Some reduced expressions of the classical Weyl groups and the Weyl groupoids of the Lie superalgebras \(\text{osp}(2m|2n) \)

Hiroyuki Yamane\(^\dagger\)

Abstract

We give some reduced expressions of the classical Weyl groups \(W(A_{N-1}), W(B_N) = W(C_N), W(D_N) \) and the Weyl groupoid of the Lie superalgebra \(\text{osp}(2m|2(N - m)) \).

1 Some reduced expressions of the classical Weyl groups

For \(m, n \in \mathbb{Z} \), let \(J_{n,m} := \{k \in \mathbb{Z} | m \leq k \leq n\} \).

Let \(N \in \mathbb{N} \). Let \(M_N(\mathbb{R}) \) be the \(\mathbb{R} \)-algebra of \(N \times N \)-matrices. For \(k, r \in J_{1,N} \), let \(E_{k,r} := [\delta_{k,k'}\delta_{r,r'}]_{k',r' \in J_{1,N}} \in M_N(\mathbb{R}) \), that is \(E_{k,r} \) is the matrix unite such that its \((k, r)\)-component is 1 and the other components is 0. Then \(M_N(\mathbb{R}) = \bigoplus_{k,r \in J_{1,N}} \mathbb{R}E_{k,r} \). Let \(\mathbb{R}^N \) denote the \(\mathbb{R} \)-linear space of \(N \times 1 \)-matrices. For \(k \in J_{1,N} \), let \(e_k \) is the element of \(\mathbb{R}^N \) such that its \((k, 1)\)-component is 1 and the other components is 0. That is \(\{e_k | k \in J_{1,N}\} \) is the standard basis of \(\mathbb{R}^N \). The \(\mathbb{R} \)-algebra \(M_N(\mathbb{R}) \) acts on \(\mathbb{R}^N \) in the ordinal way, that is \(E_{k,r}e_p = \delta_{r,p}e_r \). Let \(\text{GL}_N(\mathbb{R}) \) be the group of invertible \(N \times N \)-matrices, that is \(\text{GL}_N(\mathbb{R}) = \{X \in M_N(\mathbb{R}) | \det X \neq 0\} \). Let \((,): \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) be the \(\mathbb{R} \)-bilinear map defined by \((e_k, e_r) := \delta_{kr} \).

\(^\dagger\)Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 560-0043, Japan, E-mail: yamane@ist.osaka-u.ac.jp
Definition 1.1. For $v \in \mathbb{R}^N \setminus \{0\}$, define $s_v \in \text{GL}_N(\mathbb{R})$ by $s_v(u) := u - \frac{2(u,v)}{(v,v)}v$ ($u \in \mathbb{R}^N$), that is, s_v is the reflection with respect to v.

Note that

\begin{equation} \tag{1.1} \label{eq:refl_def}
 s_v^2 = 1.
\end{equation}

We say that a subset R of $\mathbb{R}^N \setminus \{0\}$ is a root system (in \mathbb{R}^N) if $|R| < \infty$, $s_v(R) = R$ and $\mathbb{R}v \cap R = \{v, -v\}$ for all $v \in R$, see [Hum, 1.1].

Let R be a root system in \mathbb{R}^N. We say that a subset Π of R is a root basis of Π if Π is a (set) basis of $\text{Span}_R(\Pi)$ as an \mathbb{R}-linear space and $R \subset \text{Span}_{\mathbb{R}_\geq 0}(\Pi) \cup -\text{Span}_{\mathbb{R}_\geq 0}(\Pi)$ (this is called a simple system in [Hum, 1.3]).

Let R be a root system in \mathbb{R}^N. Let Π be a root basis of R. Let $R^+(\Pi) := R \cap \text{Span}_{\mathbb{R}_\geq 0}(\Pi)$. We call $R^+(\Pi)$ a positive root system of R associated with Π (this is called a positive system in [Hum, 1.3]).

Definition 1.2. (See [Hum, 2.10].) Let R be a root system in \mathbb{R}^N. Let Π be a root basis of R.

(1) Assume $N \geq 2$. We call R the A_{N-1}-type root system if

$$R = \{ e_x - e_y \mid x, y \in J_{1,N}, x \neq y \}.$$

We call Π the A_{N-1}-type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \}.$$

(2) Assume $N \geq 2$. We call R the B_N-type standard root system if

$$R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \} \cup \{ c''e_x \mid c'' \in \{1, -1\} \}.$$

We call Π the B_N-type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ e_N \}.$$

(3) Assume $N \geq 2$. We call R the C_N-type root system if

$$R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \} \cup \{ 2c''e_x \mid c'' \in \{1, -1\} \}.$$

