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Let $-L$ be the second quantization operator of $\sqrt{m^{2}-\Delta}$ , where $m$ is a positive
number. Let $\lambda=1/\hslash$ be a large positive parameter. Let us consider an interaction
potential function $V_{\lambda}$ which is given by a Wick polynomial

$V_{\lambda}(w)= \lambda\int_{\mathbb{R}}:P(\frac{w(x)}{\sqrt{\lambda}}):g(x)dx$ , (1)

where $g$ is a non-negative smooth function with compact support and $P(x)=$
$\sum_{k=1}^{2M}a_{k}x^{k}$ is a polynomial bounded from below. The operator $-L+V_{\lambda}$ is called
a spatially cut-off $P(\phi)_{2}$-Hamiltonian. Formally, $-L+V_{\lambda}$ is unitarily equivalent to
the infinite dimensional Schr\"odinger operator:

$- \Delta_{L^{2}(\mathbb{R})}+\lambda U(w/\sqrt{\lambda})-\frac{1}{2}tr(m^{2}-\Delta)^{1/2}$ on $L^{2}(L^{2}(\mathbb{R}), dw)$ (2)

where $dw$ is an infinite dimensional Lebesgue measure. The function $U$ is a potential
function such that

$U(w)= \frac{1}{4}\int_{\mathbb{R}}w’(x)^{2}dx+\int_{\mathbb{R}}(\frac{m^{2}}{4}w(x)^{2}+:P(w(x)):g(x))dx$

and $\Delta_{L^{2}(\mathbb{R})}$ denotes the “Laplacian”on $L^{2}(\mathbb{R}, dx)$ . Hence, by the analogy of Schr\"odinger

operators in fimite dimensions, it is natural to expect that asymptotic behavior of
lowlying eigenvalues $of-L+V_{\lambda}$ in the semiclassical limit $\lambdaarrow\infty$ is related with the
properties of global minimum points of $U$ . In view of this, we consider the following
assumptions.

Assumption 1. Let $P$ be the polynomial in (1) and $U$ be the function on $H^{1}$ which
is given by

$U(h)= \frac{1}{4}\int_{\mathbb{R}}h’(x)^{2}dx+\int_{\mathbb{R}}(\frac{m^{2}}{4}h(x)^{2}+P(h(x))g(x))dx$ for $h\in H^{1}$ . (3)

(Al) The function $U$ is non-negative and the zero point set

$\mathcal{Z}:=\{h\in H^{1}|U(h)=0\}=\{h_{1}, \ldots, h_{n}\}$ (4)

is a finite set.
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(A2) For alll $\leq i\leq n$ , the Hessian $\nabla^{2}U(h_{i})$ is non-degenerate. That is, there exists
$\delta_{i}>0$ for each $i$ such that

$\nabla^{2}U(h_{i})(h, h)$ $:= \frac{1}{2}\int_{\mathbb{R}}h’(x)^{2}dx+\int_{\mathbb{R}}(\frac{m^{2}}{2}h(x)^{2}+P"(h_{i}(x))g(x)h(x)^{2})dx$

$\geq\delta_{i}\Vert h\Vert_{L^{2}(\mathbb{R})}^{2}$ for all $h\in H^{1}(\mathbb{R})$ . (5)

(A3) For all $x,$ $P(x)=P(-x)$ and $\mathcal{Z}=\{h_{0}, -h_{0}\}$ , where $h_{0}\neq 0.$

Let $E_{1}(\lambda)$ be the lowest eigenvalue $of-L+V_{\lambda}$ . The first main result is as follows.

