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Curvature-dimension condition and heat flow
on metric measure spaces

Shin-ichi Ohta*

The curvature-dimension condition CD(K, N), introduced by Sturm and Lott-Villani,
is a generalized notion of the combination of a ‘lower Ricci curvature bound’ (Ric > K)
and an ‘upper dimension bound’ (dim < N). Metric measure spaces satisfying CD enjoy
many nice properties and well investigated from analytic and geometric points of view. In
this note we give a short review on CD and heat flow on metric measure spaces satisfying
CD. We refer to surveys [Lo|, [Oh3] and the book [Vi2] for more about CD, while this

note is also concerned with more recent development.

1 Prehistory

We begin with some precursors of the curvature-dimension condition.

1.1 Wasserstein spaces

We need to review basic notions in optimal transport theory, for which we refer to [Vil]
and [Vi2]. Let (X,d) be a complete separable metric space, and denote by P(X) the
space of Borel probability measures on X. We also define P?(X) as the subset of P(X)
such that u € P?(X) if [, d(z,y)? u(dy) < oo for some (and hence all) z € X.

Definition 1.1 (Wasserstein spaces) For p,v € P%(X), the L?- Wasserstein distance
of u and v is defined by

m

Wa(u, v) := inf ( /X » d(z,y)? w(dxdy)) v ,

where 7 € P(X x X) runs over all couplings of p and v, ie., 7(A x X) = u(A) and
m(X x A) = v(A) for every Borel set A C X. We call (P?(X), W) the L?- Wasserstein
space over X.

In view of optimal transport theory, d(z,y)? is the cost we pay for transporting the
unit mass from z to y, 7(x,y) represents the mass transported from z to y, and Wa(u, v)?
is the least cost for transporting u to v. A minimal geodesic with respect to Ws (i.e.,
(e)tepor) C PHX) with Wa(us, pe) = |s — t|Wa(po, ) for all s,t € [0,1]) describes an
optimal way of transport.
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If we fix a Borel measure w on X, then P,.(X,w) will denote the set of u € P(X)
which is absolutely continuous with respect to w.

Definition 1.2 (Relative entropy) Define the relative entropy Ent, (1) of p € P(X)
with respect to w by

Ent, (1) :=/ plog pdw,
supp p
provided that g = pw € Py (X,w) and f{p>l} plog pdw < o0o. Otherwise, set Ent,(u) :=

Q.

Observe that, for a Borel set A C X with 0 < w(A) < oo, the uniform distribution
pa :=w(A)™ - w|s on A satisfies Ent, (us) = — log(w(A)).

1.2 McCann’s displacement convexity

Let L be the Lebesgue measure on R™. McCann’s following pioneering theorem means
that R™ is ‘nonnegatively curved’.

Theorem 1.3 (Convexity of Enty; [Mcl]) The relative entropy Enty, is convex on
(P?(R™), Ws) in the sense that

Enty(u:) < (1 —t) Entr,(uo) + ¢t Enty (1) (1.1)

for all t € [0,1] along any minimal geodesic (p¢)iepo,1) C P?(R™) with respect to W.

We sometimes call (1.1) the displacement convezity in order to emphasis the difference
from the convexity along the convex combination ¢ — (1 — t)pug + tps.

One may understand the validity of the convexity of Enty, from the geometric viewpoint
as follows. The classical Brunn-Minkowski inequality on R™ asserts that, for any Borel
sets A,B C R™ and t € [0, 1],

L((1-t)A+tB)"" > (1 — )L(A)™ + tL(B)/™. (1.2)
Since the function s — log(s) is increasing and concave, (1.2) immediately implies

EntL(/J,(l_t)A+tB) < (1 - t) EntL(,uA) + tEntL(p,B)‘

Hence (1.1) can be regarded as a weaker (dimension-free) form of the Brunn-Minkowski
inequality.

1.3 Ricci curvature and convexity of relative entropy

Let (M, g) be a complete Riemannian manifold, and denote by w, its Riemannian volume
measure. We always assume that M is connected and boudaryless.

In their influential paper [OV], Otto and Villani gave a heuristic argument (to be
made rigorous in [LV2]) on how a lower Ricci curvature bound implies several functional
inequalities via the convexity of the relative entropy Ent,,. Their discussion was based
on formal calculus in terms of Otto’s Riemannian structure of (P2(M), W) ([Ot]).
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Then, Cordero-Erausquin et al [CMS] showed up with a rigorous connection between
the lower Ricci curvature bound and the convexity of Ent,,. We say that Ric; > K
holds for some K € R if Ric,(v,v) > K|v|? for all v € TM, where Ric, denotes the Ricci
curvature tensor of g.

