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This is a short survey of some of the results obtained in an extensive joint
work with Michel L. Lapidus, University of California, Riverside, USA, and
Goran Radunovi\’{c}, Univeristy of Zagreb, Croatia; see [LaRaZu].

A new class of zeta functions, for which I propose the name indicated in
the title, has been discovered by Professor Michel L. Lapidus in 2009, during
my lecture delivered at a conference at the University of Catania, Italy. The
discovery has been disclosed to me immediately after the lecture, and it was
a starting point of our joint work. The new zeta functions represent a bridge
between the geometry of fractal sets and complex analysis.

Assume that $A$ is a nonempty, bounded set in $\mathbb{R}^{N}$ , and let $d(x, A)$ denote
the Euclidean distance from $x\in \mathbb{R}^{N}$ to $A$ . Fixing any $\delta>0$ , let $A_{\delta}$ be an
open $\delta$-neighbourhood of $A$ . Then the Lapidus zeta functionl (in [LaRaZu]
we call it the distance zeta function) is defined as follows:

(1) $\zeta_{A}(s)=\int_{A_{\’{o}}}d(x, A)^{s-N}dx.$

Here $s$ is a complex number, and the integral is understood in the sense of
Lebesgue. This zeta function has several remarkable properties.

The abscissa of convergence of $\zeta_{A}$ (i.e. the infimum of $\sigma\in \mathbb{R}$ such that
$\zeta_{A}$ is analytic on the half-plane $\{{\rm Re} s>\sigma\})$ , denoted by $D(\zeta_{A})$ , is equal to
the upper box dimension of $\underline{A}$(also called the upper Minkowski dimension
of $A)$ , which we denote by $\dim_{B}A$ . This bound is optimal. In particular,
this enables us to compute $\overline{\dim}_{B}A$ using $\zeta_{A}$ , which we illustrate by several
examples: $a$-strings, generalized Cantor sets, and geometric chirps, etc. $A$

basic reference dealing with the notion of box (and Hausdorff) dimensions
of fractal sets in Euclidean spaces is Falconner [Fall]. For the reader’s
convenience, we recall that the upper and lower $r$ -dimensional Minkowski
contents of a bounded set $A$ in $\mathbb{R}^{N}$ are defined respectively by

$\mathcal{M}^{*r}(A)=\lim_{tarrow}\sup_{\infty}\frac{|A_{t}|}{t^{N-r}},$

$\mathcal{M}_{*}^{r}(A)=\lim_{tarrow}\sup_{\infty}\frac{|A_{t}|}{t^{N-r}}.$

Here $|A_{t}|$ denotes the $N$-dimensional Lebesuge measure of $A$ . The upper
and lower box dimensions of $A$ are then defined respectively by

$\overline{\dim}_{B}A=\inf\{r>0 : \mathcal{M}^{*r}(A)=0\},$

$\underline{\dim}_{B}A=\inf\{r>0 : \mathcal{M}_{*}^{r}(A)=0\}.$

$1In$ this overview, definitions and main results are printed in italic font.
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If $\overline{\dim}BA=\underline{\dim}_{B}A$ , the common value is denoted by $D$ $:=\dim_{B}A$ , and we
call it the box dimension of $A.$

It known that there exist fractal sets $A$ in $\mathbb{R}^{N}$ such that $\underline{\dim}_{B}A<\overline{\dim}_{B}A$;
see e.g. [Fall]. Moreover, it is possible to construct fractal sets $A$ such that
the gap between lower and upper box dimensions is maximal possible, that
is,

$\underline{\dim}_{B}A=0$ and $\overline{\dim}_{B}A=N.$

The construction of such sets is described in [Zu], and they represent a
subclass of the so called zigzagging fractals.

It is interesting that the residue of the distance zeta function of a fractal
set $A$ is closely related to the Minkowski content of $A$ . More precisely, if $A$

is Minkowski measumble, and $\zeta_{A}$ possesses a meromorphic extension to a
neighbourhood of $D$ $:=\dim_{B}A$ , then the residue of $\zeta_{A}$ at $s=D$ is equal to

$res(\zeta_{A}, D)=(N-D)\mathcal{M}^{D}(A)$ .
Recall that $A$ is said to be Minkowski measumble if there exists the limit

$\mathcal{M}^{D}(A):=\lim_{tarrow 0}\frac{|A_{t}|}{t^{N-D}},$

and it is contained in $(0, \infty)$ . This limit is called the $D$-dimensional Minkowski
content of $A$ . Then necessarily $D=\dim_{B}A$ , that is, the upper and lower
box dimensions of $A$ coincide.