Theorem 2. Assume that (Al) and (A2) hold. Let $E_{1}( \lambda)=\inf\sigma(-L+V_{\lambda})$ . Then

$\lim_{\lambdaarrow\infty}E_{1}(\lambda)=\min_{1\leq i\leq n}E_{i}$ , (6)

where
$E_{i}= \inf\sigma(-L+Q_{i})$ (7)

and $Q_{i}$ is given by

$Q_{i}(w)= \frac{1}{2}\int_{\mathbb{R}}$ : $w(x)^{2}:P"(h_{i}(x))g(x)dx$ . (8)

Remark 3. (1) In the case of finite dimensional Schr\"odinger operators, there exist
eigenvalues near the approximate eigenvalues $E_{i}$ when $\lambda$ is large. In Theorem 2, if
$E_{i}<m+ \min_{1\leq i\leq n}E_{i}$ , then the same results hold by the result of Hoegh-Krohn and
Simon [11]. However, if it is not the case, it is not clear and they may be embedded
eigenvalues in the essential spectrum. Under the assumptions in Theorem 5, $E_{2}(\lambda)$

is an eigenvalue for large $\lambda$ . Simon [9] gave an example of $P(\phi)_{2}$-Hamiltonian for
which an embedded eigenvalue exists.
(2) We refer the readers to [3] for the proofs of theorems in this note.

Let
$E_{2}( \lambda)=\inf\{\sigma(-L+V_{\lambda})\backslash \{E_{1}(\lambda)\}\}.$

We can prove that $E_{2}(\lambda)-E_{1}(\lambda)$ is exponentially small when $U$ is a symmetric
double well potential function. The exponential decay rate is given by the Agmon
distance which is defined below.

Definition 4. Let $0<T<\infty$ and $h,$ $k\in H^{1}(\mathbb{R})$ . Let $AC_{T,h,k}(H^{1}(\mathbb{R}))$ be the set
of all absolutely continuous paths $c:[0, T]arrow H^{1}(\mathbb{R})$ satisfying $c(O)=h,$ $c(T)=k.$
Let $U$ be the potential function in (3). Assume $U$ is non-negative. We define the
Agmon distance between $h,$ $k$ by

$d_{U}^{Ag}(h, k)= \inf\{\ell_{U}(c)|c\in AC_{T,h,k}(H^{1}(\mathbb{R}))\}$ , (9)

where
$\ell_{U}(c)=\int_{0}^{T}\sqrt{U(c(t))}\Vert c’(t)\Vert_{L^{2}}dt$ . (10)
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The following estimate is the second main result.

Theorem 5. Assume that $U$ satisfies ( $AI$ ),(A2),(A3). Then it holds that

$\lim\sup\frac{\log(E_{2}(\lambda)-E_{1}(\lambda))}{\lambda}\leq-d_{U}^{Ag}(h_{0}, -h_{0})$ . (11)
$\lambdaarrow\infty$

Agmon distance defined ab$oe$ can be extended to a continuous distance function
on $H^{1/2}(\mathbb{R})$ .

Definition 6. (1) Let $h,$ $k\in H^{1/2}$ . Let $\mathcal{P}_{T,h,k,U}^{loc}$ be all continuous paths $c=c(t)(0\leq$

$t\leq T)$ on $H^{1/2}$ such that $c(O)=h,$ $c(T)=k$ and

(i) there exist finitely many times $0=t_{0}<\cdots<t_{n}=T$ such that for any closed
interval $I\subset(t_{i}, t_{i+1})(0\leq i\leq n-1)$ , the restricted path $c|_{I}$ is an absolutely
continuous path on $L^{2}(\mathbb{R})$ .

