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ABSTRACT. These notes are dedicated to recent global existence and regularity
results on the parabolic-elliptic Keller-Segel model in dimension 2, and its general-
isation with nonlinear diffusion in highcr dimensions, obtained throught a gradient
flow approach in the Wassertein metric. These models havc a critical mass $M_{c}$ such
$t\}_{1at}$ the solutions exist globally in tirne if the mass is lebb than $M_{c}$ and above which
there are solutions which blowup in finite time. The main tools, in particular the
free energy, and the idea of the methods are set out,

1. INTRODUCTION

The Keller-Segel system can be seen as a first step toward the understanding of
how, during the evolution of species, the passage from uni-cellular organisms to more
complex structure was achieved. It is also a paradigm model for pattern formation of
cells for meiose (e.g. [14]), embryo-genesis or angio-genesis, Balo disease (e.g. [25]),
bio-convection (o.g. [18]) ctc. In physics, this system modcls thc motion of thc mean
field of many self-gravitating Brownian particles, see [17, 16].

Chemo-taxis is the phenomenon whereby organisms direct their movements accord-
ing to certain chemicals in their environment. If the movement is toward a higher
concentration of the chemical we speak about positive $d_{1}emo$-taxis and the attractant
is called the chemo-attractant.

Some cells can produce this chemo-attractant themselves, creating thus a long-
range non-local interaction between them. We are interested in a very simplified
model of aggregation at the scale of cells }$)y$ chemo-taxis: some myxamoebaes expe-
rience a random walk to spread in the space and find food. But in starvation con-
ditions, they emit a chemical signal: thc cyclic adenosine monophosphate $(cAMP)$ .

They move towards a hi $t\supset\sigma\}_{1}er$ concentration of $cAMP$. Their behaviour is thus the
result of a competition between a random walk-based diffusion process and a chemo-
taxis-based attraction.

In nature the dictyostelium discoideum spread on the soil and then come together
by $c^{\backslash }J_{1}eIno$-taxis to form a motile $pseudop1_{\ddot{c}kS}modi\iota nn$ . This slug creeps to a few cen-
timetres below the soil surface where it forms a fruiting body with spores and a stalk.
The spores are then blown away by f,he wind to colonise a new place. See Figure 1.
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A. $BLANCHE^{\ulcorner}1$ ’

FIGURE 1. Dictyostelium discoideum cycle (source: Wikipcdia).

The general form of the model is a competition between diffusion and aggregation:

(1) in $(0, +\infty)\cross \mathbb{R}^{d}$

where $\mathcal{K}$ is a given attractive interaction potential.
The model of this aggregation phenomenon is due E. F. Keller and L. A. Segel

in [24] and C. S. Patlak in [29]. The parabolic-parabolic Keller-Segel (thereafter $KS$ )
system is a $drift_{}$-diffusion equation given by

(2) $\{\begin{array}{l}\frac{\partial\rho}{\partial t}=\triangle(p^{m})-div[\rho\nabla\phi],\tau\partial_{t}\phi=\triangle\phi-\alpha\phi+\rho,\rho_{0}\geq 0 \phi_{0}\geq 0\end{array}$ $(t, x)\in(0, \infty)\cross \mathbb{R}^{d},$

where $m\in[1,2),$ $\tau$ and $\alpha$ are given non-negative parameters and $d\geq 1$ . Here $\rho$

represents the cell densitv and $c$ the concentration of chemo-attractant. This system
corresponds to (1) with $\mathcal{K}$ being the kernel of the operator $\tau\partial_{t}-\triangle+\alpha$ . For more
references see [30, 22, 17].

It is immcdiate to notice that solution to such kind of problem have formally a
mass which is preserved along time:

$\int_{\mathbb{R}^{d}}\rho(x, t)(1x=\int_{\mathbb{R}^{d}}(J_{0}(x)dx=:M$

so that birth clnd death of the organisms are ignored.
It was noticed experimentally that if there are enough bactcria they aggregate

whereas if not they go on spreading, $e.g.$ $[12]$ . We thus expect the mass to play a
crucial role. Let us then consider the following mass-preserving scaling: $\rho_{\lambda}(\prime x)$ $:=$

$\lambda^{d}\rho(t, \lambda x)$ with $\lambda>0$ . The diffusion term becomes $\lambda^{dm+2}\triangle(\rho^{m})(t, \lambda x)$ while the
interaction term gives $\lambda^{2d}div(\rho\nabla(\mathcal{K}*\rho))(t, \lambda x)$ . As a consequence if $dm+2>2d$
then, whatever is the value of the mass $f$] $\prime I$ , wc can always choose $\lambda$ largc enough,
without changing the mass, so that the diffusion part dominates the aggregation part.
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And reciprocally, if $dm+2<2d$ then for any mass $M$ we can always choose $\lambda$ large
enough such that the solution blowup in finite time. Results in this direction were
proved rigorously by Sugiyama:

Theorem 1 (First criticality, [32, 33]). let $m_{d}$ be such that $dm_{d}+2=2di.e.$

$m_{d}=:2(1- \frac{1}{d})\in(1,2)$ .

$\bullet$ if $m>m_{d}$ then the solutions to (2) exist globally in time,
$\bullet$ if $m<m_{d}$ then solutions to (2) with sufficiently large initial data blowup in

finite time.

In these notes, we will consider only the case $m=m_{d}$ (corresponding to 1 in
dimension 2) and the indice $d$ will be omitted. We are interested in the proof of
the cxistence of global-in-time solutions using thc gradient flow intcrpretation in thc
Wassertein metric. We will construct solutions using the minimising (or Jordan-
$Kinderlehrer-O\dagger_{J}to)$ scheme. We will give formal arguments and try to make, as often
as possible, the analogy with the usual gradient flow theory in the Euclidean setting.
Sections 2 and 3 are dedicated to the parabolic-elliptic 2-dimensional $KS$ system.
Section 2 presents the minimising scheme and describe the discrete Euler-Lagrange
equation satisfied by the minimisers. In this first application, passing to the limit
in the Euler-Lagrange equation is straightforward. We however obtain very weak
solutions. In Section 3, still consecrated to the parabolic-elliptic 2-dimensional $KS$

system, we need to improve on this regularity to use the entropy/entropy production
method in order to study the large-time asymptotics. Such a gain of regularity can
be proved using the Matthes-McCann-Savar\’e technique [27] which we will describe in
this section. Scction 4 is dedicated to the non-linear parabolic-parabolic $KS$ systcm
in $\mathbb{R}^{d},$ $d\geq 3$ . In this case also we need to prove more regularity at the discrete level
but cannot rely on a non-increasing displacement convex functional as required by
the Matthes-McCann-Savar\’e method. We thus have to generalise this technique.

2. THE SUB-CRITICAL MASS PARABOLIC-ELLIPTIC $2-DIMF_{\lrcorner}^{\backslash }$ NSIONAL KS SYSTEM

2.1. The model. We consider the following classical simplified version of the $KS$

system given by [23]:

(3) $\{\begin{array}{ll}\frac{(\prime f\rho}{\partial t}=\triangle\rho-\nabla\cdot(\rho\nabla\phi) x\in \mathbb{R}^{2}, t>0,-\triangle\phi=\rho x\in \mathbb{R}^{2}, t>0,\rho(\cdot, t=0)=p_{0}\geq 0 x\in \mathbb{R}^{2}\end{array}$

Such a model can be seen as a limit case when the chemo-attractant diffuses much
faster than the cells which emit it.

As the solution to the Poisson equation $-\triangle\phi=\rho$ is given up to a harmonic
function, we choose the one given by $\phi=G*\rho$ where $G$ is the Poisson kernel defined
by

$G(|x|):=- \frac{1}{2\pi}\log|x|$
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The $KS$ system (3) can thus be written as a non-local parabolic equation:

$\frac{\partial\rho}{\partial t}=\triangle\rho-div(\rho\nabla G*\rho)$ $in$ $(0, +\infty)\cross \mathbb{R}^{2}$

Such a model has attra,cted a lot of attention these past years. The behaviour
of the solutions is now better understood at least in the sub-critical regime. There
actually exists a critical mass $8\pi$ such that all the solutions are global-in-time if the
$ma_{A}ss$ is below this critical mass, and all the solutions blowup in finite time if they
start from an initial data of inass above $8\pi$ . The convergence toward a self-sinlilar
profile was initiated in [9, 2] and it was provcd recently that such a convergence holds
with rate for any mass below the critical $m_{t}^{r}iSS[15\rfloor$ . The blowup profile was recently
rigourously described in [31]. Above the critical mass the situation is less clear, for
a more detailed display see [21].

2.2. The free energy. The main tool to study this system is the following natural
free energy:

$\mathcal{F}_{PKS}[\rho]:=\int_{\mathbb{R}^{2}}$ plog $\rho dx-\frac{1}{2}\int_{\mathbb{R}^{2}}\rho\phi dx.$

$Asi_{1}nple$ formal calculation shows that for all? $\iota\in C_{c}^{\infty}(\mathbb{R}^{\underline{1}})$ with zero mean,

$\lim_{\epsilonarrow 0}\frac{\mathcal{F}\}^{J}\kappa s[\rho+\epsilon u]-\mathcal{F}_{PKS}[p]}{\epsilon}=\int_{R^{2}}\frac{\delta \mathcal{F}_{PkS}[p]}{\delta\rho}(x)u(x)dx$

where
$\frac{\delta \mathcal{F}_{PKS}[\rho]}{\delta\rho}(x):=\log\rho(x)-G*\rho(x)$

It is then easy to see that the $KS$ system (3) can be rewritten as

(4) $\frac{\partial\rho}{\dot{c})t}(t, x)=div(\rho(t, x)\nabla[\frac{\delta \mathcal{F}_{PI\langle S}[\rho(t)]}{\delta\rho}(x)])$

It follows that at least along well-behaved solutions to the $KS$ system (3),

$\frac{d}{dt}\mathcal{F}_{PKS}[\rho(t)]=-\int_{\mathbb{R}\sim^{J}}\rho(t, x)|\nabla[\frac{\delta \mathcal{F}_{PKS}[\rho(t)]}{\delta p}(x)]|^{2}dx$

Or equivalently

$\frac{d}{dt}\mathcal{F}_{PKS}[\rho(t)]=-\int_{\mathbb{R}^{2}}\rho(t, x)|\nabla(\log\rho(t, x)-c(t, x))|^{2}dx.$

In particular, $a$]ong such solutions, $t\mapsto \mathcal{F}_{PKS}[\rho(t)]$ is monotone non-increasing. The
main issue here is to studv its boundedness.