The Lapidus zeta function of $A$ is closely related to the tube zeta function
$\zeta_{A}$ , that we define as follows:

$\tilde{\zeta}_{A}(s)=\int_{0}^{\delta}t^{s-N-1}|A_{t}|dt.$

Here $\delta>0$ is also fixed. More precisely, for any $s$ such that ${\rm Re} s>\overline{\dim}_{B}A,$

the following identity holds:
$\zeta_{A}(s)=\delta^{s-N}|A_{\delta}|+(N-s)\tilde{\zeta}_{A}(\mathcal{S})$ .

Let us first consider a class of Minkowski measurable sets. If $A\subset \mathbb{R}^{N}$ is
$\mathcal{S}uch$ that its tube function $t\mapsto|A_{t}|$ satisfies

$|A_{t}|=t^{N-D}(\mathcal{M}+O(t^{\alpha}))$ as $tarrow 0,$

where $D\in[0, N],$ $\mathcal{M}>0,$ $\alpha>0$ , then $\tilde{\zeta}_{A}$ (and hence $\zeta_{A}$ as well) pos-
sesses a unique meromorphic extension to the half-plane $\{{\rm Re} s>D-\alpha\}.$

Furthermore, $s=D$ is the only pole of $\tilde{\zeta}_{A}$ in this half-plane, and
$res(\tilde{\zeta}_{A}, D)=\mathcal{M}^{D}(A)=\mathcal{M}.$

Now we pass to the case of a class of Minkowski non-measurable sets. If
$A\subset \mathbb{R}^{N}$ is such that

$|A_{t}|=t^{N-D}(G(\log t^{-1})+O(t^{\alpha}))$ as $tarrow 0,$
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where $D\in[O, N],$ $G$ is a periodic function with the minimal period equal to
$T>0^{2}\alpha>0$ , then $\zeta_{A}posse\mathcal{S}ses$ a meromorphic extension to the half-plane
$\{{\rm Re} s>D-\alpha\}^{3}$ Furthermore, the set of poles of $\tilde{\zeta}_{A}$ in this half-plane is
equal to

$\{s_{k} :=D+\frac{2\pi}{T}ki:\hat{G}_{0}(\frac{k}{T})\neq 0, k\in \mathbb{Z}\}$

where $\hat{G}_{0}$ is the Fourier $transf_{07}m$ of the function $G_{0}$ , equal to $G$ truncated
to $[0,T]^{4}$ and

$res(\tilde{\zeta}_{A}, s_{k})=\frac{1}{T}\hat{G}_{0}(\frac{k}{T})$ .
In particular, the residue of the tube zeta function of $A$ at $D$ is equal to the
avemge of $G$ on $[0, T]$ , that is,

$res(\tilde{\zeta}_{A}, D)=\frac{1}{T}\int_{0}^{T}G(\tau)d\tau.$

and
$\mathcal{M}_{*}^{D}(A)<res(\tilde{\zeta}_{A}, D)<\mathcal{M}^{*D}(A)$ .

These and other results from [LaRaZu] represent nontrivial extensions of
many results from the fundamental monograph by Lapidus and van Franken-
huijsen [La-vR3], that were obtained in the context of fractal strings, and
which are essentially one-dimensional objects.

Furthermore, it is possible to extend our theory to genemlized fractal
drums $(A, \Omega)$ in $\mathbb{R}^{N}$ , where $A$ is a nonempty subset, and $\Omega$ is of finite $N$-

dimensional volume, such that $\Omega\subset A_{\delta}$ for some $\delta>0$ . The zeta function of
the generalized fractal drum is defined by

$\zeta_{A}(s;\Omega)=\int_{\Omega}d(x, A)^{s-N}dx.$

Its abscissa of convergence is equal to the relative upper box dimension
$\overline{\dim}_{B}(A, \Omega)$ , defined in [Zu]. We illustrate it on a class of unbounded geomet-
ric chirp $s(A, \Omega)$ . Furthermore, it turns out that for relative fractal drums
$(A, \Omega)$ , contrary to the case of single sets $A$ , the value of the relative box di-
mension $\dim B(A, \Omega)$ , if it exists, can be even negative. This is a consequence
of the definition of the relative upper $r$ -dimensional Minkowski content:

$\mathcal{M}^{*r}(A, \Omega):=\lim\sup\frac{|A_{t}\cap\Omega|}{t^{N-r}}.$

in which we take $r\in \mathbb{R}$ , that is, we allow negative values of $r$ as well. The
relative lower $r$-dimensional Minkowski content is defined analogously. Then

$2_{In}$ particular, $G$ is nonconstant.
$3_{This}$ meromorphic extension is necessarily umiquely determined. It is worth noting

that the indicated meromorphic extension range of the distance zeta function of $A$ depends
in essential way on the information of the second term of the asymptotic exapnsion of the
tube zeta function $t\mapsto|A_{t}|$ , that is, on the value of the parameter $\alpha.$

$4_{That}$ is, $G_{0}$ is equal to $G$ on $[0, T]$ , and to zero outside of it.
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the notion of the relative upper box dimension $\overline{\dim}_{B}(A, \Omega)$ (and relative lower
box dimension $\underline{\dim}_{B}(A, \Omega))$ of the relative fractal drum $(A, \Omega)$ is defined
similarly as in the case of a single set $A$ , as the infimum of all $r\in \mathbb{R}$ such
that $\mathcal{M}^{*r}(A, \Omega)$ .

Minkowski contents are important in analysis of some classes of singular
integrals. For example, it can be shown (see [Zu]) that if $D=\dim_{B}(A, \Omega)$

exists and $\mathcal{M}_{*}^{D}(A, \Omega)>0$ , then for any $\gamma>0,$

$\int_{\Omega}d(x, A)^{-\gamma}dx<\infty \Leftrightarrow \gamma<N-\dim_{B}(A, \Omega)$ .

It is possible to show that the equivalence does not hold in general if
$M_{*}^{D}(A, \Omega)=0$ ; see [Zu].

It is possible to construct some simple relative fractal drums for which
$\dim_{B}(A, \Omega)<-\infty$ , and even $\dim$) $B(A, \Omega)=-\infty$ . For example, if $(A, \Omega)$ is
a relative fractal drum in the plane, such that $A=\{0\}$ and

$\Omega_{\alpha}=\{(x, y)\in \mathbb{R}^{2}:0<y<x^{\alpha}, x\in(0,1)\},$

and $\alpha>1$ , then $\dim_{B}(A, \Omega_{\alpha})=1-\alpha<0.$

If $(A, \Omega)$ is any relative fractal drum in $\mathbb{R}^{N}$ , then the upper box dimension
of the drum is equal to the abscissa of convergence of the corresponding
Lapidus zeta function, that is,

$\overline{\dim}_{B}(A, \Omega)=D(\zeta_{A}(\cdot, \Omega))$.
This enables us to compute the upper box dimension of a given relative
fractal drum $(A, \Omega)$ by computing its Lapidus zeta function, that is, by
using complex analysis.

There is a simple and natural sufficient condition for the upper box di-
mension of a relative fractal drum to be nonnegative. We say that a relative
fractal drum $(A, \Omega)$ in $\mathbb{R}^{N}$ has the cone property at a point $a\in\overline{A}\cap\overline{\Omega}$ , if
there exists $r>0$ such that $\Omega$ contains a cone $K_{r}(a, G)$ with the vertex at
$a$ . We can show that if there exists a point point $a\in\overline{A}\cap\overline{\Omega}$, in which the
relative fractal drum $(A, \Omega)$ satisfies the cone property, then $D(\zeta_{A}(\cdot\Omega))\geq 0,$

or equivalently, $\overline{\dim}_{B}(A, \Omega)\geq 0$ . We mention in passing that it is possible to
substantially generalize this result to relative fractal drums $(A, \Omega)$ satisfying
the so called lacunary cone property in a point $a\in a\in\overline{A}\cap\overline{\Omega}.$

We hope that some of the obtained results will be useful in the study of
box dimension of radial chirp-like surfaces in $\mathbb{R}^{N+1}$ , appearing as graphs of
solutions of $p$-Laplace equations defined in a punctured ball in $\mathbb{R}^{N},$ $N\geq 2.$

A related result dealing with p–Laplace equations on an annular domain in
$\mathbb{R}^{N}$ can be seen in our joint work [NaTaPaZu].