(ii) $c(t)\in H^{1}(\mathbb{R})$ for $\Vert c’(t)\Vert dt$ -a.e. $t\in[0, T]$ and

$\int_{0}^{T}\sqrt{U(c(t))}\Vert c’(t)\Vert_{L^{2}}dt<\infty$. (12)

We define the length $\ell_{U}(c)$ of $c\in \mathcal{P}_{T,h,k,U}^{loc}$ by the integral value of (12).
(2) Let $0<T<\infty$ . We define the Agmon distance between $h,$ $k\in H^{1/2}(\mathbb{R})$ by

$d_{U}^{Ag}(h, k) = \inf\{\ell_{U}(c)|c\in \mathcal{P}_{T,h,k,U}^{loc}\}$ . (13)

The above definition of $d_{U}^{Ag}$ coincides with that in $H^{1}$ . Moreover the topology
defined by the Agmon distance coincides with the one defined by the Sobolev norm
of $H^{1/2}(\mathbb{R})$ . We can prove the existence of minimal geodesic between $h_{0}$ and $-h_{0}$

with respect to the Agmon metric. The uniqueness of the geodesics is not clear at
the moment.

Theorem 7. Assume (Al), (A2) and $Z$ consists of two points $\{h, k\}$ . There exists a
curve $c_{\star}\in \mathcal{P}_{1,h,k,U}^{loc}$ such that $\ell_{U}(c_{\star})=d_{U}^{Ag}(h, k)$ . This $c_{\star}$ hae the following properties.
(1) $c_{\star}(t)\not\in \mathcal{Z}$ for $0<t<1.$
(2) $c_{\star}=c_{\star}(t, x)$ is a $C^{\infty}$ function of $(t, x)\in(0,1)\cross \mathbb{R}$ and $c_{\star}\in H^{1}(\epsilon, 1-\epsilon)\cross \mathbb{R})$

for all $0<\epsilon<1.$

(3) $\int_{0}^{\epsilon}\Vert c_{\star}’(t)\Vert_{L^{2}}^{2}dt=\int_{1-\epsilon}^{1}\Vert c_{\star}’(t)\Vert_{L^{2}}^{2}dt=+\infty$ for any $\epsilon>0.$

The Agmon distance $d_{U}^{Ag}(h_{0}, -h_{0})$ is equal to an Euclidean action integral of an
instanton solution. This is an infinite dimensional example corresponding to the
result of instanton in the case of Schr\"odinger operator which is due to Carmona and
Simon [5]. The instanton equation in our model reads

$\frac{\partial^{2}u}{\partial t^{2}}(t, x)+\frac{\partial^{2}u}{\partial x^{2}}(t, x)=m^{2}u(t, x)+2P’(u(t, x))g(x)$ . (14)
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For $u=u(t, x)$ , we define the Euclidean action integral:

$I_{\infty,P}(u) = \frac{1}{4}\int_{-\infty}^{\infty}\Vert\partial_{t}u(t)\Vert_{L^{2}(\mathbb{R})}^{2}dt+\int_{-\infty}^{\infty}U(u(t))dt$ . (15)

We have the following theorem for the existence of instanton.

Theorem 8. There exists a solution $u_{\star}=u_{\star}(t, x)((t, x)\in \mathbb{R}^{2})$ to the equation (14)
which satisfies the following properties.
(1) It holds that $u_{\star}|_{(-T,T)\cross \mathbb{R}}\in H^{1}((-T, T)\cross \mathbb{R})\cap C^{\infty}((-T, T)\cross \mathbb{R})$ for any $T>0.$

Also we have $\lim_{tarrow-\infty}\Vert u_{\star}(t)-h\Vert_{H^{1/2}}=0$ and $\lim_{tarrow\infty}\Vert u_{\star}(t)-k\Vert_{H^{1/2}}=0.$

(2) We have $I_{\infty,P}(u_{\star})=d_{U}^{Ag}(h, k)$ and $u_{\star}$ is a minimizer of the functional $I_{\infty,P}$ in
the set of functions $u$ satisfying the following conditions:

(i) $u|_{(-T,T)\cross \mathbb{R}}\in H^{1}((-T, T), \mathbb{R})$ for all $T>0,$

(ii) $\lim_{tarrow-\infty}\Vert u(t)-h\Vert_{H^{1/2}}=0$ and $\lim_{tarrow\infty}\Vert u(t)-k\Vert_{H^{1/2}}=0.$
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