Theorem 1.4 (Ricci bound implies convexity; [CMS]) Let (M,g) be compact. If
Ric, > K for some K € R, then Ent,,, is K-convex on (P(M),W,), i.e.,

Bnt, (1) < (1= ) Entu, (o) + L Enty, (1) = (1 = )Wa(uo, )2 (13)

holds for all t € [0,1] along any minimal geodesic (p)ecio1) C P(M).

We remark that, on a Riemannian manifold, any pair u,v € P2, (M,w,) is connected
by a unique minimal geodesic (see [Mc2]).

2 Curvature-dimension condition
The converse implication of Theorem 1.4 also holds true.

Theorem 2.1 (Ricci bound is equivalent to convexity; [VRS]) For K € R and a
complete Riemannian manifold (M, g), Ricy > K holds if and only if Ent,,, is K-convez.

Note that the K-convexity of Ent,, is formulated without using the differentiable
structure of M, we need only a distance and a measure. Thus Theorem 2.1 led us to
the following notion of ‘metric measure spaces with lower Ricci curvature bounds’. Let
(X,d,w) be a complete, separable metric space equipped with a Borel measure w on X
such that 0 < w(U) < oo for any nonempty, bounded open set U C X.

Definition 2.2 (Curvature-dimension condition; [St1], [LV2]) For K € R, we say
that (X,d,w) satisfies the curvature-dimension condition CD(K, co) if any pair pg, u; €
P?(X) is connected by a minimal geodesic (1 )epo,1) C P*(X) along which (1.3) holds for
all t € [0,1].

Remark 2.3 (a) In general, minimal geodesics in the Wasserstein space are not unique
(e.g., over the normed space (R™,| - |«)). A reason why we impose (1.3) only along some
minimal geodesic is to make this condition stable under the convergence of underlying
spaces (see Theorem 2.4 below).

(b) The word “curvature-dimension condition” comes from Bakry and Emery’s cele-
brated theory on linear semigroups and functional inequalities (see [BE]). We can intro-
duce CD(K, N) for general K € R and N € (1,00] (but the definition is more involved),
and a Riemannian manifold (M, g,w,) satisfies CD(K, N) if and only if Ric, > K and
dim M < N ([St2], [LV1]). '

(c) If (X,d,w) satisfies CD(K, N), then it also satisfies CD(K’, N’) for any K' < K
and N' > N.

There are a number of geometric and analytic applications of CD(K, N), including
(see [St2], [LV1], [LV2] for details):



e Bishop-Gromov volume comparison theorem for N < oo;
e Tulagrand, log-Sobolev, and global Poincaré inequalities for K > 0 and N = oo;
e Bonnet-Myers diameter bound and Lichnerowicz inequality for K > 0 and N < oo.

Another, geometric motivation behind the study of CD stems from the Gromov-Fukaya
pre-compactness ([Gr], [Fu]), which asserts that a sequence {(M;, g;) }ien of complete Rie-
mannian manifolds with uniform bounds Ric,, > K and dim M; < N < oo contains a
subsequence convergent in the sense of the (pointed) measured Gromov-Hausdorff con-
vergence. Such a limit space is not necessarily a Riemannian manifold any more, but
still possesses nice properties as was established in Cheeger and Colding’s series of works
([CC]). By the following stability theorem, limit spaces certainly satisfy CD(K, N).

Theorem 2.4 (Stability; [St1], [LV2]) Suppose that a sequence of metric measure
spaces {(X;, d;,w;) }ien converges to a metric measure space (X, d,w) in the sense of the
(pointed) measured Gromov-Hausdorff convergence. If (X;,d;,w;) satisfies CD(K, N) for
some K € R, N € (1,00] and all i, then (X,d,w) also satisfies CD(K, N).

However, it turned out that CD covers a much wider class than the closure of Rieman-
nian manifolds. A Finsler manifold (M, F) is a generalization of a Riemannian manifold
such that F': TM — [0, 00) gives a (sufficiently smooth, convex) norm on each tangent
space T, M (see [BCS] for more details).

Theorem 2.5 (Finsler case; [Oh2]) Let (M, F) be a forward complete Finsler mani-
fold equipped with a positive C*®-measure w on M. Then Ricy > K holds if and only if
(M, dp,w) satisfies CD(K, N), where Ricy is the weighted Ricci curvature with respect to
w, and dr s the distance function induced from F.

In particular, any normed space (R", |- |, L) satisfies CD(0, ), whereas normed spaces
(other than inner product spaces) can not appear as the limit of Riemannian manifolds.
On the one hand, this is a good news since CD is available in a wide class of spaces.
On the other hand, one can expect a stronger condition than CD that rules out normed
spaces and has stronger consequences. The key ingredient to answer this question is the
behavior of heat flow.

