal{P}_{ac}^{2}(M, \omega_{g})$ is connected

by a unique minimal geodesic (see [Mc2]).

2 Curvature-dimension condition
The converse implication of Theorem 1.4 also holds true.

Theorem 2.1 (Ricci bound is equivalent to convexity; $[vRS]$ ) For $K\in \mathbb{R}$ and a
complete Riemannian manifold $(M, g),$ $Ric_{g}\geq K$ holds if and only if $Ent_{\omega_{9}}$ is $K$ -convex.

Note that the $K$-convexity of $Ent_{\omega_{g}}$ is formulated without using the differentiable
structure of $M$ , we need only a distance and a measure. Thus Theorem 2.lled us to
the following notion of ‘metric measure spaces with lower Ricci curvature bounds’. Let
$(X, d, \omega)$ be a complete, separable metric space equipped with a Borel measure $\omega$ on $X$

such that $0<\omega(U)<\infty$ for any nonempty, bounded open set $U\subset X.$

Definition 2.2 (Curvature-dimension condition; [Stl], [LV2]) For $K\in \mathbb{R}$ , we say
that $(X, d, \omega)$ satisfies the curvature-dimension condition $CD(K, \infty)$ if any pair $\mu_{0},$ $\mu_{1}\in$

$\mathcal{P}^{2}(X)$ is connected by a minimal geodesic $(\mu_{t})_{t\in[0,1]}\subset \mathcal{P}^{2}(X)$ along which (1.3) holds for
all $t\in[0,1].$

Remark 2.3 (a) In general, minimal geodesics in the Wasserstein space are not unique
$(e.g., over the$ normed space $(\mathbb{R}^{n}, |\cdot|_{\infty})$ ). $A$ reason why we impose (1.3) only along some
minimal geodesic is to make this condition stable under the convergence of underlying
spaces (see Theorem 2.4 below).

(b) The word “curvature-dimension condition” comes from Bakry and \’Emery’s cele-
brated theory on linear semigroups and functional inequalities (see [BE]). We can intro-
duce $CD(K, N)$ for general $K\in \mathbb{R}$ and $N\in(1, \infty] (but the$ definition $is more$ involved) ,
and a Riemannian manifold $(M, g, \omega_{g})$ satisfies $CD(K, N)$ if and only if $Ric_{g}\geq K$ and
$\dim M\leq N$ ([St2], [LVl]).

(c) If $(X, d, \omega)$ satisfies $CD(K, N)$ , then it also satisfies $CD(K’, N’)$ for any $K’<K$
and $N’>N.$

There are a number of geometric and analytic applications of $CD(K, N)$ , including
(see [St2], [LVl], [LV2] for details):
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$\bullet$ Bishop-Gromov volume comparison theorem for $N<\infty$ ;

$\bullet$ Talagrand, $log$-Sobolev, and global Poincare inequalities for $K>0$ and $N=\infty$ ;

$\bullet$ Bonnet-Myers diameter bound and Lichnerowicz inequality for $K>0$ and $N<\infty.$

Another, geometric motivation behind the study of $CD$ stems from the Gromov-Fukaya
pre-compactness ([Gr], [Fu]), which asserts that a sequence $\{(M_{i}, g_{i})\}_{i\in \mathbb{N}}$ of complete Rie-
mannian manifolds with uniform bounds $Ric_{g_{i}}\geq K$ and $\dim M_{i}\leq N<\infty$ contains a
subsequence convergent in the sense of the (pointed) measured Gromov-Hausdorff con-
vergence. Such a limit space is not necessarily a Riemannian manifold any more, but
still possesses nice properties as was established in Cheeger and Colding’s series of works
([CC]). By the following stability theorem, limit spaces certainly satisfy $CD(K, N)$ .

Theorem 2.4 (Stability; [Stl], [LV2]) Suppose that a sequence of metric measure
spaces $\{(X_{i}, d_{i}, \omega_{i})\}_{i\in N}$ converges to a metric measure space $(X, d, \omega)$ in the sense of the
(pointed) measured Gromov-Hausdorff convergence. If $(X_{i}, d_{i}, \omega_{i})$ satisfies $CD(K, N)$ for
some $K\in \mathbb{R},$ $N\in(1, \infty] and all i, then (X, d, \omega)$ also satisfies $CD(K, N)$ .