$\prime 1^{\urcorner}hc$ connection with thc logarithmic $Hardy-L\uparrow$ ttlewood-Sobolev inequality (LogHLS
thereafter) was first made by [20]: Let $f$ be a non-negative function in $\mathcal{L}^{1}(\mathbb{R}^{2})$ such
that $f\log f$ and $f\log(1+|x|^{2})$ belong to $\mathcal{L}^{1}(\mathbb{R}^{2})$ . If $\int_{1R^{2}}fdx=M$ , then

(5) $\int_{\mathbb{R}^{2}}f\log fdx+\frac{2}{M}\iint_{\mathbb{R}^{2}\cross \mathbb{R}^{2}}f(x)f(y)\log|x-y|dxdy\geq-C(M)$ ,
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with $C(M)$ $:=M(1+\log\pi-\log\Lambda,[)$ . Moreover the minimisers of the LogHLS
inequality (5) are the translations of

$\overline{\rho}_{\lambda}(x):=\frac{M}{\pi}\frac{\lambda}{(\lambda+|x|^{2})^{2}}$

Using the monotony of $\mathcal{F}_{PKS}[\rho]$ and the LogHLS inequality (5) it is easy to see
that, for slnooth solutions to thc $KS$ system (3):

$\mathcal{F}_{PKS}[p]$ $=$ $\frac{\Lambda\prime f}{8\pi}(\int_{\mathbb{R}^{2}}\rho(x)\log\rho(x)dx+\frac{2}{M}\int\int_{\mathbb{R}^{2}x\mathbb{R}^{2}}\rho(x)\log|x-y|\rho(y)dxdy)$

$+(1- \frac{M}{8\pi})\int_{\mathbb{R}^{2}}\rho(x)\log\rho(x)dx$

(6) $\geq -\frac{\Lambda I}{8\pi}C(Af)+(1-\frac{M}{8\pi})\int_{R^{2}}|\rho(x)\log p(x)dx$

It follows that

(7) $\int_{R^{2}}\rho(t, x)\log\rho(t, x)dx\leq\frac{8\pi \mathcal{F}_{PKS}[\rho_{0}]-hIC(\Lambda I)}{8\pi-M}$

Therefore, for $M<8\pi$ , the entropy stays bounded uniformly in time. This formally
precludes the collapse of mass int $0$ a point mass for such initial data and will be the
crucial argument in the proof.

It is worth noticing that for a given $\rho$ , if we set $\rho_{\lambda}(x)=\lambda^{-2}\rho(\lambda^{-1}x)$ then

(8) $\mathcal{F}_{PKS}[\rho_{\lambda}]=\mathcal{F}_{PKS}[\rho]-2M(1-\frac{M}{8\pi})\log\lambda.$

So that as a function of $\lambda,$ $\mathcal{F}_{PKS}[p_{\lambda}]$ is bounded from below if $M<8\pi$ , and not
bounded from below if $M>8\pi$ in the set

(9) $\mathcal{K}$ $:=\{\rho$ : $\int_{\mathbb{R}^{2}}\rho=M,$ $\int_{\mathbb{R}^{2}}\rho(x)\log\rho(x)dx<\infty$ and $\int_{\mathbb{R}^{2}}|x|^{2}\rho(x)dx<\infty\}.$

2.3. $A$ gradient flow approach. The above arguments can be made rigorous by a
regularisation$/pa_{t}$ssing to the limit procedure. We are interested in the the gradient
flow interpretation of thc $KS$ systcm in thc Wasserstcin metric, formally described
as:

(10) $\frac{\partial\rho}{\partial t}=-,,\nabla_{W^{\backslash }}’\mathcal{F}_{PKS}[\rho(t)]$

A rigorous meaning to $\nabla_{W}$
” can be done using the approach developped by [28].

There is actually a riemannian structure on the probability space equipped with
the Monge-Kantorovich (or 2-Wasserstein) distance. We do not aim to explain this
structure in full details as we do not really need it but the interested reader could
$(.()$nsult, $[34,1].$

We will indeed construct a solution using the minimising schcmc, oftcn known $c\Gamma 1S$

the minimising or Jordan-Kinderlehrer-Otto (JKO) scheme: given a time step $\tau$ , we
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define the solution by

(11) $\rho_{\tau}^{k+1}\in$ argmin $p \in \mathcal{K}[\frac{\mathcal{W}_{2}^{2}(\rho,p_{\tau}^{k})}{2\tau}+\mathcal{F}_{PKS}[\rho]]$

where $\mathcal{K}$ is defined in (9).
Let us develop here the analogy with the gradient flow $st_{)}$ructure in the Euclideam

setting. In this situation the Euler-Lagrange equation associated to

(12) $X_{\tau}^{k+1}\in$ argmin $[ \frac{|X-\lambda_{\tau}^{\prime k}|^{2}}{2\tau}+\mathcal{F}[X]]$

would be
$\frac{X_{\tau}^{k+1}-X_{\tau}^{k}}{\tau}+\nabla \mathcal{F}[X_{\tau}^{k+1}]=0,$

which is nothing but the implicit Euler scheme associated to
$\dot{X}=-\nabla \mathcal{F}[X(t)]$

We aim to contruct here a sequence $\{\rho_{\tau}^{k}\}_{k}$ using the scheme (11) and will obtain at
the limit an gradient flow $wi(^{\backslash },1_{1} wil] can$ formally write $as (10)$ .

In the Euclidean setting, the next classical step is to built an interpolation be-
tween the constructed points. Here we interpolate between the terms of the sequence
$\{p_{\tau}^{k}\}_{k\in N}$ to produce a function from $[0, \infty)$ to $L^{1}(\mathbb{R}^{2})$ : For $ea(\rangle h$ positive integer $k,$

let $\nabla\varphi^{k}$ be the optimal transportation plan with $\nabla\varphi^{k}\# p_{\tau}^{k+1}=\rho_{\tau}^{k}$ , see the Appendix.
Then for $k\tau\leq t\leq(k+1)\tau$ we define

$\rho_{\tau}(t)=(\frac{t-k\tau}{\tau}id+\frac{(k+1)\tau-t}{\tau}\nabla\varphi^{k})\#\rho_{\tau}^{k+1}$

Note that $\rho_{\tau}(k\tau)=\rho_{\tau}^{k},$ $p_{\tau}((k+1)\tau)=\rho_{\tau}^{k+1}$ and $\mathcal{W}_{2}(\rho_{\mathcal{T}}^{k}, \rho_{\tau}(t))=(t-k\tau)\mathcal{W}_{2}(p_{\tau}^{k}, p_{\tau}^{k+1})$ .

Theorem 2 $($ Convergence $of thc$ schcme $as \tauarrow 0, [5])$ . If $1II<8\pi$ then the family
$(\rho_{\tau})_{\tau>0}$ admits a sub-sequence converging weakly in $L^{1}(\mathbb{R}^{2})$ to a weak solution to the
$KS_{9}$ystem (3); for all $(t_{1}, l_{2})\in[0, +\infty)$ , for all smooth $\zeta$

$\frac{d}{dt}\int_{\mathbb{R}^{2}}\zeta(x)\rho(t, x)dx=\int_{R’\underline{)}}\triangle\zeta(x)\rho(s, x)dxds$

$- \frac{1}{4\pi}\int\int_{\mathbb{R}^{2}\cross P_{\vee}^{2}}\rho(s, x)\rho(s, y)\frac{(x-y)\cdot(\nabla\zeta(x)-\nabla\zeta(y))}{|x-y|^{2}}dydx$

2.4. Ideas of the proof. The proof follows the main lines of the proof of the con-
vergence of the schenle for euclidean gradient flow. It $Wc\Re$ done in full details in [5]
md we present here a formal proof with the main ideas.
$(?_{})$ Existence of minimisers: Let us emphasise that the functional $\mathcal{F}_{PKS}$ is not convex,
so even the existence of a minimiser is not clear. When the functional is convex, or
even displacement convex, general results from [34, 1] can be applied. However, we
can construct a sequence of minimisers when $\Lambda I<8\pi$ by using Estimate (7).
$(i\iota’)$ The discrete Euler-La.qrange equation: The perturbation of the minimiser has to
be done in the optimal transport way: Let $\zeta$ be a smooth vector field with compact

57



A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS

$supI)ort$ , we introduce $\psi_{\epsilon}$ $:=|x|^{2}/2+\epsilon\zeta$ . We define $\overline{\rho\wedge}$ the push-forward perturbation
of $\rho_{\tau}^{n+1}$ by $\nabla\psi_{\epsilon}$ :

$\overline{\rho_{\epsilon}}=\nabla\psi_{\epsilon}\#\rho_{\tau}^{n+1}$

Starrdard computations, see Appendix A.3 and A.4, give

$\int_{\mathbb{R}^{2}}\nabla\zeta(x)\frac{x-\nabla\varphi^{n}(x)}{\tau}\rho_{\tau}^{n+1}(x)dx$