We call Π the C_N-type standard root basis if

$$\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ 2e_N \}.$$
(4) Assume $N \geq 4$. We call R the D_N-type root system if
\[R = \{ c e_x + c' e_y \mid x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \}. \]
We call Π the D_N-type standard root basis if
\[\Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ e_{N-1} + e_N \}. \]
Let R be a root system in \mathbb{R}^N. Let Π be a root basis of R. We call $W(\Pi)$ the Coxeter group associated with (R, Π). Let $S(\Pi) := \{ s_v \in W(\Pi) \mid v \in \Pi \}$. We call $(W(\Pi), S(\Pi))$ the Coxeter system associated with (R, Π), see [Hum, 1.6]. Define the map $\ell : W(\Pi) \to \mathbb{Z}_{\geq 0}$ in the following way, see [Hum, 1.6]. Let $\ell(1) := 0$, where 1 is a unit of $W(\Pi)$. Note that an arbitrary $w \in W(\Pi)$ can be written as a product of finite s_v's with some $v \in \Pi$, say $w = s_{v_1} \cdots s_{v_r}$ for some $r \in \mathbb{N}$ and some $v_x \in \Pi (x \in J_{1,r})$. If $w \neq 1$, let $\ell(w)$ be the smallest r for which such an expression exists, and call the expression reduced. For $w \in W(\Pi)$, we call $\ell(w)$ the length of w. Let
\[\mathfrak{L}(w) := \{ v \in R^+(\Pi) \mid w(v) \in -R^+(\Pi) \}. \]
It is well-known that
\[\ell(w) = |\mathfrak{L}(w)| \quad (\text{see [Hum, Corollary 1.7]}) \]
(see [Hum, Propsoition 1.4]), and
\[\ell(w s_v) = \begin{cases}
\ell(w) + 1 & \text{if } w(v) \in R^+(\Pi), \\
\ell(w) - 1 & \text{if } w(v) \in -R^+(\Pi)
\end{cases} \]
(see [Hum, Lemma 1.6 and Corollary 1.7]). Assume that $|R| < \infty$. By the above properties, we can see that there exists a unique $w_o \in W(\Pi)$ such that $w_o(\Pi) = -\Pi$, see [Hum, 1.8]. It is well-known that
\[\ell(w_o) = |R^+(\Pi)|, \]
which can easily be proved by (1.2), (1.3) and (1.4). Note that w_o is the only element $W(\Pi)$ that $\ell(w) \leq \ell(w_o)$ for all $w \in W(\Pi)$, and $\ell(w) = \ell(w_o) - \ell(w_o w^{-1})$ for all $w \in W(\Pi)$. We call w_o the longest element of the Coxeter system of $(W(\Pi), S(\Pi))$.

Let $k, r \in J_{1,N}$ be such that $k \leq r$. For $z_p \in J_{k,r} \cup (-J_{k,r}) \ (p \in J_{k,r})$ with $|u_p| \neq |u_t| \ (p \neq t)$, let
\[
\left\{ \begin{array}{lll}
k & k+1 & \ldots & r \\
z_k & z_{k+1} & \ldots & z_r \end{array} \right\} := \sum_{p \in J_{k,r}} \frac{z_p}{|z_p|} E_{|z_p|,p} + \sum_{t \in J_{1,N \setminus J_{k,r}}} E_{t,t} \in \text{GL}_N(\mathbb{R}).
\]

We have
\[
s_{ek} = \left\{ \begin{array}{ll}
k \\
-k \end{array} \right\} \quad (k \in J_{1,N}),
\]
\[
s_{ek-e_{k+1}} = \left\{ \begin{array}{ll}
k & k+1 \\
k+1 & k \end{array} \right\} \quad (k \in J_{1,N-1}),
\]
and
\[
s_{ek+e_{k+1}} = \left\{ \begin{array}{ll}
k & k+1 \\
-(k+1) & -k \end{array} \right\} \quad (k \in J_{1,N-1}).
\]

Let $k, p, r \in J_{k,r}$ with $k < r$ and $k \leq p \leq r$, let
\[
\left\{ \begin{array}{lll}
k & \ldots & p \\
z_k & \ldots & z_p \\
p+1 & \ldots & r \end{array} \right\} := \left\{ \begin{array}{lll}
k & \ldots & p \\
z_k & \ldots & z_p \\
p+1 & \ldots & z_r \end{array} \right\}.
\]

Let $k, r \in J_{1,N-1}$ with $k \leq r$. Define $s_{(k,r)}$ inductively by
\[
s_{(k,r)} := \left\{ \begin{array}{ll}
1 & \text{if } k = r \\
s_{(k,r-1)} s_{e_{r-1}-e_r} & \text{if } k < r.
\end{array} \right.
\]

Then, if $r > k$, we have
\[
s_{(k,r)} = \left\{ \begin{array}{lll}
k & \ldots & p \\
k+1 & \ldots & p+1 \\
r-1 & \ldots & r \end{array} \right\},
\]
since (if $r \geq k+2$)
\[
s_{(k,r)} = s_{(k,r-1)} s_{e_{r-1}-e_r}
\]
\[
= \left\{ \begin{array}{lll}
k & \ldots & p \\
k+1 & \ldots & p+1 \\
r-2 & \ldots & r-1 \end{array} \right\} \left\{ \begin{array}{lll}
r-1 & \ldots & r \\
r & \ldots & r \end{array} \right\}
\]
(by (1.7) and an induction)
\[
= \left\{ \begin{array}{lll}
k & \ldots & p \\
k+1 & \ldots & p+1 \\
r-1 & \ldots & r \end{array} \right\}.
\]
Define \(s_{(r,k)} \) inductively by \(s_{(r,k)} := s_{e_{r-1}-e_{r}}s_{(r-1,k)} \) if \(r \geq k+1 \). Clearly (if \(r > k \)) we have

\[
(1.12) \quad s_{(r,k)} = s_{(k,r)}^{-1} = \begin{cases} k & k+1 \ldots \ldots \ldots p \ldots r \\ r & k \ldots p-1 \ldots r-1 \end{cases}.
\]

Lemma 1.3. Let \(\Pi \) be the \(A_{N-1} \)-type standard root basis. Let \(w_o \) be the longest element of \((W(\Pi), S(\Pi))\). Let \(s_k := s_{e_k-e_{k+1}} \in S(\Pi) \) for \(k \in J_{1,N-1} \).