3 Heat flow as gradient flow

We can introduce heat flow as gradient flow in the following two ways:
(I) the gradient flow of the energy £ in the L2-space;
(IT) the gradient flow of the relative entropy in the L2-Wasserstein space.

The first approach (I) is classical. On a general metric measure space (X, d,w), £ is
introduced as the Cheeger energy:

E(u) :=%/X|Vu}2dw, |Vu|(z) :m;lj:p '.“_(?(;Tu)(y)‘,
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for a locally Lipschitz function u : X — R (see [Ch], [AGS1] for the precise definition).

The second, much newer approach (II) was initiated by Jordan, Kinderlehrer and
Otto’s seminal work ([JKO]). The identification (I)=(II) was then extended to Rieman-
nian manifolds ([Oh1], [Sa], [Ex]), Finsler manifolds ([OS1]), Alexandrov spaces ([GKO]),
and finally to general metric measure spaces satisfying CD ([AGS1]).

On a non-Riemannian Finsler manifold, however, heat flow is nonlinear. The nonlin-
earity causes several difficulties in applications. Then, it would be worthwhile to consider
spaces satisfying CD such that heat flow is linear, that turned out a nice condition.

4 Riemannian curvature-dimension condition

A metric measure space (X, d,w) is said to satisfy strong CD(K, 00) if (1.3) holds along
every minimal geodesic (i;)icp,1 in (P*(X), Wa). For instance, (R™,| - |c0, L) satisfies
CD(0,7n) but does not satisfy strong CD(0, o0).

Definition 4.1 (Riemannian curvature-dimension condition; [AGS2]) We say
that a metric measure space (X, d,w) satisfies the Riemannian curvature-dimension con-
dition RCD(K, 00) if it satisfies strong CD(K, 00) and the heat flow on it is linear.

Similarly to CD, RCD(K,o00) is preserved under the (pointed) measured Gromov-
Hausdorff convergence ([AGS2]). Since Riemannian manifolds (M, g,w,) with Ric, > K
satisfy RCD(K, 00), their limit spaces also satisfy RCD(K, 00). The following characteri-
zations of RCD( K, 0co) are useful and inspiring.

Theorem 4.2 (Equivalent conditions to RCD; [AGS2]) The condition RCD(K, oo)
s equivalent to:

(i) strong CD(K,o00) and that € is quadratic (so that £ induces a Dirichlet form);

(ii) the evolution variational inequality:

d [W, 1. K
dt [ 2(;;’”) } + 5 Walus, v)" + Ent () < Ent(v)

for all ()e>0 C P*(X) obeying heat flow, all v € P*(X), and for a.e. t > 0.

Roughly speaking, the evolution variational inequality is derived by estimating the first
variation %[Wg(ﬂh v)?/2] by the K-convexity of Ent,, along a minimal geodesic between
p: and v, for which we essentially need the ‘Riemannian structure’ (i.e., angles). In a
similar manner, we can control the distance between two curves obeying heat flow.

Theorem 4.3 (K-contraction property) Let us assume RCD(K,00). Then, for any
curves (Kt)e>0, (Vt)t>0 C P?(X) along heat flow, we have

Wz(,ut, l/t) < B#KtW2(/J,0, l/()) VvVt > 0.

This is a standard consequence on the gradient flow of a K-convex function, while we
need the ‘Riemannian structure’ for the same reason as the evolution variational inequal-
ity. Thanks to Kuwada’s duality ([Ku]) on linear semigroups, the K-contraction property
implies the following.



Theorem 4.4 (Bakry-Emery type gradient estimate) Suppose RCD(K, 00) and let
(pt)e>o be along heat flow with pw € P*(X). Then we have

Vo (2)? < e 'P,(|Vpol?)(z) Vze X, V>0,
where P; is the heat semigroup (i.e., P,(|[Vpo|?) is the heat flow starting from |Vpol|?).

Furthermore, we obtain the (dimension-free) Bochner inequality
1
-Z-A(IVu[z) — D(Au)(Vu) > K|Vul?

in a certain weak sense (JGKO], [AGS2]).

5 Further problems

5.1 CD vs Finsler

Recall that a Finsler manifold satisfies CD but does not satisfy RCD unless it is a Rieman-
nian manifold. Therefore Finsler manifolds are reasonable model spaces satisfying CD.
The following theorem reveals the difference between Riemannian and Finsler manifolds
(in other words, the difference between RCD- and CD-spaces).

Theorem 5.1 (Non-contraction of heat flow; [0S2]) The heat flow of a normed
space (R™,|-|,L) is not K-contractive for any K € R unless the norm | - | comes from an
inner product.