$= \int_{\mathbb{R}^{2}}[\Delta\zeta(x)-\frac{1}{4\pi}\int_{\mathbb{R}^{2}}\frac{[\nabla\zeta(x)-\nabla\zeta(y)]\cdot(x-y)}{|_{X-7/}|^{2}}\rho_{\tau}^{n+1}(y)dy]p_{\tau}^{n+1}(x)dx,$

which is the weak form of the Euler-Lagrange equation:

id $-\nabla\varphi^{n}n+1$

(13) $\overline{\tau}\rho_{\tau} =-\nabla\rho_{\tau}^{n+1}+\rho_{\tau}^{n+1}\nabla c_{\tau}^{n+1}$

Using the Taylor’s expansion
$\zeta(x)-\zeta[\nabla\varphi^{n}(x)]=[x-\nabla\varphi^{n}(x)]\cdot\nabla\zeta(x)+O[|x-\nabla\varphi^{n}(x)|^{2}]$

we obtain, for all $t_{2}>t_{1}\geq 0,$

(14) $\int_{R^{2}}\zeta(x)[\rho_{\tau}(t_{2}, x)-\rho_{\tau}(t_{1}, x)]dx=\int_{t_{1}}^{t_{2}}\int_{R^{2}}\triangle\zeta(x)\rho_{\tau}(s, x)dxds+O(\tau^{1/2})$

$- \frac{]}{4\pi}\int_{t_{1}}^{t_{2}}\int\int_{\mathbb{R}^{2}xR^{2}}\rho_{\tau}(s, x)\rho_{\tau}(s, y)\frac{(x-y)\cdot(\nabla\zeta(x)-\nabla\zeta(y))}{|x-y|^{2}}dydx$

(iii) $A$ priori estimates: To pa.ss to the limit, the scheme provides some a prior2
bounds: Taking $\rho_{\tau}^{n}$ as a test function in (11) we have:

(15) $\mathcal{F}_{PKS}[\rho_{\tau}^{n+1}]+\frac{1}{2\tau}\mathcal{W}_{2}^{2}(\rho_{\tau}^{n}, \rho_{\tau}^{\iota+1})\leq \mathcal{F}_{PKS}[\rho_{\tau}^{n}]$

As a consequence we obtain an energy estimate

(16) $\sup_{71\in N}\mathcal{F}_{PKS}[\rho_{\mathcal{T}}^{n}]\leq \mathcal{F}_{PKS}[p_{\tau}^{0}]$

and a total square estimate

(17) $\frac{1}{2\tau}\sum_{n\in N}\mathcal{W}_{2}^{2}(\rho_{\tau}^{n}, \rho_{\tau}^{n+1})\leq \mathcal{F}_{PKS}[\rho_{\tau}^{0}]-\inf_{n\in N}\mathcal{F}_{PKS}[\rho_{\tau}^{n}]$

(iv) Passing to the limit: The energy estimate (16) together with (6) gives a bound
on $\int p\log p$ at least as long as $llI<8\pi$ . The bound on $p_{\tau}\log p_{\tau}$ prevents the solution
from blowing up: indeed, using

$\int_{>K}\rho\leq\frac{1}{\log K}l_{>K}\rho|\log\rho|\leq\frac{C}{|\log(K)},$

we obtain that $(\rho_{\tau})_{\tau}$ converges to a certain $\rho$ in w- $L^{}$ $(\mathbb{R}^{2})$ . It time, we can rely
on the 1/2-H\"oldcr continuity (17) and Ascoli’s thcorem to obtain a convergence in
$C^{U}([0, T];\mathcal{P}(\mathbb{R}^{2}))$ .
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We can $\iota h\iota\iota$ pass to the limit in $\tauarrow 0$ in (14) and prove t,hat $\rho$ is a weak solution.
Note that the last term of (14) convcrges because the convergence of $(\rho_{\tau})_{\tau}$ in w-
$L^{1}(\mathbb{R}^{2})$ ensures the convergence of $(\rho_{\tau}\otimes\rho_{\tau})_{\tau}$ in $w$- $L$ l $(\mathbb{R}^{2})$ . The notion of constructed
solutions is however weak.

3. THE CRITICAL MASS PARABOLIC-ELLIPTIC 2-DIMENSIONAL KS SYSTEM

3.1. Preliminary remarks. We still consider the parabolic-elliptic 2-dimensional
$KS$ system (3). We $fo$ cus is this section to the the case A4 $=8\pi$ . In this $Cix^{\backslash },e,$

the remainder entropy which was controlled in (6) is thus entirely $eaten’$ ’ by the
logarithmic Hardy-Littlewood-Sobolev inequality (5). We however prove
Theorem 3 $($ Infinite $Ti_{1}ne$ Aggregation, $[8])$ . If the 2-moment is bounded, there is
a global in time non-negative free-energy solution of the $KS$ system (3) with initial
data $\rho_{0}.$

Moreover $\uparrow,f\{t_{p}\}_{p\in N}arrow\infty$ as $parrow\infty$ , then $t_{p}\mapsto\rho(t_{p}, x)$ converges to a Dimc peak
of mass 8 $\pi$ concentrated at the centre of mass of the initial data $weakly-*in$ the sense
of measure as $parrow\infty.$

We will not describe the proof of this result here but we are interested in thc
analysis of the cxistence of solutions in the critical case $\Lambda 1=8\pi$ when thc 2-molnent
is not assumed to be bounded. $h_{1}$ this situation, nothing prevents the solutions from
corlverging to the other minimisers of the LogHLS inequality (5) which are of the
form:

$\overline{\rho}_{\lambda}(x):=\frac{1}{\pi}\frac{8\lambda}{(\lambda+|x|^{2})^{2}}$

We can indeed prove the following theorem:
Theorem 4 (Existence of global solutions, [6]). Let $\rho_{0}$ be any density in $\mathbb{R}^{2}$ with mass
$8\pi$ , such that $\mathcal{F}_{PKS}[\rho_{0}]<\infty$ . If there is a minimiser $\rho_{\lambda}--$ of the LogHLS inequality (5)
such that $\mathcal{W}_{2}(\rho_{0},\overline{\rho}_{\lambda})<\infty$ , then there exists a global $fi^{\backslash }ee$ energy solution of the Keller-
Segel equation (3) with initial data $\rho_{0}$ . Moreover,

$\lim_{tarrow\infty}\mathcal{F}_{PKS}[\rho(t)]=\mathcal{F}_{PKS}[\overline{\rho}_{\lambda}]$ and $\lim_{tarrow\infty}\Vert\rho(t)-\overline{\rho}_{\lambda}\Vert_{1}=0$

Remember that the minimisers $\overline{\rho}_{\lambda}$ of the logarithmic Hardy-Littlewood-Sobolev
inequality (5) are of infinite 2-moment so that the $($ ondition $\mathcal{W}_{2}(\rho_{0},\overline{\rho}_{\lambda})<\infty$ implies
that $\rho_{0}$ is of infinite 2-moment. If we keep in mind that the 2-moment can be seen
as the Monge-Kantorovich distance between the solution and the Dirac mass, we see
that Theorem 4 completes the picture $w1_{1}ic$ emerged from Theorem 3.

As soon as we start at a finite distance from one of the minimisers $\overline{\rho}_{\lambda}$ we can
construct a solution $w1_{1}ich$ converges towards it. Note that this result is true for
the solutions that we construct as we do not have uniqneness of the solution to the
$KS$ system, even if we stronglv believe that this is the case. Also observe that the
equilibrium solutions $\overline{\rho}_{\lambda}$ are infinitely far ap\‘art: Indeed, let $\varphi(x)=\sqrt{\lambda}/\mu|x|^{2}/2,$

one has $\nabla\varphi\neq\rho_{\mu}=\overline{\rho}_{\lambda}$ . Since the equilibrium densities $\overline{\rho}_{\lambda}$ all have infinite second
moments,

$\mathcal{W}_{2}^{2}(\rho_{l^{I}},\overline{\rho}_{\lambda})=\frac{1}{2}.\int_{1R^{2}}|\sqrt{\frac{\lambda}{\mu}}x-x|^{2}\rho_{\mu}(x)dx=+\infty.$
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We will now give the ain ingredients of this proof.