(1) We have

\[
(1.13) \quad w_o = \begin{cases} 1 \ldots p \ldots N \\ N \ldots N-p+1 \ldots 1 \end{cases}.
\]

Moreover

\[
(1.14) \quad w_o = (s_1s_2 \cdots s_{N-1})(s_1s_2 \cdots s_{N-2}) \cdots (s_1s_2) \frac{s_1}{2} \quad 1.
\]

Furthermore RHS of \((1.14) \) is the reduced expression of \(w_o \).

(2) Let \(m \in J_{2,N-1} \). Then

\[
(1.15) \quad w_o = \underbrace{(s_1s_2 \cdots s_{m-1})}_{m-1} \underbrace{(s_1s_2 \cdots s_{m-2})}_{m-2} \cdots \underbrace{(s_1s_2)}_{2} \frac{s_1}{1} \quad 1
\]

\[
\quad \cdot \underbrace{(s_{m+1}s_{m+2} \cdots s_{N-1})}_{N-m-1} \underbrace{(s_{m+1}s_{m+2} \cdots s_{N-2})}_{N-m-2} \cdots \underbrace{(s_{m+1}s_{m+2})}_{2} \frac{s_{m+1}}{1}
\]

\[
\quad \cdot \underbrace{(s_{m}s_{m+1} \cdots s_{N-1})}_{N-m} \underbrace{(s_{m-1}s_{m} \cdots s_{N-2})}_{N-m} \cdots \underbrace{(s_{1}s_{2} \cdots s_{N-m})}_{N-m},
\]

and RHS of \((1.15) \) is a reduced expression of \(w_o \).

Proof. By (1.5), we have

\[
(1.16) \quad \ell(w) = \frac{N(N-1)}{2}.
\]

Let \(k, r \in J_{1,n} \) with \(k < r \). Let

\[
x_{(k,r)} := \begin{cases} k \ldots p \ldots r \\ r \ldots r-p+k \ldots k \end{cases}.
\]
Then
\[(1.17) \quad s_{(k,r)}s_{(k,r-1)}\cdots s_{(k,k+1)} = x_{(k,r)},\]
since, if \(r \geq k + 2\), we have
\[
s_{(k,r)}(s_{(k,r-1)}\cdots s_{(k,k+1)}) = x_{(k,r-1)}.
\]

We have
\[(1.18) \quad x_{(k,r)} \in W(\Pi) \quad \text{and} \quad \ell(x_{(k,r)}) = \frac{(k-r+1)(k-r)}{2},\]
where the first claim follows from (1.17) and the second claim follows from
by (1.2), since \(\mathfrak{L}(x_{(k,r)}) = \{e_x - e_y | k \leq x < y \leq r\}\).

We obtain the claim (1) from (1.16), (1.17) and (1.18) for \(k = 1\) and
\(r = N\).

For \(k, r, t \in J_{1,N-1}\) with \(k < r \leq t\), let
\[(1.19) \quad y_{(k,r-1;r,t)} = \{k + t - r + 1 \ldots z \ldots r - 1 \ldots r \ldots t \ldots t + k - r\}.\]

We have
\[(1.20) \quad s_{(k+t-r,t)}s_{(k+t-r-1,t-1)}\cdots s_{(k+1,r+1)}s_{(k,r)} = y_{(k,r-1;r,t)},\]
since, if \(t > r\),
\[
(s_{(k+t-r,t)}s_{(k+t-r-1,t-1)}\cdots s_{(k+1,r+1)})s_{(k,r)}
= y_{(k+1,r;r+1,t)} \cdot \{k + 1 \ldots p + 1 \ldots r \ldots k\}
= y_{(k,r-1;r,t)}.
\]
We have

\begin{equation}
(1.21) \quad y_{(k,r-1;r,t)} \in W(\Pi) \quad \text{and} \quad \ell(y_{(k,r-1;r,t)}) = (t - r + 1)(r - k),
\end{equation}

where the first claim follows from (1.20) and the second claim follows from (1.2), since $\mathfrak{L}(x_{(k,r)}) = \{e_x - e_y | x \in J_{k,r-1}, x \in J_{r,t}\}$.

Let $m \in J_{2,N-1}$. By (1.13), we have

\begin{equation}
(1.22) \quad w_o = x_{(1,m)}x_{(m+1,N)}y_{(1,N-m;N-m+1,N)}.
\end{equation}

Then we obtain the claim (2) from (1.16), (1.18), (1.21) and (1.22), since $\frac{m(m-1)}{2} + \frac{(N-m)(N-m-1)}{2} + (N - m)m = \frac{N(N-1)}{2}.$ \hfill \Box

Let $k, r \in J_{1,N}$ with $k \leq r$. Let

\begin{equation}
(1.23) \quad b_{(k,r)} := s_{e_k} \cdots s_{e_r} = \begin{cases} k \cdots p \cdots r \cr -k \cdots -p \cdots -r \end{cases},
\end{equation}

see also (1.6). By (1.10), we have

\begin{equation}
(1.24) \quad (s_{(k,r)})^{r-k+1} = 1.
\end{equation}

By (1.6) and (1.10), we have

\begin{equation}
(1.25) \quad s_{e_t}s_{(k,r)} = s_{(k,r)}s_{e_{t-1}}
\end{equation}

By (1.23), (1.24) and (1.25), for $t \in J_{k+1,r}$, we have

\begin{equation}
(1.26) \quad (s_{(k,r)}s_{e_r})^{r-k+1} = (s_{(k,r)})^{r-k+1}s_{e_k} \cdots s_{e_r} = b_{(k,r)}.
\end{equation}

By (1.6), (1.10) and (1.12), we have

\begin{equation}
(1.27) \quad s_{e_k - e_{k+1}} \cdots s_{e_{r-1} - e_r} s_{e_{r-1} - e_r} \cdots s_{e_k - e_{k+1}} = (s_{(k,r)}s_{e_r} s_{(r,k)}) = s_{e_k}.
\end{equation}

Lemma 1.4. Let Π be the B_N-type standard root basis. Let w_o be the longest element of $(W(\Pi), S(\Pi))$. Let $s_k := s_{e_k - e_{k+1}} \in S(\Pi)$ for $k \in J_{1,N-1}$ and let $s_N := s_{e_N} \in S(\Pi)$.