However, it turned out that $CD$ covers a much wider class than the closure of Rieman-
nian manifolds. A Finsler manifold $(M, F)$ is a generalization of a Riemannian manifold
such that $F:TMarrow[O, \infty)$ gives $a$ (sufficiently smooth, convex) norm on each tangent
space $T_{x}M$ (see [BCS] for more details).

Theorem 2.5 (Finsler case; $[Oh2]$ ) Let $(M, F)$ be $a$ forward complete Finsler mani-
fold equipped with a positive $C^{\infty}$ -measure $\omega$ on M. Then $Ric_{N}\geq K$ holds if and only if
$(M, d_{F}, \omega)$ satisfies $CD(K, N)$ , where $Ric_{N}$ is the weighted Ricci curvature with respect to

$\omega$ , and $d_{F}$ is the distance function induced from $F.$

In particular, any normed space $(\mathbb{R}^{n}, |\cdot|, L)$ satisfies $CD(O, n)$ , whereas normed spaces
(other than inner product spaces) can not appear as the limit of Riemannian manifolds.
On the one hand, this is a good news since $CD$ is available in a wide class of spaces.
On the other hand, one can expect a stronger condition than $CD$ that rules out normed
spaces and has stronger consequences. The key ingredient to answer this question is the
behavior of heat flow.

3 Heat flow as gradient flow
We can introduce heat flow as gradient flow in the following two ways:

(I) the gradient flow of the energy $\mathcal{E}$ in the $L^{2}$-space;

(II) the gradient flow of the relative entropy in the $L^{2}$-Wasserstein space.

The first approach (I) is classical. On a general metric measure space $(X, d, \omega),$ $\mathcal{E}$ is
introduced as the Cheeger energy:

$\mathcal{E}(u):=\frac{1}{2}\int_{X}|\nabla u|^{2}d\omega, |\nabla u|(x):=\lim_{yarrow}\sup_{x}\frac{|u(x)-u(y)|}{d(x,y)},$
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for a locally Lipschitz function $u:Xarrow \mathbb{R}$ (see [Ch], [AGSI] for the precise definition).
The second, much newer approach (II) was initiated by Jordan, Kinderlehrer and

$Otto^{)}s$ seminal work ([JKO]). The identification (I) $=$ (II) was then extended to Rieman-
nian manifolds ([Ohl], [Sa], [Er]), Finsler manifolds ([OSl]), Alexandrov spaces ([GKO]),
and finally to general metric measure spaces satisfying $CD$ ([AGSI]).

On a non-Riemannian Finsler manifold, however, heat flow is nonlinear. The nonlin-
earity causes several difficulties in applications. Then, it would be worthwhile to consider
spaces satisfying $CD$ such that heat flow is linear, that turned out a nice condition.

4 Riemannian curvature-dimension condition
A metric measure space $(X, d, \omega)$ is said to satisfy strong $CD(K, \infty)$ if (1.3) holds along
every minimal geodesic $(\mu_{t})_{t\in[0,1]}$ in $(\mathcal{P}^{2}(X), W_{2})$ . For instance, $(\mathbb{R}^{n}, |\cdot|_{\infty},L)$ satisfies
$CD(O, n)$ but does not satisfy strong $CD(0, \infty)$ .

Definition 4.1 (Riemannian curvature-dimension condition; [AGS2]) We say
that a metric measure space $(X, d, \omega)$ satisfies the Riemannian curvature-dimension con-
dition RCD$(K, \infty)$ if it satisfies strong $CD(K, \infty)$ and the heat flow on it is linear.

Similarly to $CD$ , RCD $(K, \infty)$ is preserved under the (pointed) measured Gromov-
Hausdorff convergence ([AGS2]). Since Riemannian manifolds $(M, g, \omega_{g})$ with $Ric_{g}\geq K$

satisfy RCD $(K, \infty)$ , their limit spaces also satisfy RCD $(K, \infty)$ . The following characteri-
zations of RCD $(K, \infty)$ are useful and inspiring.