3.2. Another Lyapunov functional. Consider first the fast diffusion Fokker-Planck
equation:

(18) $\{\begin{array}{ll}\frac{\partial u}{\partial t}(t, x)=\triangle\sqrt{u(t,x)}+2\sqrt{\frac{\pi}{\lambda M}}div(xu(t, x)) t>0, x\in \mathbb{R}^{2}u(0, x)=u_{0}(x)\geq 0 x\in \mathbb{R}^{2}\end{array}$

This equation can also be written in a form amalogous to (4): for $\lambda>0$ , define the
$rela\dagger_{}ive$ entropy of the $fa_{\llcorner st}$ diffusion equatiorl with respect to the stationary solution

$\overline{\rho}_{\lambda}$ by

$\mathcal{H}_{\lambda}[u]:=,\int_{Rk^{2}}\frac{|\sqrt{u(x)}-\sqrt{\overline{\rho}_{\lambda}(x)}|^{2}}{\sqrt{\overline{\rho}_{\lambda}(x)}}dx.$

Equation (18) can be rewritten as

$\frac{\partial u}{\partial t}(t, x)(=div(u(t, x)\nabla\frac{\delta \mathcal{H}_{\lambda}[u(t)]}{\delta u}(x))$

with
$\frac{\delta \mathcal{H}_{\lambda}[u]}{\delta u}=\frac{1}{\sqrt{\overline{\rho}_{\lambda}}}-\frac{1}{\sqrt{u}}$

The connection with the $KS$ system (3) can be seen through the minimisers of
$\mathcal{H}_{\lambda}$ which are the same as those of the LogHLS inequality (5). The functional $\mathcal{H}_{\lambda}$

is actually a weighted distance between the solution and its unique minimiser $\overline{\rho}_{\lambda}$ . It
is thus tempting to compute the dissipation of $\mathcal{H}_{\lambda}$ along the flow of solutions to the
$KS$ system (3): Let $\rho$ be a sufficiently smooth solution of the $KS$ system (3). Then
we compute

(19) $\frac{d}{dt}\mathcal{H}_{\lambda}[\rho(t)]=-\frac{1}{2}\int_{\mathbb{R}^{2}}\frac{|\nabla\rho(t)|^{2}}{\rho(t)^{3/2}}dx+\int_{\mathbb{R}^{2}}p(t)^{3/2}\backslash . dx+4\sqrt{\frac{M\pi}{\lambda}}(1-\frac{M}{8\pi})$

In the critical case $M=8\pi$ the dissipation of the $\mathcal{H}_{\lambda}$ free energy along the flow of
the $KS$ system (3) is

$\mathcal{D}[\rho]:=\frac{1}{2}\int_{\mathbb{R}^{2}}\frac{|\nabla\rho|^{2}}{\rho^{3/2}}dx-\int_{\mathbb{R}^{2}}\rho^{3/2}dx$

We use the following Gagliardo-Nirenberg-Sobolev inequalitv in the form of [19]: For
all functions $f$ in $\mathbb{R}^{2}$ with a square integrable distributional gradient $\nabla f,$

$\pi\int_{\mathbb{R}^{2}}|f|^{6}dx\leq\int_{\mathbb{R}^{2}}|\nabla f|^{2}dx\int_{\mathbb{R}^{2}}|f|^{4}dx,$

and there is equality if and only if $f$ is a multiple of a translate of $\overline{\rho}_{\lambda}^{1/4}$ for some
$\lambda>0.$

As a consequence, taking $f=\rho^{1/4}$ so that $\int_{\mathbb{R}^{2}}f^{4}(x)dx=8\pi$ , we obtain $\mathcal{D}[\rho]\geq 0,$

and moreover, $\mathcal{D}[\rho]=0$ if and only $\rho$ is a translate of $\overline{\rho}_{\lambda}$ for some $\lambda>0.$
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Remark 5. This free energy $\mathcal{H}_{\lambda}[\rho]$ gives another proof of non existence of global-
in-time solutions in the super-critical case $M>8\pi$ . Indeed, by (19) and as $\mathcal{D}[\rho]$ is
$non-n\in$gative,

$0 \leq \mathcal{H}_{\lambda}[\rho(t)]\leq 4\sqrt{\frac{M\pi}{\lambda}}(1-\frac{\Lambda I}{8\pi})t.$

So that in $tf\iota e$ case $M>8\pi,$ $the7e$ cannot be $global-i_{7}\iota-ti\gamma(\iota e$ solutions even with infinite
2-moment as long as there is $\lambda$ such that $\mathcal{H}_{\lambda}[\rho_{0}]$ is bounded.

We expect the propagation of the bounds on $\mathcal{F}_{f^{1}KS}[\rho]$ and $\mathcal{D}[\rho]$ to give compactness.
Unfortunately, $\mathcal{D}[\rho]$ is a difference of two functionals of $\rho$ that can each be arbitrarily
large even when $\mathcal{D}[\rho]$ is $veI\gamma(,1ose$ to $/ero$ . Indeed, for $M=8\pi$ and each $\lambda>0,$

$\mathcal{D}[\overline{\rho}_{\lambda}]=0$ whilc

$\lim_{\lambdaarrow 0}\Vert\overline{\rho}_{\lambda}\Vert_{3/2}=\infty,$ $\lim_{\lambdaarrow 0}\Vert\nabla\overline{\rho}_{\lambda}^{1/4}\Vert_{2}=\infty$ and $\lim_{\lambdaarrow 0}\overline{\rho}_{\lambda}=8\pi\delta_{0}.$

Likewise, an upper bound on $\mathcal{F}\}^{\supset}Ks[\rho]$ provides no upper bound on the entropy
$/\mathbb{R}^{2}\backslash \rho\log\rho$ . Indeed, $\mathcal{F}_{PKS}[\rho]$ takes its minimum value for $\rho=\overline{\rho}_{\lambda}$ for each $\lambda>0,$

while
$\lim_{\lambdaarrow 0}\int\overline{\rho}_{\lambda}\log\overline{\rho}_{\lambda}=\infty.$

Fortunately, $aI1$ upper bound on both $\mathcal{H}_{\lambda}[\rho]$ and $\mathcal{F}_{PKS}[\rho]$ does provide an upper bound
on $\int\rho\log\rho$ :

Theorem 6 $($ Conccntration control $for \mathcal{F}_{PKS}, [6])$ . Let $\rho$ be any density with mass
$M=8\pi$ such that $\mathcal{H}_{\lambda}[\rho]<\infty$ for some $\lambda>0$ . Then there exist $\gamma_{1}>0$ and an
explicit $C>0$ depending only on $\lambda$ and $\mathcal{H}_{\lambda}[\rho]$ such that

$\gamma_{1}\int_{\mathbb{R}^{2}}\rho\log\rho dx\leq \mathcal{F}_{PKS}[\rho]+C.$

Here we also prove that since $\mathcal{H}_{\lambda}$ controls concentration, a uniform bound on both
$\mathcal{H}_{\lambda}$ and $\mathcal{D}$ does indeed provide compactness:

Theorem 7 $($ Concentration control $for \mathcal{D}, [6])$ . Let $\rho$ be any density in $\mathcal{L}^{3/2}(\mathbb{R}^{2})$ with
mass $8\pi$ such that $\mathcal{F}_{PKS}[\rho]$ is finite, and $\mathcal{H}_{\lambda}[p]$ is finite for some $\lambda>0$ . Then there
exist constants $\gamma_{1}>0$ and an $exp\prime_{\mathfrak{p}}$icitC $>0de,$pending only on $\lambda,$ $\mathcal{H}_{\lambda}[\rho J$ and $\mathcal{F}_{PKS}[p]$

such that
$\gamma_{2}\int_{R^{2}}|\nabla(\rho^{1/4})|^{2}dx\leq\pi \mathcal{D}[\rho]+C$

Ideu of the proof of Th,eorem,96 and 7: The trivial in $\backslash quality$

(20) $\int_{R^{2}}\sqrt{\lambda+|x|^{2}}\rho(x)dx\leq 2\sqrt{\lambda}M+2M^{3/4}(\lambda/\pi)^{1/4}\sqrt{\mathcal{H}_{\lambda}[\rho]}.$

gives a vertical cut to prove Theorem 6. Indeed, we split the function $\rho$ in \dagger wo parts:
given $\beta>0$ , define $\rho_{\beta}(x)=\min\{\rho(x), \beta\}$ . By (20), for $\beta$ large enough, $\rho-\rho_{\beta}$ is
such tha,$t$ :

$\int_{\mathbb{R}^{2}}(\rho-/’\beta)\leq\frac{C_{1}}{\beta}+C_{2}\sqrt{\mathcal{H}_{\lambda}[\rho]}\leq\frac{C_{1}}{\beta}+\frac{8\pi-\epsilon_{0}}{2}<8\pi-\epsilon_{0}.$
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We then apply the logarithmic Hardy-Littlewood-Sobolev inequality nlethod as in (7)
to the function $\rho-\rho_{\beta}$ whose mass is less than $8\pi.$

$T\}_{1}e$ same idea works for the Gagliardo-Nirenberg-Sobolev inequality to $I$)$rove$ The-
orem 7: Let $f$ $:=\rho^{1/4}$ , we split $f$ in two paxts by defining $f_{\beta}$ $:= \min\{f, \beta^{1/4}\}$ and
$h_{\beta}$ $:=f-f_{\beta}$ . We use (20) and apply the Gagliardo-Nirenberg-Sobolev inequality to
control $h_{\beta}.$

3.3. Ideas of the proof of Theorem (4). The proof of Theorem 4 follows the line
of the convergence of the JKO minimising scheme (11) exposed in the previous section
to obtain the Euler-Lagrange equation (13). As in the previous section, we can rely
on the same compactness to prove the existence of weak solutions. But as we want to
study the large-time behaviour of the solution we need more regularity. We actually
need to prove the existence of “free $energy^{\backslash }$

’ solution satisfying the $entroI^{J}y/$entropy
production inequality:

$\mathcal{F}_{PKS}[\rho]+\int_{0}^{T}\int_{\mathbb{R}^{2}}\rho(t, x)|\nabla(\log\rho(t, x)-c(t, x))|^{2}dx\leq \mathcal{F}_{PKS}[\rho_{0}]$

For this purpose more regularity has to be obtained on the solutions at the discrete
level.

Even if it was not clear at the time we wrote [6], we use a powerful method
systematically described by Matthes-McCann-Savare in [27]: Following their words,
let us first consider the two ordinary differential equations describing gradient flow:

$\dot{x}(t)=-\nabla\Phi[x(t)]$ and $\dot{y}(t)=-\nabla\Psi[y(t)]$

Then of course $\Phi[x(t)]$ and $\Psi[y(t)]$ are monotone decreasing. Differentiate each func-
tion along the other’s flow gives:

$\frac{d}{dt}\Phi[y(t)] =-\langle\nabla\Phi[y(t)], \nabla\Psi[y(t)]\rangle$

(21)
$\frac{d}{dt,}\Psi[x(t)] =-\langle\nabla\Psi[x(t)], \nabla\Phi[x(t)]\rangle$

Thus, $\Phi$ is decreasing along the gradient flow of $\Psi$ for any initial data if and only if
$\Psi$ is decreasing along the gradient flow of $\Phi$ for any initial data.