We close this short review by indicating some interesting consequences
from transcendental number theory the theory of fractal sets. To describe
the simplest nontrivial situation, assume that $A$ is a bounded subset of the
real line, such that its tube function has the following form:

$|A_{t}|=t^{1-D}(F(t)+o(1))$ as $tarrow 0^{+},$
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where
$F(t)=G_{1}(\log 1/t)+G_{2}(\log 1/t)$ ,

$D\in(0,1)$ , and the function $G(\tau)$ $:=G_{1}(\tau)+G_{2}(\tau)$ is the sum of two pe-
riodic functions having periods $T_{1}$ and $T_{2}$ , such that their quotient $T_{1}/T_{2}$

is transcendental. We say for short that the function $G$ is transcdenten-
dally quasi-periodic. Furthermore, we also say in this case that the set $A$ is
tmnscendentally quasi-periodic. In LaRaZu we show that such $\mathcal{S}ets$ can be
effectively constructed, using generalized Cantor sets, defined by two aux-
illiary parameters, introduced and studied in [Zu]. We say for short that
$A$ possesses two transcendentally incommensurable periods $T_{1}$ and $T_{2}$ . The
construction uses a classic 1931 result by Gel’fond and Schneider from the
transcendental number theory; see e.g. Baker [Ba].

Using Baker’s theory of transcdenental numbers, this construction can
be further extended in a nontrivial way. As a consequence, it is possible
to construct bounded sets in $\mathbb{R}$ possessing arbitrarily many tmnscendetally
incommensumble periods $T_{1},$

$\ldots,$
$T_{n}$ . Moreover, due to Baker’s result, it is

possible to achieve that the periods are algebmically linearly independent.

We also obtain some new results for fmctal spmys in $\mathbb{R}^{N}$ . This notion
has been introduced by M. L. Lapidus; see [La-vR3] and the references
therein. These new results are formulated in the context of relative fractal
drums (which in turn represent a natural extension of the notion of ffactal
strings),5 avemge Minkowski $\omega$ntents of fractal sets (also introduced M. $L.$

Lapidus; see the same reference for more information), weighted Lapidus
zeta functions of fractal sets, geometric $chi_{7}ps$ , fractal nests, etc. At the
end of [LaRaZu] we offer a classification of bounded sets $A$ in Euclidean
spaces, based on asymptotic properties of their corresponding tube functions
$t\mapsto|A_{t}|$ , in particular, on the properties of their Minkowski contents. The
basic classification in this spirit has been introduced in [Zu]:

(1) a bounded set $A$ in $\mathbb{R}^{N}$ is said to be Minkowski nondegenerate if there
exists $D$ $:=\dim BA$ , and the $D$-dimensional Minkowski contents are
nondegenerate, that is,

$0<\mathcal{M}_{*}^{D}(A)\leq \mathcal{M}^{*D}(A)<\infty$ ;

(2) a bounded set $A$ is said to be Minkowski degenemte, if it is not
Minkowski nondegenerate, that is, either $\underline{\dim}_{B}A<\overline{\dim}BA$, or there
exists $D=\dim B$ $A$ such that either $\mathcal{M}_{*}^{D}(A)=0$ or $\mathcal{M}^{*D}(A)=\infty.$

A finer classification of Minkowski nondegenerate sets is provided in [LaRaZu]
A special case of Minkowski nondegenerate sets are for example Minkowski
measurable sets, periodic sets (or lattice sets), nonperiodic sets (or nonlatice
sets), quasi-periodic sets, etc.

$5_{The}$ notion of generalized fractal strings, also due to M. L. Lapidus, already exists in
the literature; see $[La_{n}vR3]$ and the references therein.
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We also sketch a history of the study of Minkowski contents of fractal
sets, indicating some directions for further research, and we propose a set of
open problems.

A PDF of my 2012lecture at the RIMS in Kyoto, containing additional in-
formation, is available at the Internet address indicated in [PDFI]. Another
PDF, containing a sketch of my lecture delivered at the Okayama Univer-
sity of Science, dedicated to fractal analysis of trajectories of dynamical
systems, can be found at the Internet address indicated at [PDF2]. Some
of personal impressions of Professor Mervan Pa\v{s}ice and myself, during our
stay at the Okayama University of Science and at the prestigious Research
Institute of Mathematical Sciences (RIMS) of the Kyoto University, can be
seen in [Web].
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