Theorem 4.2 (Equivalent conditions to RCD; [AGS2]) The condition RCD $(K, \infty)$

is equivalent to:

(i) strong $CD(K, \infty)$ and that $\mathcal{E}$ is quadratic (so that $\mathcal{E}$ induces a Dirichlet form);

(ii) the evolution variational inequality:

$\frac{d}{dt}[\frac{W_{2}(\mu_{t},\nu)^{2}}{2}]+\frac{K}{2}W_{2}(\mu_{t}, \nu)^{2}+Ent_{\omega}(\mu_{t})\leq Ent_{\omega}(\nu)$

for all $(\mu_{t})_{t>0}\subset \mathcal{P}^{2}(X)$ obeying heat flow, all $\nu\in \mathcal{P}^{2}(X)$ , and for $a.e.$ $t>0.$

Roughly speaking, the evolution variational inequality is derived by estimating the first
variation $\frac{d}{dt}[W_{2}(\mu_{t}, \nu)^{2}/2]$ by the $K$-convexity of $Ent_{\omega}$ along a minimal geodesic between
$\mu_{t}$ and $\nu$ , for which we essentially need the $($ Riemannian structure’ (i.e., angles). In a
similar manner, we can control the distance between two curves obeying heat flow.

Theorem 4.3 ( $K$-contraction property) Let us assume RCD $(K, \infty)$ . Then, for any
curves $(\mu_{t})_{t\geq 0},$ $(\nu_{t})_{t\geq 0}\subset \mathcal{P}^{2}(X)$ along heat flow, we have

$W_{2}(\mu_{t}, \nu_{t})\leq e^{-Kt}W_{2}(\mu_{0}, v_{0}) \forall t>0.$

This is a standard consequence on the gradient flow of a $K$-convex function, while we
need the ‘Riemannian structure’ for the same reason as the evolution variational inequal-
ity. Thanks to Kuwada’s duality ([Ku]) on linear semigroups, the $K$-contraction property
implies the following.
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Theorem 4.4 (Bakry-Emery type gradient estimate) Suppose RCD $(K, \infty)$ and let
$(\rho_{t})_{t\geq 0}$ be along heat flow with $\rho_{t}\omega\in \mathcal{P}^{2}(X)$ . Then we have

$|\nabla\rho_{t}|(x)^{2}\leq e^{-2Kt}P_{t}(|\nabla\rho_{0}|^{2})(x) \forall x\inX, \forall t>0,$

where $P_{t}$ is the heat semigroup $(i.e., P_{t}(|\nabla\rho_{0}|^{2})$ is the heat flow starting from $|\nabla\rho_{0}|^{2}$ ).

Furthermore, we obtain the (dimension-free) Bochner inequality

$\frac{1}{2}\triangle(|\nabla u|^{2})-D(\triangle u)(\nabla u)\geq K|\nabla u|^{2}$

in a certain weak sense ([GKO], [AGS2]).

5 Further problems

5.1 $CD$ vs Finsler
Recall that a Finsler manifold satisfies $CD$ but does not satisfy RCD unless it is a Rieman-
nian manifold. Therefore Finsler manifolds are reasonable model spaces satisfying $CD.$

The following theorem reveals the difference between Riemannian and Finsler manifolds
(in other words, the difference between RCD- and $CD$-spaces).

Theorem 5.1 (Non-contraction of heat flow; [OS2]) The heat flow of a normed
space $(\mathbb{R}^{n}, |\cdot|, L)$ is not $K$ -contractive for any $K\in \mathbb{R}$ unless the norm $|\cdot|$ comes from an
inner product.

We can nevertheless show the Bochner- Weitzenbock formula on general Finsler man-
ifolds, and as applications the (modified versions of) Bakry-Emery type and Li-Yau type
gradient estimates as well as the Harnack inequality ([OS3]). Furthermore, the Cheeger-
Gromoll type (homeomorphic) splitting theorem was generalized in [Oh4].

For general $CD$-spaces, Gigli recently showed the Laplacian comparison theorem ([Gi]).
The Bochner-Weitzenb\"ock formula and the gradient estimates are not known on general
$CD$-spaces.

5.2 RCD $(K, N)$ for $N<\infty$ ?
It is unclear how to define RCD $(K, N)$ for $N<\infty$ (especially with $K\neq 0$ ). RCD $(K, \infty)$

is naturally related to the behavior of heat flow via the relative entropy. $CD(K, N)$ is
somehow related to the fast diffusion equation $\partial_{t}u=\triangle(u^{(N-1)/N})$ , whereas it is always
nonlinear. Moreover, even in the Riemannian setting, it is only partially known about the
contraction property and gradient estimates corresponding to $CD(K, N)$ . An appropriate
notion of RCD$(K, N)$ should imply, for instance, the Li-Yau type gradient estimate.
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