We can nevertheless show the Bochner- Weitzenbock formula on general Finsler man-
ifolds, and as applications the (modified versions of) Bakry—Emery type and Li- Yau type
gradient estimates as well as the Harnack inequality ([OS3]). Furthermore, the Cheeger-
Gromoll type (homeomorphic) splitting theorem was generalized in [Oh4].

For general CD-spaces, Gigli recently showed the Laplacian comparison theorem ([Gi]).
The Bochner-Weitzenbock formula and the gradient estimates are not known on general
CD-spaces.

5.2 RCD(K,N) for N < 0o?

It is unclear how to define RCD(K, N) for N < oo (especially with K # 0). RCD(K, o0)
is naturally related to the behavior of heat flow via the relative entropy. CD(K, N) is
somehow related to the fast diffusion equation u = A(u™N-V/N) whereas it is always
nonlinear. Moreover, even in the Riemannian setting, it is only partially known about the
contraction property and gradient estimates corresponding to CD(K, N). An appropriate
notion of RCD(K, N) should imply, for instance, the Li-Yau type gradient estimate.

References

[AGS1] L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure
spaces and applications to spaces with Ricci bounds from below, Preprint (2011).
Available at arXiv:1106.2090



50

[AGS2] L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Rie-

[BE]

IBCS]

(Ch

[CC]

[CMS]

[Ex]
[Fu]
[Gi]
[GKO)
[Gr]
KO

[Ku]

[LV1]

[Lv2)

mannian Ricci curvature bounded from below, Preprint (2011). Available at
arXiv:1109.0222

D. Bakry and M. Emery, Diffusions hypercontractives (French), Séminaire de
probabilités, XIX, 1983/84, 177-206, Lecture Notes in Math. 1123, Springer,
Berlin, 1985.

D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,
Springer-Verlag, New York, 2000.

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,
Geom. Funct. Anal. 9 (1999), 428-517.

J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature
bounded below. I, II, III, J. Differential Geom. 46 (1997), 406-480; ibid. 54
(2000), 13-35; ibid. 54 (2000), 37-74.

D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschliager, A Riemannian
interpolation inequality & la Borell, Brascamp and Lieb, Invent. Math. 146 (2001),
219-257.

M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein
space, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), 1-23.

K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace oper-
ator, Invent. Math. 87 (1987), 517-547.

N. Gigli, On the differential structure of metric measure spaces and applications,
Preprint (2012). Available at arXiv:1205.6622

N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, to appear in
Comm. Pure Appl. Math.

M. Gromov, Metric structures for Riemannian and non-Riemannian spaces,
Birkhauser, Boston, MA, 1999.

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the
Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), 1-17.

K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct.
Anal. 258 (2010), 3758-3774.

J. Lott, Optimal transport and Ricci curvature for metric-measure spaces, Surveys
in differential geometry XI, 229-257, Int. Press, Somerville, MA, 2007.

J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J.
Funct. Anal. 245 (2007), 311-333.

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal
transport, Ann. of Math. 169 (2009), 903-991.



[Mcl]

[Mc2]

[Oh1]

[Oh2]

[Oh3]

[Ohd]

[0S1]

[0S2]

[St2]
[Vil]

[Vi2]

51

R.J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997),
153-179.

R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom.
Funct. Anal. 11 (2001), 589-608.

S. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces,
Amer. J. Math. 131 (2009), 475-516.

S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equa-
tions 36 (2009), 211-249.

S. Ohta, Ricci curvature, entropy and optimal transport, to appear in Séminaires
et Congres. Available at arXiv:1009.3431

S. Ohta, Splitting theorems for Finsler manifolds of nonnegative Ricci curvature,
Preprint (2012). Available at arXiv:1203.0079

S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl.
Math. 62 (2009), 1386-1433.

S. Ohta and K.-T. Sturm, Non-contraction of heat flow on Minkowski spaces,
Arch. Ration. Mech. Anal. 204 (2012), 917-944.

S. Ohta and K.-T. Sturm, Bochner-Weitzenbéck formula and Li-Yau estimates
on Finsler manifolds, Preprint (2011). Available at arXiv:1104.5276

F. Otto, The geometry of dissipative evolution equations: the porous medium
equation, Comm. Partial Differential Equations 26 (2001), 101-174.

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links
with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400.

M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates,
entropy and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923-940.

G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower
curvature bounds, C. R. Math. Acad. Sci. Paris 345 (2007), 151-154.

K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196
(2006), 65-131.

K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196
(2006), 133-177.

C. Villani, Topics in optimal transportation, American Mathematical Society,
Providence, RI, 2003.

C. Villani, Optimal transport, old and new, Springer-Verlag, 2009.