(1) We have

\begin{equation}
(1.28) \quad w_o = b_{(1,N)} = \left(s_1s_2 \cdots s_N\right)^N.
\end{equation}
Moreover the rightmost hand side of (1.28) is a reduced expression of \(w_o \).

(2) Let \(k, r \in J_{1,N} \) with \(k \leq r \). Then

\[
b_{(k,r)} = \left(\frac{s_k s_{k+1} \cdots s_{N-1} s_N s_{N-1} \cdots s_{r+1} s_r}{2N-k-r+1}\right)^{r-k+1}.
\]

Moreover RHS of (1.29) is a reduced expression of \(b_{(k,r)} \).

(3) Let \(k_1, k_2, \ldots, k_{r-1} \in J_{1,N} \) with \(k_1 < k_2 < \ldots < k_{r-1} \). Let \(b'_y := b_{(k_{y-1}, k_y)} \) \((y \in J_{1,r}) \), where let \(k_0 := 1 \) and \(k_r := N + 1 \). Then we have \(w_o = b'_1 b'_2 \cdots b'_r \) and \(\ell(w_o) = \sum_{y=1}^{r} \ell(b'_y) \). Moreover \(b'_y b'_z = b'_z b'_y \) for \(y, z \in J_{1,r} \).

(4) Let \(m \in J_{1,N-1} \). Then

\[
w_o = \left(\frac{s_{N-m+1} s_{N-m+2} \cdots s_N}{m}\right)^m \left(\frac{s_1 s_2 \cdots s_{N-1} s_N s_{N-1} \cdots s_{N-m+1} s_{N-m}}{N+m}\right)^{N-m}.
\]

Moreover RHS of (1.30) is a reduced expression of \(w_o \).

Proof. We can easily show (1.29) by (1.26) and (1.27).

Let \(k, r \in J_{1,N} \) be such that \(k \leq r \). Note that

\[
\mathcal{L}(b_{(k,r)}) = \{ e_t \mid t \in J_{k,r} \} \cup \{ e_t + c e_{t'} \mid c \in \{-1, 1\}, t \in J_{k,r}, t' \in J_{t',N} \}.
\]

Hence by (1.2), we have

\[
\ell(b_{(k,r)}) = (r - k + 1) + 2 \sum_{t=k}^{r}(N - t)
\]

\[
= (r - k + 1) + 2N(r - k + 1) - 2\left(\frac{r(r+1)}{2} - \frac{k(k-1)}{2}\right)
\]

\[
= (r - k + 1)(1 + 2N - (r + k))
\]

\[
= (2N - k - r + 1)(r - k + 1).
\]

Hence we obtain the second claim of the claim (2). We also obtain the claim (1) since \(|R^+(\Pi)| = N^2\).

Let \(k, t, r \in J_{1,N} \) be such that \(k \leq t < r \). By (1.23), we have

\[
b_{(k,t)} b_{(t+1,r)} = b_{(k,r)}.
\]
By (1.31), we have

\[
\ell(b_{(k,t)}) + \ell(b_{(t+1,r)})
= (2N - k - t + 1)(t - k + 1) + (2N - t - r)(r - t)
= 2N(r - k + 1) - (k + t - 1)(t - k + 1) - (t + r)(r - t)
= 2N(r - k + 1) - (-k^2 + t^2 + 2k - 1) - (r^2 - t^2)
= 2N(r - k + 1) + (k^2 - r^2 - 2k + 1)
= 2N(r - k + 1) + (k - 1 + r)(k - 1 - r)
= (2N - r - k - 1)(r - k + 1)
= \ell(b_{(k,r)}).
\]

(1.33)

By (1.32), (1.32) and the claim (1), we get the claim (3). The claim (4) follows immediately from the claims (1) and (2).

Using Lemma 1.4, we have

Lemma 1.5. Let \(\Pi \) be the \(D_N \)-type standard root basis. Let \(w_o \) be the longest element of \((W(\Pi), S(\Pi))\). Let \(s_k := s_{e_k - e_{k+1}} \in S(\Pi) \) for \(k \in J_{1,N-1} \) and let \(s_N := s_{e_k + e_{k+1}} \in S(\Pi) \). For \(k \in J_{1,N-1} \), let

\[
d_{(k)} := (s_k \cdots s_{N-2}s_{N-1}s_N)^{N-k}.
\]

(1.34)

Then

\[
\ell(d_{(k)}) = (N - k)(N - k + 1)
\]

(1.35)

and

\[
d_{(k)} = \begin{cases}
 b_{(k,N)} & \text{if } N - k \text{ is odd,} \\
 b_{(k,N-1)} & \text{if } N - k \text{ is even.}
\end{cases}
\]

(1.36)

In particular,

\[
w_o = d_{(1)}.
\]