Let us now describe the consequences of this remark in the context of gradient
flows in the Monge-Kantorovich metric. Consider the following variational problem:

(22) Find $u_{h,n}$ which minimises $u \mapsto\frac{1}{2h}\mathcal{W}_{2}^{2}(u, u_{h,n-1})+\mathcal{F}[u].$

Imagine now that we can find a displacement convex functional $\mathcal{H}$ such that the
dissipation of $\mathcal{F}$ along the flow $S^{\mathcal{H}}$ :

$D^{\mathcal{H}} \mathcal{F}[\mu]:=\lim_{tarrow}\sup_{0}\frac{\mathcal{F}[\mu]-\mathcal{F}[S_{t}^{\mathcal{H}}\mu]}{t}$

is non-negative.
Definition (22) of the minimising scheme, means that for any $u$

$\frac{1}{2\tau}\mathcal{W}_{2}^{2}(\tau\iota_{\tau,n}, u_{\tau,n-1})+\mathcal{F}[e\iota_{\tau,n}]\leq\frac{1}{2\tau}\mathcal{W}_{2}^{2}(u, \tau(_{\tau,n-1})+\mathcal{F}[c\iota]$
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Choosing $u=6_{t}^{v\mathcal{H}}(u_{\tau,n})$ , we obtain

$\mathcal{F}[u_{\tau,n}]-\mathcal{F}[S_{t}^{\mathcal{H}}\iota\iota_{\tau,n}]\leq\frac{1}{2\tau}[\mathcal{W}_{2}^{2}(S_{t}^{\mathcal{H}}u_{\tau.n}, u_{\tau.n-1})-\mathcal{W}_{2}^{2}(u_{\tau,n}, u_{\tau,n-J})]$

Dividing by $t$ and letting $tarrow 0$ , we obtain

$D^{f\{} \mathcal{F}[u_{\tau,n}]\leq\frac{1}{2}\frac{d^{+}}{dt}\mathcal{W}^{\frac{)}{2}}(S_{t}^{\mathcal{H}}u, v)$ .

But as $\mathcal{H}$ is displacement convex and $S^{\mathcal{H}}$ is the a.ssociated semi-group we have

(23) $\frac{1}{2}\frac{d^{+}}{dt}\mathcal{W}_{2}^{2}(S_{t}^{\mathcal{H}}u, v)\leq \mathcal{H}[v]-\mathcal{H}[S_{f}^{\mathcal{H}}u]$

See \dagger he Appendix for more details. Taking $u=u_{\tau,n}$ and $v=u_{\tau,n-1}$ yields:

(24)

So that the differential estimate of $\mathcal{F}$ is converted into a discrete estimate for the
approximation scheme.

Here, as already discussed $t1_{1}e$ functional $\mathcal{F}_{PKS}$ is not displacennent convex but the
fiow constructed from this functional is also non-increasing along the flow of $\mathcal{H}_{\lambda}.$

Remark that the displacement convexity of $\mathcal{H}_{\lambda}$ is formally obvious from the fact that

$\mathcal{H}_{\lambda}[\{4_{}]=\int_{R^{2}}(-2\sqrt{u(x)}+\sqrt{\frac{1}{2\lambda}}\frac{|x|^{2}}{2}u(x))dx+C$

where $-\sqrt{u(x)}$ and $|x|^{2}u(x)$ are displacement convex. So that at each stcp, wc can
use the convexity estimate (24), which gives
(25) $\tau \mathcal{D}[\rho_{\tau}^{n}]\leq \mathcal{H}_{\lambda}[\rho_{\tau}^{n-1}]-\mathcal{H}_{\lambda}[\rho_{\tau}^{n}]$

This inequality together with Theorem 7 gives a bound on $\Vert\nabla(\rho_{\tau}^{n})\Vert_{2}$ . This is the cru-
cial estimate which allows to apply the standard entropy/entropy dissipation method
to study the asymptotics. $\ulcorner 1’ here$ are main technical difficulties and the methods to
turn around them are interesting by themselves but we do not present them in details
here. For more details see [6].

4. THE NON-LINEAR PARABOLIC-PARABOLIC KS SYSTEM IN $\mathbb{R}^{d},$ $d\geq 3$

4.1. Main results. We consider now the following parabolic-parabolic generalisati on
of th $e$ Keller-Segel $sy_{\backslash }^{(i}tem$ :

(26) $\{\begin{array}{l}\alpha_{=div[\nabla\rho^{m}-p\nabla\emptyset]}\partial\partial t\tau\frac{\partial\phi}{\partial t}=\triangle\phi-\alpha\phi+\rho,\end{array}$ $(t, x)\in(0, \infty)\cross \mathbb{R}^{d},$

where $m\in[1,2)$ and $d\geq 2$ . This system is known in theoretical physics as the
generalised Smulochowski-Poisson system, see [17, 16].

For the case $d=2$ , global-in-time cxistence for a mass less that $8\pi$ was proved
in [13]. But there are also global-in-time self-similar solutions for larger masses,
see [4]. Thc question of the cvcntuality of blowing up solutions to this system remains
opened.
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For the parabolic-elliptic case, $\tau=$ $()$ , the inequality which plays the role of the
LogHLS inequality is a variant to the Hardy-Littlewood-Sobolev $(HLS)$ inequality: for
all $l_{1},$ $\in L^{1}(\mathbb{R}^{d})\cap L^{m}(\mathbb{R}^{d})$ , there exists an optimal constffilt $C_{*}^{Y}$ such that

(27) $| \frac{\Gamma(d/2)}{(d-2)2\pi^{d/2}}\int\int_{\mathbb{R}^{d}\cross_{\wedge}R^{d}}\frac{h(x)h(y)}{|x-y|^{d-2}}dxdy|\leq C_{*}\Vert h\Vert_{m}^{m}\Vert h\Vert_{1}^{2/d}$

The critical mass can be cxpressed in terms of this inequality. Let us define

$\Lambda I_{c}:=[\frac{2}{(m-1)C_{*}}]^{d/2}$

The available results of [7] can be summarised as follows:
$\bullet$ Sub-critical $ca_{\grave{\iota}}^{\backslash }e:0<1lf<\Lambda f_{c}$ , solutions exist globally in time and there ex-

ists a radially symmetric compactly supported self-similar solution, although
we are not able to show that it attracts all global solutions.

$\bullet$ Critical case: $M=M_{c}$ , solutions exist globally in time. There are infinitely
many compactly supported stationary solutions. We thus show a striking
difference with respect to the classical $KS$ system in two dimensions, namely,
the existence of global in time solutions not blowing-up in infinite time. Re-
cently [36] proved that radially symmetric solutions do not blowup in infinite
time but this question remains opened for general solutions.

$\bullet$ Super-critical case: $M>M_{c}$ , we prove that there exist solutions, corre-
sponding to initial data with negative free encrgy, blowing up in finitc timc.
However, we cannot exclude the possibility that solutions with positive free
energy may be global in time. There are also solutions starting from positive
free energy which blowup in finite time for any mass, see [3] but it is not clear
if their free energy is still positive at the blowup time.

We will not describe the proof of these results but will focus on the extension of
the global-in-time existence result,$s$ to higher dimensions:

Theorem 8 (Global existence, [10]). Let $\tau>0,$ $\alpha\geq 0,$ $\rho_{0}$ be a non-negative function
in $L^{1}(\mathbb{R}^{d}, (1+|x|^{2})dx)\cap L^{m}(\mathbb{R}^{d})$ satisfying $\Vert u_{0}\Vert_{1}=M$ and $\phi_{0}\in H^{1}(\mathbb{R}^{d})$ . If $M<M_{c}$

then there exists a weak solution $(\rho_{\}}\phi)$ to the pambolic-pambolic $KS$ system (26):
almost-everywhere in $(0, t)\cross \mathbb{R}^{d}$ and for all smooth function $\xi$

$\{\begin{array}{l}\int_{\mathbb{R}^{d}}\xi(\rho(t)-p_{0})dx+\int_{0}^{t}\int_{\mathbb{R}^{d}}(\nabla(\rho^{m})-p\nabla\phi)\cdot\nabla\xi dxds =0,\tau cJ_{t}\phi-\triangle\phi+\alpha\phi =\rho.\end{array}$

4.2. Preliminary remarks. The main difficulty stems from the fact that the system
cannot easily be reduced to a single non-local parabolic equation. Actually the
corresponding free energy has the two quamtities $\rho$ and $\phi$ :

(28) $\mathcal{E}_{\alpha}[\rho, \phi]:=\int_{\mathbb{R}^{d}}\{\frac{|\rho(x)|^{m}}{(m-1)}-\rho(x)\phi(x)+\frac{1}{2}|\nabla\phi(x)|^{2}+\frac{\alpha}{2}\phi(x)^{2}\}dx.$

The minimising scheme has thus to be replaced by a gradient flow of this energy in
$\mathcal{K}$ $:=\mathcal{P}_{2}(\mathbb{R}^{d})\cross L^{2}(\mathbb{R}^{d})$ thc probabilitv measure with finitc 2-moments endowed with
the MongeKantorovich metric for the first component and the usual $L^{2}$-norm for the
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second component. Such a ,strategy $ha_{\backslash }^{t_{\}}}$ already been developed to prove existence
of the thin film approximation of the Muskat problem in [26].