(1.37)
Proof. By (1.6), (1.7) and (1.8), we have

\[
(1.38) \quad s_{N-1}s_N = \begin{pmatrix} N-1 & N \\ -(N-1) & -N \end{pmatrix} = s_{e_{N-1}}s_{e_N}.
\]

Then we have

RHS of (1.34)

\[
= (s_{(k,N-1)}s_{e_{N-1}}s_{e_N})^{N-k} \quad \text{(by (1.38))}
\]

\[
(1.39) \quad = (s_{(k,N-1)}s_{e_{N-1}})^{N-k}s_{e_N}^{N-k} \quad \text{(by (1.6) and (1.10))}
\]

\[
= b_{(k,N-1)}s_{e_N}^{N-k} \quad \text{(by (1.26))}
\]

\[
= \text{RHS of (1.36)}
\]

By (1.36), we have

\[
\mathcal{L}(d_{(k)}) = \{e_t + ce_{t'} | c \in \{-1, 1\}, t \in J_{k,r}, t' \in J_{t',N} \}.
\]

Hence by (1.2), we have (1.35) and (1.37). This completes the proof.

\[\square\]

2 Weyl groupoids of super CD-type

Let \(m \in J_{1,N-1}\). Let \(\mathcal{D}_{m|N-m}\) be the set of maps \(a : J_{1,n} \to J_{0,1}\) with \(|a^{-1}(\{0\})| = m\).

Let \(a \in \mathcal{D}_{m|N-m}\). Let \((,)^a : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}\) be the \(\mathbb{R}\)-bilinear map defined by \((e_i, e_j)^a := \delta_{ij} \cdot (-1)^a(i)\). For \(v \in \mathbb{R}^N\) with \((v, v)^a \neq 0\), define \(s_v \in GL_N(\mathbb{R})\) by \(s_v^a(u) := u - \frac{2(u, v)^a}{(v, v)^a}v\) \((u \in \mathbb{R}^N)\).

Let

\[
\dot{\mathcal{D}}_{m|N-m} := \{(a, d) \in \mathcal{D}_{m|N-m} \times J_{0,1} | d \in J_{0,a(N)} \}.
\]
For $i \in J_{1,N}$, define the bijection $\tau_i : \mathcal{D}_{m|N-m} \rightarrow \mathcal{D}_{m|N-m}$ by

$$
\tau_i(a, d) :=
\begin{cases}
(a \circ s_{e_i-e_{i+1}}, d) & \text{if } i \in J_{1,N-2} \text{ and } a(i) \neq a(i + 1), \\
(a \circ s_{e_{N-1}-e_N}, d) & \text{if } i = N - 1, d = 0 \text{ and } a(N - 1) \neq b(N), \\
(a \circ s_{e_{N-1}-e_N}, 1) & \text{if } i = N, a(N - 1) = 1, a(N) = 0, \\
(a \circ s_{e_{N-1}-e_N}, 0) & \text{if } i = N, a(N - 1) = 0, a(N) = 1 \text{ and } d = 1, \\
(a, d) & \text{otherwise}.
\end{cases}
$$

Then $\tau_i^2 = \text{id}_{\mathbb{R}^N}$.

Let $(a, d) \in \mathcal{D}_{m|N-m}$. Let

$$R_+^{(a,d)} := \{e_x + te_y | x, y \in J_{1,N}, x < y, t \in \{1, -1\}\}$$
$$\cup \{2e_z | z \in J_{1,N}, a(z) = 1\},$$

and $R^{(a,d)} := R_+^{(a,d)} \cup -R_+^{(a,d)}$. Then

$$|R_+^{(a,d)}| = N(N - 1) + (N - m) = N^2 - m.$$ \hspace{1cm} (2.1)

For $i \in J_{1,N}$, let

$$\alpha_i^{(a,d)} := \begin{cases}
e_i - e_{i+1} & \text{if } i \in J_{1,N-2}, \\
e_{N-1} - e_N & \text{if } i = N - 1 \text{ and } d = 0, \\
2e_N & \text{if } i = N - 1 \text{ and } d = 1, \\
e_{N-1} + e_N & \text{if } i = N, a(N) = 0 \text{ and } d = 0, \\
2e_N & \text{if } i = N, a(N) = 1 \text{ and } d = 0, \\
e_{N-1} - e_N & \text{if } i = N, d = 1.
\end{cases}$$

Let $\Pi^{(a,d)} := \{\alpha_i^{(a,d)} | i \in J_{1,N}\}$. Then $\Pi^{(a,d)}$ is an \mathbb{R}-basis of \mathbb{R}^N. Moreover

$$\Pi^{(a,d)} \subset R_+^{(a,d)} \subset (\bigoplus_{i=1}^{N} \mathbb{Z}_{\geq 0} \alpha_i^{(a,d)}) \setminus \{0\}.$$
Note that
\[\tau_i(a, d) = (a, d) \text{ if and only if } (\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a \neq 0. \]

For \(i \in J_{1,N} \), define \(s_i^{(a,d)} \in \text{GL}_N(\mathbb{R}) \) by
\[
s_i^{(a,d)}(\alpha_i^{(a,d)}) :=
\begin{cases}
-\alpha_i^{\tau_i(a,d)} & \text{if } i = j, \\
\alpha_j^{\tau_j(a,d)} & \text{if } i \neq j \text{ and } (\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a \neq 0, \\
\alpha_j^{\tau_j(a,d)} + \alpha_i^{\tau_i(a,d)} & \text{if } i \neq j, (\alpha_i^{(a,d)}, \alpha_i^{(a,d)})^a = 0 \text{ and } (\alpha_i^{(a,d)}, \alpha_j^{(a,d)})^a \neq 0.
\end{cases}
\]

We can directly see

Lemma 2.1. Let \((a, d) \in D_{m|N-m} \) and \(i \in J_{1,N} \). Assume that \(d = 0 \).
Assume that \(i \in J_{1,N-1} \) if \(a(N-1) = 1 \) and \(a(N) = 0 \). Then \(s_i^{(a,d)} = s_{\alpha_i^{(a,d)}} \), where \(s_{\alpha_i^{(a,d)}} \) is the one of Definition 1.1.