$T\}_{1}e$ minirnising $sd_{1}eme$ is $\prime a_{\llcorner S}$ follows: given $ar\rfloor$ initia] condition $(l^{J_{0},\phi_{0})}\in \mathcal{K}$ and a
$ti_{II1}e$ step $h>0$ , we define a sequence $(\rho_{h_{i}n}, \phi_{h,n})_{n\geq 0}$ in $\mathcal{K}t)y$

(29) $\{\begin{array}{ll}(\rho_{h,0}\grave{}, \phi_{h,0})=(\rho_{0}, \phi_{0}) , (\rho_{h,n+1}, \phi_{h,n+1})\in Argmin (\rho,\phi)\in\kappa^{\mathcal{F}_{h,n}[\rho,\phi]}, n\geq 0,\end{array}$

where
$\mathcal{F}_{h,n}[\rho, \phi]:=\frac{1}{2h}[\mathcal{W}_{2}^{2}(\rho, \rho_{h_{71}},)+\tau\prime\Vert\phi-\phi_{h,n}\Vert_{2}^{\sim}\prime)]+\mathcal{E}_{\alpha}[\rho, \phi].$

The kernel $whi(J_{1}$ appears in the parabolic-parabolic $KS$ systeln is the Besscl kernel,
$\mathcal{Y}_{\alpha}$ , defined for $\alpha\geq 0$ by:

$\mathcal{Y}_{\alpha}(x):=.\int_{0}^{\infty}\frac{1}{(4\pi s)^{d/2}}\exp(-\frac{|x|^{2}}{4s}-\alpha s)(1s, x\in \mathbb{R}^{d},$

the case $\alpha=0$ corresponding to thc already defined Poisson kernel. For $u\in L^{1}(\mathbb{R}^{d})$ ,
$S_{a}(u)$ $:=\mathcal{Y}_{\alpha}*u$ solves
(30) $-\triangle S_{\alpha}(u)+\alpha S_{\alpha}(u)=u$ in $\mathbb{R}^{d}$

in the sense of distributions. The Bessel kernel is also referred to as the screened
Poisson or Yukawa potential in the literature. The crucial inequality is thus a mod-
ified Hardy-Littlewood-Sobolev inequality valid for the Bessel kernel $\mathcal{Y}_{\alpha}$ for $\alpha>0$ :
For $\alpha>0,$

(31) $\sup\{\frac{\int_{\mathbb{R}^{d}}h(.7_{J})(\mathcal{Y}_{\alpha}*f_{l_{}})(x)(1_{J}}{||h\Vert_{m}^{m}\Vert h\Vert_{1}^{2/d}}:h\in(L^{1}\cap L^{m})(\mathbb{R}^{d}), h\neq 0\}=C_{HI_{I}S},$

where $C_{HLS}$ is defined in (27). Note that the constant is the exact same as for the case
$\alpha=0$ so that the critical mass below whi$(_{J}\iota_{1}$ all the solutions exist globally-in-time is
the same as for the parabolic-elliptic version.

Several difficulties $\partial x\cdot ise$ in the proof of the well-posedness itnd convergence of the
previous minimising scheme. First, as the energy $\mathcal{E}_{\alpha}$ is not displacement convex,
standard results from [34, 1] do not apply and even the existence of a minimiser
is not clear. Nevertheless, the modified Hardy-Littlewood-Sobolev $ine(1^{uality}(27)$

trivially implies:

(32) $\mathcal{E}_{\alpha}[\rho, \phi]\geq\frac{C_{HI.S}}{2}(M_{c}^{2/d}-\Lambda t^{2/d})\Vert\rho\Vert_{m}^{m}.$

which permits in particular to pass to the limit in the term in $\mathcal{E}_{\alpha}[\rho, \phi]$ involving the
product, $\rho\phi$ , and proves the existence of a minimiser.

To obtain the Euler-Lagrange equation satisfied by a minimiser $(\overline{\rho},\overline{\phi})$ of $\mathcal{F}_{h,n}$ in $\mathcal{K},$

the parameters $h$ and $n$ being fixed, we consider, as before, an (optimal transp$ort$ ’

perturbation for $\overline{\rho}$ and a $L^{2}$-perturbation for $\overline{\phi}$ defined for $\delta\in(0,1)$ by
$p_{\delta}=(id+\delta\zeta)\#\overline{\rho}, \phi_{\delta}:=\overline{\phi}+\delta w,$
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where $\zeta\in C_{()}^{\infty}(\mathbb{R}^{d};\mathbb{R}^{d})$ and $w\in \mathcal{C}_{0}^{\infty}(\mathbb{R}^{d})$ . $I($lentifying the Euler-Lagrange equation
requires to pass to the limit as $\deltaarrow 0$ in

$\frac{\mathcal{W}_{2}^{2}(\rho_{\delta},\rho_{h,n})-\mathcal{W}_{2}^{2}(\overline{\rho},\rho_{h,n})}{2\delta}$ and $\frac{\Vert\rho_{\delta}\Vert_{m}^{m}-\Vert\overline{\rho}\Vert_{m}^{m}}{\delta},$

which can be performed by standard arguments, see the Appendix, but also in

$\frac{]}{\delta}\int_{\mathbb{R}^{d}}(\overline{\rho}\overline{\phi}-p_{\delta}\phi_{\delta})(x)dx=\int_{\mathbb{R}^{d}}\overline{\rho}(x)[\frac{\overline{\phi}(x)-\overline{\phi}(_{\backslash }7j+\delta\zeta(x))}{\delta}-w(x+\delta\zeta(x))]dx.$

This is where the main difficulty lies: indeed, since $\overline{\phi}\in \mathcal{H}^{1}(\mathbb{R}^{d})$ , we only have

$\frac{\overline{\phi}\circ(id+\delta\zeta)-\overline{\phi}}{\delta}arrow\zeta\cdot\nabla\overline{\phi}$ in $L^{2}(\mathbb{R}^{d})$ ,

while $\overline{\rho}$ is only in $(L^{1}\cap L^{m})(\mathbb{R}^{d})$ with $m<2$ . So even the product $\overline{p}\zeta\cdot\nabla\overline{\phi}whid_{1}$ is
the candidate for the limit is not well defined and the regularity of $(\overline{\rho},\overline{\phi})$ has to be
improved. We develop in the next section a generalisation to the Matthes-McCann-
Savar\’e technique.

4.3. $A$ generalisation of Matthes-McCann-Savar\’e’s approach. Actually, the
cornerstone of $Matthes-McCar\ln-$Savar$\acute{e}’ sn1et,1_{1O}d$ is the availability of $dJiother$ func-
tional $\mathcal{G}$ and the simplest situation is the case where the flow has a displacement
convex Lyapunov functional which is different from the energy, which was the case
in the previous section. Unfortunately, there does not seem to be a natural choice of
such a functional $\mathcal{G}$ here. $A$ first try is to choose $\mathcal{G}$ as the displacement convex part
of $\mathcal{E}_{\alpha}$ , that is,

$\mathcal{G}[u, v]:=\int_{\mathbb{R}^{d}}(\frac{|u(x)|^{m}}{(m-1)}+\frac{1}{2}|\nabla v(x)|^{2}+\frac{\alpha}{2}|v(x)|^{2})dx.$

The associated gradient flow is the solution $(u, v)$ to

$\partial_{s}u-\triangle u^{m}=0$ in $(0, \infty)\cross \mathbb{R}^{d},$ $u(O)=\overline{\rho},$

and
$\partial_{s}v-\triangle v+\alpha v=0$ in $(0, \infty)\cross \mathbb{R}^{d},$ $v(O)=\overline{\phi}.$

Computing $d\mathcal{E}_{\alpha}[u(s), v(s)]/ds$ leads to the sum of a negative ternl and a remainder
but the remainder terms cannot be controlled. Despite this failed attempt, it turns
out that, somehow unexpectedly, the following functional

$\mathcal{G}[u, v]:=\int_{\mathbb{R}^{d}}(u(x)\log(u(x))+\frac{1}{2}|\nabla v(x)|^{2}+\frac{\alpha}{2}|v(x)|^{2})dx$

provide the right information. Indeed, its associated gradient flow is the solutions $U$

and $V$ to the initial value problems

$\partial_{s}u-\triangle u=0$ in $(0, \infty)\cross \mathbb{R}^{d},$ $u(O)=\overline{\rho},$

and
$\partial_{s}v-\triangle v+\alpha v=0$ in $(0, \infty)\cross \mathbb{R}^{d},$ $v(O)=\overline{\phi},$
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and, as we shall see below, $d\mathcal{E}_{\alpha}[u(\backslash \cdot), v(_{\backslash }\backslash )]/ds$ is in that case the sum of a negative
term and a remainder which we are able to control. For sake on simplicity in the
presentation let us take $\alpha=0$ . We compute

$\frac{d}{dt}\mathcal{E}_{0}[u, v]_{2}^{2}=+\Vert u(t)\Vert_{\sim}^{2}\prime)\backslash \frac{-\frac{4}{m}\Vert\nabla(u^{m/2}(t).)\Vert_{2}^{2}-\Vert(\triangle v+u)(t)\Vert}{=\mathcal{D}[u,\uparrow i]}\underline{Z}, \ell>0.$

So thaf the $(lis(’ rete est,$imate $(24)$ gives:

(33) $\mathcal{D}[\rho_{h,n}, \phi_{h,n}]-\Vert\rho_{h,n}\Vert_{2}^{2}\leq\frac{\mathcal{G}[\rho_{h,n-J\backslash }\phi_{h,n-1}]-\mathcal{G}[\rho_{h,n},\phi_{h_{7l}},]}{h}$

Remains to prove that we can control $\Vert\rho_{h,r\}}\Vert_{2}^{2}$ by $\mathcal{D}[\rho_{/\},l}, \phi_{h_{7/}},,]$ . This can be done using
the H\"older and Sobolev inequalities:

(34) $\Vert\prime\iota r,\Vert_{2}^{2}\leq\Vert_{ll}\prime,\Vert_{m}\Vert u)\Vert_{m/(m-1)}\leq C\Vert w\Vert_{m}\Vert\nabla(|\prime lf|^{nl/2})\Vert_{2}^{2/m}$

Combining the above estimate with Young’s inequality gives

$\Vert\rho_{h,n}\Vert_{2}^{2}\leq\frac{2}{m}\Vert\nabla(\rho_{h,n}^{m/2})\Vert_{2}^{2}+C\Vert\rho_{hn}\Vert_{m}^{m/(m-1)},$

and thus

(35) $\Vert\rho_{h,n}\Vert_{2}^{2}\leq\frac{1}{2}\mathcal{D}[\rho_{h,n_{i}}\phi_{h,n}]+C\Vert\rho_{h,n}\Vert_{m}^{m/(m-1)}$

By (32) we obtain, for any $M<llt_{r}$

$\Vert\rho_{h,n}\Vert_{2}^{2}\leq\frac{1}{2}\mathcal{D}[\rho_{h,n}, \phi_{h,n}]+C\mathcal{E}_{0}[\rho_{h,n}, \phi_{h,n}]^{1/(m-1)}$

And finally (33) implies

$\frac{1}{2}\mathcal{D}[\rho_{h,n}, \phi_{h,n}]\leq\frac{\mathcal{G}[\rho_{h,n-1\backslash }\phi_{h,r1-1}]-\mathcal{G}[p_{h,n},\phi_{h_{i}n}]}{h}+C\mathcal{E}_{0}[\rho_{h,n}, \phi_{h,n}]^{/./(m-1)}$

lVhich gives a bound in $H^{1}(\mathbb{R}^{2})$ for $(\rho_{h,n})^{m/2}$ . By the Gagliardo-Nirenberg-Sobolev
inequality $\{\rho_{h,n}\}_{n}$ is thus bounded in $L^{p}(\mathbb{R}^{2})$ , for any $p\in[1, \infty)$ . Such a regularity
is no$v^{}$ enough to pass to the limit in the Euler-Lagrange equation and obtain the
stated result.

ACKNOWLEDGEMENT
Thc $aut1_{1}or$ would likc to thank the RIMS and more particularly $Pr.$ $Futos1_{1}i$

Takahashi for the invitation to participate to this very interesting event. The authors
is grateful to the audience for its questions and comments $w\}_{1}ic1_{1}]$argely contributed
to these notes. All remaining mistakes are mine. Part of this work was written while
the author was enjoying the hospitality of CMM-Universidad de Chile \v{c}md thanks
the ECOS Project CIIE07 for its support.

APPENDIX A. AN OPTIMAL TRANSPORT TOOLBOX

We just give some basic results from optimal transport theory that we use in the
proof, for a dctailed cxposition of this rich and rapidly dcveloping subject, we refer
the interested reader to the very accessible textbook [34] or [1, 35].
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A.l. Kantorovich and Monge’s problems. Let $X$ and $Y$ be two spaces equipped
respectively with the Borel probability measures with finite 2-moment $\mu\in \mathcal{P}(X)$ and
$\nu\in \mathcal{P}_{2}(Y)$ . For $l^{4}\in P_{2}(X)$ and $T$ , Borel: $Xarrow V,$ $T_{\neq l}\iota$ denotes the push $foru,ard$ (or
image measure) of $\mu$ through $T$ which is defined by $T_{\#}\mu(B)=\mu(T^{-1}(B))$ for every
Borel subset $B$ of $Y$ or equivalently by the change of variables formula

(36) $\int_{Y}\varphi dT_{\# l^{1_{}}}=\int_{X}\varphi(T(x))d\mu(x), \forall\varphi\in C_{b}^{0}(X)$.

A transport map between $\mu$ and $\nu$ is a Borel map such that $T_{\#}\mu=\nu$ . Now, lct
$c\in C(X\cross Y)$ be some transport cost function, the Monge optimal tmnsport problem
for the (.ost $c$ consists in finding a transport $T$ between $\mu\dot{c}md\nu$ that minimises
the total transport cost $\int_{X}c(x, T(x))d\mu(x)$ . $A$ minimiser is then called an optimal
tmnsport. Monge problem is in general difficult to solve (it may even be the case
that there is $ilO$ transport map, for instance it is impossible to transport one Dirac
mass to a sum of distinct Dirac masses), this is why Kantorovicb relaxed Monge’s
formulation as

(37) $\mathcal{W}_{c}(\mu_{)}v):=\inf_{\gamma\in\Gamma 1(\mu\nu)},\int\int_{X\cross Y}c(x, y)d\gamma(x, y)$

where $\Pi(\mu, \nu)$ is the set of transport plans between $\mu$ and $\nu i.e$ . Borel probability
measures on $X\cross Y$ having $\mu$ and $v$ as marginals. Since $\Pi(\mu, \nu)$ is weakly $*$ compact
and $c$ is continuous, it is easy to see that the infimum of the linear program defining
$\mathcal{W}_{c}(\mu, \nu)$ is attained at some $\gamma$ , such optimal $\gamma$ ’s are called optimal tmnsport plans
(for thc cost c) bctwccn $\mu$ and $\nu$ . If thcrc is an optimal $\gamma$ which is induced by a
tmnsport map $i.e$ . is of the form $\gamma=$ $(id, T)_{\#}\mu$ for some transport map $T$ then $T$ is
obviously an optimal solution to Monge’s problem.

A.2. The quadratic case and Monge-Amp\‘ere equation. We now restrict our-
selves to the quadratic ca.se:
Theorem 9 (Brenier’s theorem, [11]). Let $\mu\in \mathcal{P}(\mathbb{R}^{d})$ be absolutely continuous with
respect to the Lebesgue measure and compactly supported and $\nu\in \mathcal{P}(\mathbb{R}^{d})$ be compactly
supported, then the quadmtic optimal tmnsport problem

$\mathcal{W}_{2}^{2}(\mu, \nu):=\inf_{\gamma\in\Pi(\mu\nu)},\int\int_{\mathbb{R}^{d}x\mathbb{N}^{d}}|x-y|^{2}d\gamma(x, y)$

possesses a unique solution $\gamma$ which is in fact a Monge solution $\gamma=$ $(id, T)_{\#}\mu.$

Moreover $T=\nabla u\mu-a.e$ . for some convex function $u$ and $\nabla u$ is the unique (up to
$\mu-a.e$ . equivalence) gmdient of a convex function tmnsporting $\mu$ to $v;T=\nabla u$ is
called the Brenier map bctween $\{\iota$ and $v.$

When we have additional regularity, $i.e$ . when $\mu$ and $v$ have regular densities (still
denoted $f$ and g) and $\nabla u$ is a di$ffeomorp\}_{1}ism$ which transports $f(x)dx$ onto $g(y)dy$

we have
$\int_{\mathbb{R}^{d}}\zeta(y)g(y)dy=\int_{1R^{d}}\zeta[\nabla u(x)]f(x)dx \forall\zeta:C_{b}^{0}arrow C_{b}^{0}$

By performing the $c\}_{1}ange$ of variable $y=\nabla u(x)$ on the left hand side we obtain

$\int_{\mathbb{R}^{d}}\zeta(\nabla u(x))g(\nabla\tau\iota(\prime r_{ノ}))|\det D^{2}u(x)|(1r=\int_{R^{d}}\zeta[\nabla\prime n(\tau_{/})]f(\prime\iota,\cdot)(1x$ $\forall\zeta$ : $C_{b}^{0}arrow C_{b}^{0}$
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By equalling the two integrands we obtain the Monge-Amp\‘ere equation:

(38) $f(x)=g(\nabla u(x))$ def $(D^{2}u(x))$ or $e($luivalently $g(y)= \frac{f(\nabla u^{-1}(y))}{\det(D^{Q}\sim u(\nabla u^{-1}(?/))}$

A.3. Differentiating the internal and the interaction energies. Introduce
$\nabla\psi_{\epsilon}^{1}$ $:=$ id $+\epsilon\zeta$ and define $\rho b-$ the push-forward perturbation of $p_{\tau}^{n+1}$ by $\nabla\psi_{\epsilon}$ :

$\rho_{\epsilon}=\nabla\psi_{\in}\#\rho_{\tau}^{\gamma\iota+1}$

By (38) and the change of variable $x=\nabla\psi_{\epsilon}^{-1}(y)_{\tau}$ the differential of the $\int F(u)dx$

where $F(x)=x\log x$ or $F(x)=x^{\backslash }m$ fornlally gives

$\frac{d}{d\epsilon}|\overline{\circ}=0\int_{\mathbb{R}^{d}}F(\rho_{\epsilon})dy$ $=$ $\frac{d}{d\epsilon}|_{\vee}^{\wedge}\sim=0\int_{\mathbb{R}^{d}}F(\frac{\rho(\nabla\psi_{\epsilon}^{-1}(y))}{\det(D^{2}\psi_{\hat{c}}(\nabla\psi_{\underline{r}}^{--1}(y)))})dy$

$= \underline{d}$

$d\epsilon|\overline{\llcorner-}=0\int_{\mathbb{P}^{d}}r(\frac{\rho(y)}{\det(D^{2}\psi_{\vee^{-}}\vee(y))}),\epsilon$

$= - \int_{\mathbb{R}^{d}}\rho[\triangle\psi-d\rfloor F’(\rho)dy+\int_{\mathbb{R}^{d}}F(\rho)[\triangle\psi-d]dy$