Notation. Let \((a, d) \in D_{m|N-m} \). Let \(\text{Map}_0^N \) be a set with \(|\text{Map}_0^N| = 1 \).
For \(r \in \mathbb{N} \), let \(\text{Map}_r^N \) be the set of all maps from \(J_{1,r} \) to \(J_{1,N} \). Let \(\text{Map}_\infty^N \) be the set of all maps from \(\mathbb{N} \) to \(J_{1,N} \). For \(r \in \mathbb{Z}_{\geq 0} \), \(f \in \text{Map}_r^N \cup \text{Map}_\infty^N \) and \(t \in J_{1,r} \), let
\[
(a, d)_{f,0} := (a, d), \quad 1^{(a,d)}s_{f,0} := \text{id}_{\mathbb{R}^N} \\
(a, d)_{f,t} := \tau_i((a, d)_{f,t-1}), \quad 1^{(a,d)}s_{f,t} := 1^{(a,d)}s_{f,t-1}s_{f(t)}^{(a,d)_{f,t}}.
\]

Proposition 2.2. Let \((a, d) \in D_{m|N-m} \) be such that \(d = 0 \), \(b(z) = 1 \) (\(z \in J_{1,N-m} \)) and \(b(z') = 0 \) (\(z' \in J_{N-m+1,N} \)). Let \(n := |P_+^{(a,d)}| \). Define \(f \in \text{Map}_n^N \) by
\[
f(t) :=
\begin{cases}
N - m + t & (\text{if } t \in J_{1,m}), \\
f(t - m) & (\text{if } t \in J_{m+1,m(m-1)}), \\
t - m(m - 1) & (\text{if } t \in J_{m(m-1)+1,m(m-1)+N}), \\
2N + m(m-1) - t & (\text{if } t \in J_{m(m-1)+N+1,m^2+N}), \\
f(t - (N + m)) & (\text{if } t \in J_{m^2+N+1,n}).
\end{cases}
\]
Then

\[(2.3) \quad 1^{(a,d)}_{s_{f,n}} = \begin{cases} b_{(1,N)} & \text{if } m \text{ is odd}, \\ b_{(1,N-1)} & \text{if } m \text{ is even}. \end{cases}\]

Proof. For \(y \in J_{1,m}\), define \(a^{(y)} \in D_{m\mid N-m}\) by

\[a^{(y)}(z) := \begin{cases} 1 & \text{if } z \in J_{1,N-m-1} \cup \{N - m + y\}, \\ 0 & \text{if } z \in J_{N-m,N-m+y-1} \cup J_{N-m+y+1,N}. \end{cases}\]

Then we can directly see that for \(t \in J_{1,n}\),

\[(a, d)_{f,t} = \begin{cases} (a, d) & \text{if } t \in J_{1,m(m-1)+N-m-1}, \\ (a^{(t-(N-m-1))}, 0) & \text{if } t \in J_{m(m-1)+N-m(m-1)+N-1}, \\ (a^{(m-(t-(m(m-1)+N))}), 0) & \text{if } t \in J_{m(m-1)+N,m(m-1)+N+m}, \\ (a, d)_{f,t-(N+m)} & \text{if } t \in J_{m^2+N+1,n}. \end{cases}\]

So we see that for \(t \in J_{1,n}\),

\[(2.4) \quad s_{f(t)}^{(a,d)_{f,t}} = \begin{cases} s_{e_{f(t)}-e_{f(t)+1}} & \text{if } f(t) \in J_{1,N-1}, \\ s_{e_{N-1}+e_{N}} & \text{if } t \in J_{1,m(m-1)} \text{ and } f(t) = N, \\ s_{2e_{N}}(=s_{e_{N}}) & \text{if } t \in J_{m(m-1)+1,n} \text{ and } f(t) = N. \end{cases}\]

Define \(f' \in \text{Map}_{n-m(m-1)}^{N}\) by \(f'(t) := f(t + m(m - 1))\), so

\[(2.5) \quad 1^{(a,d)}_{s_{f,m(m-1)}} = 1^{(a,d)}_{s_{f',n-m(m-1)}}.\]

By (1.29) and (1.36), \(1^{(a,d)}_{s_{f,m(m-1)}} = b_{(N-m+1,N)}\) (resp. \(b_{(N-m+1,N-1)}\)) if \(m\) is odd (resp. even). By (1.29) and (2.4), \(1^{(a,d)}_{s_{f',n-m(m-1)}} = b_{(1,N-m)}\).

Hence by (1.22) and (2.5), we have (2.3), as desired. \(\square\)

For \((a, d) \in \dot{D}_{m\mid N-m}\) and \(i, j \in J_{1,N}\), define \(C^{(a,d)} = [c^{(a,d)}_{ij}]_{i,j \in J_{1,N}} \in M_{N}(\mathbb{Z})\) by

\[s_{i}^{(a,d)}(\alpha_{j}^{(a,d)}) = \alpha_{j}^{(a,d)} - c^{(a,d)}_{ij} \alpha_{i}^{(a,d)}.\]
Then $C^{(a,d)}$ is a generalized Cartan matrix, i.e., (M1) and (M2) below hold.

(M1) $c_{ii}^{(a,d)} = 2$ $(i \in J_{1,N})$.
(M2) $c_{jk}^{(a,d)} \leq 0$, $\delta_{c_{jk}^{(a,d)},0} = \delta_{c_{kj}^{(a,d)},0}$ $(j, k \in J_{1,N}; j \neq k)$.

Then the data

$$\hat{C}_{m|N-m} := C(J_{1,N}, \hat{D}_{m|N-m}, (\tau_i)_{i \in J_{1,N}}; (C^{(a,d)})^{(a,d) \in \hat{D}_{m|N-m}})$$

is a (rank-N) Cartan scheme, i.e., (C1) and (C2) below hold.

(C1) $\tau_i^2 = \text{id}_{\hat{D}_{m|N-m}}$ $(i \in J_{1,N})$.
(C2) $c_{ij}^{\tau_i((a,d))} = c_{ij}^{(a,d)}$ $(i \in J_{1,N})$.

Note that

$$-c_{ij}^{(a,d)} = |R_+^{(a,d)} \cap (\mathbb{Z}\alpha_i^{(a,d)} \oplus \mathbb{Z}\alpha_j^{(a,d)})| (i, j \in J_{1,N}, i \neq j).$$

The data

$$\hat{R}_{m|N-m} := R(\hat{C}_{m|N-m}, (R_+^{(a,d)})^{(a,d) \in \hat{D}_{m|N-m}}).$$

is a generalized root system of type C, i.e., (R1)-(R4) below hold.

(R1) $R^{(a,d)} = R_+^{(a,d)} \cup -R_+^{(a,d)}$ $((a, d) \in \hat{D}_{m|N-m})$.
(R2) $R^{(a,d)} \cap \mathbb{Z}\alpha_i = \{ \alpha_i, -\alpha_i \}$ $((a, d) \in \hat{D}_{m|N-m}, i \in J_{1,N})$.
(R3) $s_i^{(a,d)}(R^{(a,d)}) = R_+^{\tau_i(a,d)}$ $((a, d) \in \hat{D}_{m|N-m}, i \in J_{1,N})$.
(R4) $(\tau_i \tau_j)^{-c_{ij}^{(a,d)}}(a, d) = (a, d)$ $((a, d) \in \hat{D}_{m|N-m}, i, j \in J_{1,N})$.

For $(a, d) \in \hat{D}_{m|N-m}$, let

$$W^{(a,d)} := \{ 1^{(a,d)} s_{f,r} \in \text{GL}_N(\mathbb{R}) \mid r \in \mathbb{Z}_{\geq 0}, f \in \text{Map}_r^N \},$$

and define the map $\ell^{(a,d)} : W^{(a,d)} \to \mathbb{Z}_{\geq 0}$ by

$$\ell^{(a,d)}(w) := \min \{ r \in \mathbb{Z}_{\geq 0} \mid \exists f \in \text{Map}_r^N, w = 1^{(a,d)} s_{f,r} \}.$$

By [HY08, Lemma 8 (iii)], we see that

(2.6) $1^{(a,d)} s_{f,r} = 1^{(a,d)} s_{f',r'}$ implies $(a, d)_{f,r} = (a, d)_{f',r'}$.

and that
\begin{equation}
\ell^{(a,d)}(w) = |w^{-1}(R_{+}^{(a,d)}) \cap -\oplus_{i=1}^{N}\mathbb{Z}_{\geq 0}\alpha_{i}|.
\end{equation}

For \((a, d) \in \mathcal{D}_{m|N-m}, w \in W^{(a,d)}\) and \(f \in \text{Map}_{\ell^{(a,d)}}(w)\), if \(w = 1^{(a,d)}s_{f,\ell^{(a,d)}(w)}\), we call \(f\) a reduced word map of \(w\).

By (2.6) and (2.7), we have formulas for \(W^{(a,d)}\) similar to (1.3) and (1.4). In particular, for each \((a, d) \in \mathcal{D}_{m|N-m}\), there exists a unique \(w_{0}^{(a,d)} \in W^{(a,d)}\) such that
\[\ell^{(a,d)}(w_{0}^{(a,d)}) = |R_{+}^{(a,d)}|, \]
and we call \(w_{0}^{(a,d)}\) the longest element of \(W^{(a,d)}\).