(39) $= \int_{\mathbb{R}^{d}}[F(\rho)-\rho F’(\rho)][\triangle\psi-d]dy.$

$\backslash 1^{\gamma}here_{t}$ as $\det(I+H)=1+$ tr $(H)+o(\Vert H\Vert)$ , we have used

$\underline{d} \det(D^{2},\sqrt{})_{\epsilon}(y))=\underline{d} \det(T+\epsilon(D^{2}\psi-T))=\triangle\psi-d.$

$d\epsilon|\epsilon_{-}^{-}\cdot 0 d_{|\epsilon^{-}--\cdot 0}c.$

By integrating by parts (39) we obtain

$\frac{d}{d\epsilon}|\epsilon--\cdot 0\int_{\mathbb{R}^{d}}F(\rho_{\epsilon})dy=-.\int_{\mathbb{R}^{d}}\nabla[F(\rho)-\rho F’(\rho)][\nabla\psi-id]dy.$

By convexity of $F,$ $x\mapsto F(x)-xF’(x)$ is non-increasing from $F(O)=0$ . So that the
boundary term is non-positive and

$\frac{d}{d\epsilon}|\epsilon=0\int_{-R^{d}}F(\rho_{\vee^{-}})dy\leq-\int_{\mathbb{R}^{d}}\nabla[F(p)-pF’(\rho)][\nabla\psi-id]dy.$

As $\nabla[F(\rho)-\rho F’(\rho)]=-\rho\nabla[F’(\rho)]=\rho\nabla[f(\rho)]$ , we have

$\frac{d}{d\epsilon}|\epsilon=0\int_{\mathbb{R}^{d}}F(\rho_{\triangleright}-)dy\leq-\int_{\mathbb{R}^{d}}\rho\nabla[f(\rho)][\nabla\psi-id]dy.$

$\bullet$ By symmetry of $\phi aJld$ definition of the push-forward, the interaction term formally
gives

$\frac{d}{d\epsilon}|\epsilon^{-}-0\int\int_{\mathbb{R}^{2d}}\phi(y, z)d\rho_{\epsilon}(y)dp_{\epsilon}(z)$ $=$ $\frac{d}{d-\llcorner\prime}|\epsilon=0\int\int_{\mathbb{R}^{2d}}\phi(\nabla\psi_{\epsilon}(y), \nabla\psi_{\sigma}.(z))d\rho\otimes\rho$

$= 2 \int\int_{\mathbb{R}^{2d}}\nabla\phi(y, z)(\nabla\psi(y)-y)d\rho\otimes\rho$
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A.4. Differentiability of the Wasserstein distances. We need first to recall the
following classical characteristics method, see [34, Theorem 5.34] [1, Theorem 8.3.1]:

Proposition 10 (Characteristics method for linear transport equation). Let $\rho$ be in
$\mathcal{P}(Y)$ and $(T_{t})_{t\in[0,T_{*}]}$ be a family of diffeomorphism locally Lipschitz with $T_{0}=$ id and
let $v$ be the associated velocity field i.e. $\dot{T}_{t}(x)=v(t, T_{t}(x))$ . Then $\rho_{t}=T_{t}\#\rho$ is a
solution to the following linear tmnsport equation in $C(O, T_{*};\mathcal{P}(Y))$ :

$\{\begin{array}{ll}\frac{\partial)}{\partial t}+\nabla\cdot(vp_{t})=0, \forall t\in[0, T_{*}]\rho_{0}=\rho. \end{array}$

The idea of the proof is formally as follows: Let $\phi$ be any test function. By the
definition of the push-forwitrd $ar\iota(1$ using $\dot{T}_{t}(x)=v(t, T_{t}(x))$ we obtain

$\frac{d}{dt}\int_{\mathbb{R}^{d}}\phi(y)d\rho_{t}(y) = \frac{d}{dt}\int_{Y}\phi(T_{t}(x))d\rho(y)$

$= \int_{\mathbb{R}^{d}}\nabla\phi(T_{t}(x))\dot{T}_{t}(x)dp(y)$

$= \int_{\mathbb{R}^{d}}\nabla\phi(T_{t}(x))v(T_{t}(x))d\rho(y)$

$= \int_{\mathbb{R}^{d}}\nabla\phi(y)?,(y)d\rho_{t}(y)$ .

Which gives the dcsire result. Actually it can bc proven $that_{1}\rho_{t}$ is $t1_{1C^{\backslash },}$ only solution
to the linear transport equation.

Proposition 11 (Differentiability of the $Mong\succ$Kantorovich ($lis$ ance). Let $\prime\iota\in$

$\mathcal{P}_{2}(\mathbb{R}^{d})$ and $\nu\in \mathcal{P}_{2}(\mathbb{R}^{d})$ be given. Let $(T_{t})_{t\in[0’1_{*}]}$ be a family of $C^{1}(Y)$ function with
$T_{0}=$ id and let $\tau$ ’ be the associated velocity fleld i.e. $\dot{T}_{t}(x)=v(t, T_{t}(x))$ . $Conside7^{\cdot}$

$v\in \mathcal{P}(Y)$ and $v_{t}=T_{t}\# v$ . Then we have

$\frac{1}{2}\frac{d}{dt}\mathcal{W}_{2}^{2}(\mu, v_{t})=\int\langle y-\nabla\varphi^{*}, v(y)\rangle d\nu(y)$ .

where $\nabla\varphi^{*}$ is the Legendre $tmnsfor7n$ of $\nabla\varphi$ the optimal map between $\mu$ and $v.$

Once again we do not aim to give a rigorous proof of this proposition arld will refer
the interested reader to [34, Theorem 8.13] and [1, Corollary 10.2.7]. We however
give a formal idea of the proof:

The map $T_{t}\circ\nabla\varphi$ pushes forward $\mu$ onto $\nu_{t}$ . We do not know if it the optimal map
but by definition of the MongcuKantorovich distance we have

$\frac{1}{2}\mathcal{W}_{2}^{2}(\mu, \nu_{t})\leq\int_{\mathbb{R}^{d}}|x-T_{t}[\nabla\varphi(x)]|^{2}d\mu(x)$

As a consequence, for \v{c}my $t\geq 0$ , using $A^{2}-B^{2}=(A+B)(A-B)$ we have

$\frac{\mathcal{W}_{2}^{2}(\mu,\nu_{t})-\mathcal{W}_{2}^{2}(\mu,\nu)}{t}$
$\leq$ $\int_{\mathbb{R}^{d}}|x-T,[\nabla\varphi(x)]|^{2}d\mu(x)-\int_{\mathbb{R}^{d}}A|x-\nabla\varphi(x)|^{2}d\mu(x)$

$\leq \int_{\mathbb{R}^{d}}(2x-T_{t}[\nabla\varphi]-\nabla\varphi)(\nabla\varphi-T_{t}[\nabla\varphi])d\mu.$
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As, by (10)

$T_{t}[\nabla\varphi(x)]-\nabla\varphi(x)=T_{t}[\nabla\varphi(x)]-T_{0}[\nabla\varphi(x)]=t\dot{T}_{t}[\nabla\backslash \prime\rho(x)]+o(t)$

$=tv[T_{t}(\nabla\varphi(x))|+o(t)$

taking the limit when $tarrow 0$ , we obtain

$\lim_{tarrow 0}\frac{\mathcal{W}_{2}^{2}(\mu,\nu_{t})-\mathcal{W}_{\underline{)}}^{2}(\mu,v)}{t}\leq\int_{\mathbb{R}^{d}}\langle 2x-2\nabla\varphi(x), -v[\nabla\varphi(x)]\rangle d\mu(x)$

As $\nabla\varphi$ pushes-forward $\mu$ onto $\iota/$ a.nd using $\ulcorner 1^{1}heoren19$ , we obtain

$\frac{1}{2}\frac{d}{dt}\mathcal{W}_{2}^{2}(\mu, \nu_{t}) = \int_{\mathbb{R}^{d}}\langle\nabla\varphi(x)-x, v[\nabla\varphi(x)]\rangle d\mu(x)$

$= \int_{\mathbb{R}^{d}}\langle\nabla\varphi(x)-\nabla\varphi^{*}[\nabla\varphi(x)], v[\nabla\varphi(x)]\rangle d\mu(x)$

$= \int_{\mathbb{R}^{d}}\langle y-\nabla\varphi^{*}(y), v(y)\rangle d\nu(y)$

A.5. Displacement convexity. In $con(:rete$ terlns, a functional $\mathcal{G}$ is said to be
displacement convex when the following is true: for any two densities $\rho_{0}$ and $\rho_{1}$ of
the same mass $M,$ ] $et\varphi$ be such that $\nabla\varphi\#\rho_{0}=\rho_{1}$ . For $0<t<1$ , define

$\varphi_{t}(x)=(1-t)\frac{|x|^{2}}{2}+t\varphi(x)$ and $\rho_{t}=\nabla\varphi_{t}\#\rho_{0}$

The displacement interp olation between $\rho_{0}$ and $\rho_{1}$ is the path of densities $t\mapsto\rho_{t},$

$0\leq t\leq 1$ . Let $\gamma$ be any rea] number. To say that $\mathcal{G}$ is $\gamma$ -displacement convex means
that for all such mass densities $\rho_{0}$ and $\rho_{1}$ , and all $0\leq t\leq 1,$

$(1-t)\mathcal{G}(\rho_{0})+t\mathcal{G}(\rho_{1})-\mathcal{G}(\rho_{t})\geq\gamma t(1-t)\mathcal{W}_{2}^{2}(\rho_{0}, \rho_{1})$

$\mathcal{G}$ is $simp]y$ displacement convex if this is true for $\gamma=0$ , and $\mathcal{G}$ is uniformly displace-
ment convex if this is true for some $\gamma>0.$
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