By Proposition 2.2, we have

Theorem 2.3. Let \((a, d) \in \mathcal{D}_{m|N-m}\) be such that \(d = 0\), \(a(z) = 1\) \((z \in J_{1,N-m})\) and \(a(z') = 0\) \((z' \in J_{N-m+1,N})\). Then a reduced word map of \(w_{0}^{(a,d)}\) is given by (2.2). Moreover,
\begin{equation}
(\mathcal{W}_{m|N-m})' := \bigcup_{(a,d),(a',d') \in \mathcal{D}_{m|N-m}} \mathcal{H}_{(a,d)}^{(a,d)},
\end{equation}
and \(\mathcal{W}_{m|N-m} := (\mathcal{W}_{m|N-m})' \cup \{o\}\), where \(o\) is an element such that \(o \notin (\mathcal{W}_{m|N-m})'\). We regard \(\mathcal{W}_{m|N-m}\) as the semigroup by \(o\omega := \omega o := o\) \((\omega \in \mathcal{W}_{m|N-m})\) and
\[
((a_{1}, d_{1}), w_{1}, (a_{2}, d_{2}))(a_{3}, d_{3}), w_{2}, (a_{4}, d_{4})) := \begin{cases} ((a_{1}, d_{1}), w_{1}w_{2}, (a_{4}, d_{4})) & \text{if } (a_{2}, d_{2}) = (a_{3}, d_{3}), \\ o & \text{if } (a_{2}, d_{2}) \neq (a_{3}, d_{3}). \end{cases}
\]
We call \(\mathcal{W}_{m|N-m}\) the Weyl groupoid of the Lie superalgebra \(\text{osp}(2m|2(N-m))\).
For \((a, d) \in \dot{D}_{m|N-m}\), let
\[
\varepsilon^{(a,d)} := ((a, d), id_{\mathbb{R}^{N}}, (a, d)) \in \mathcal{H}_{(a,d)}^{(a,d)}.
\]

For \((a, d) \in \dot{D}_{m|N-m}\) and \(i \in J_{1,N}\), let
\[
\sigma_{i}^{(a,d)} := (\tau_{i}(a, d), s_{i}^{(a,d)}, (a, d)) \in \mathcal{H}_{\tau_{i}(a,d)}^{(a,d)}.
\]

For \(r \in \mathbb{Z}_{\geq 0}\), \(t \in J_{0,r}\) and \(f \in \text{Map}_{r}^{N}\), let
\[
1^{(a,d)}\sigma_{f,r} := ((a, d), 1^{(a,d)}s_{f,r}, (a, d)) \in \mathcal{H}_{(a,d)_{f,r}}(t \in \mathbb{N})
\]

For \(i, j \in J_{1,N}\), define \(f_{ij} \in \text{Map}_{\infty}^{N}\) by
\[
f_{ij}(2t-1) := i, \quad f_{ij}(2t) := j (t \in \mathbb{N}).
\]

By [HY08, Theorem 1], we have

Theorem 2.5. The semigroup \(\dot{W}_{m|N-m}\) can also be defined by the generators

\[
o, \varepsilon^{(a,d)}, \sigma_{i}^{(a,d)} ((a, d) \in \dot{D}_{m|N-m}, i \in J_{1,N}),
\]

and relations

\[
\omega \omega = \omega o = o \quad (\omega \in \dot{W}_{m|N-m}),
\]

\[
\varepsilon^{(a,d)}\varepsilon^{(a,d)} = \varepsilon^{(a,d)}, \quad \varepsilon^{(a,d)}\varepsilon^{(a',d')} = o \quad ((a, d) \neq (a', d')),
\]

\[
\varepsilon^{\tau_{i}(a,d)}\sigma_{i}^{(a,d)} = \sigma_{i}^{(a,d)}\varepsilon^{(a,d)} = \sigma_{i}^{(a,d)}, \quad \sigma_{i}^{\tau_{i}(a,d)}\sigma_{i}^{(a,d)} = \varepsilon^{(a,d)},
\]

\[
1^{(a,d)}\sigma_{f_{ij},-2c_{ij}^{(a,d)}} = \varepsilon^{(a,d)} (i \neq j).
\]

Let \((a, d) \in \dot{D}_{m|N-m}, r \in \mathbb{Z}_{\geq 0}\) and \(f, f' \in \text{Map}_{r}^{N}\). We write \(f \sim_{r}^{(a,d)} f'\) if there exist \(i, j \in J_{1,N}\) such that \(i \neq j, \quad t - c_{ij}^{(a,d)_{f,k}} \leq r, \quad f(k_{1}) = f'(k_{1}) (k_{1} \in J_{1,t} \cup J_{t-c_{ij}^{(a,d)_{f,k}}+1,r}), \quad f(k_{2}) = i, \quad f'(k_{2}) = j (k_{2} \in J_{t+1,t-c_{ij}^{(a,d)_{f,k}} \cap 2N}).\)

We write \(f \sim_{r}^{(a,d)} f'\) if \(f = f'\) or there exists \(t \in \mathbb{N}\) and \(f_{k} \in \text{Map}_{r}^{N}\) \((k \in J_{1,t})\) such that \(f \sim_{r}^{(a,d)_{f_{k}}} f_{k} \sim_{r}^{(a,d)_{f_{k+1}}} f_{k+1} (k \in J_{t-1,t})\) and \(f_{t} \sim_{r}^{(a,d)_{f_{k}} f'}\).

By [HY08, Theorem 5, Corollary 6], we have

Theorem 2.6. Let \((a, d) \in \dot{D}_{m|N-m}\) and \(w \in W^{(a,d)}\).

1. Let \(f, f' \in \text{Map}_{\ell^{(a,d)}(w)}^{N}\) be such that
\[
1^{(a,d)}s_{f,\ell^{(a,d)}(w)} = 1^{(a,d)}s_{f',\ell^{(a,d)}(w)} = w.
\]

Then \(f \sim_{\ell^{(a,d)}(w)}^{(a,d)} f'\).

2. Let \(r \in \mathbb{N}\) and \(f \in \text{Map}_{r}^{N}\) be such that \(r > \ell^{(a,d)}(w)\) and
\[
1^{(a,d)}s_{f,r} = w.
\]

Then there exist \(f' \in \text{Map}_{r}^{N}\) and \(t \in J_{1,r-1}\) such that \(f \sim_{r}^{(a,d)} f'\) and \(f'(t) = f'(t + 1)\).
References

