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1 Introduction
This is a progress report on a recent joint work of the anthor with Masaki
Hanamura and Tomohide Tersoma on a reformulation of the Hodge realiza-
tion of the mixed Tate motives. We have been trying to understand the
Hodge realization of the mixed Tate motives which is constructed by Bloch
and Kriz. So far it has become clear that the existence of a certain complex
of topological chains, which will be denoted by $TC$ , is sufficient to define the
Hodge realization. We conjecture that such a complex can be constructed
from semi-algebraic sets, but we are still working on the proofs of the necce-
sary properties of $TC$ . In section 2 the definition of mixed Tate motives due
to Bloch and Kriz is reviewed. In section 3 we explain how to define the
Hodge realization from the complex $TC$ . In section 4 the Hodge realization
of Polylog motives constructed by Bloch is computed. The proofs are mostly
omitted.

2 Mixed Tate motives of Bloch and Kriz
A general reference for this section is [1]. Bloch and Kriz construct a certain
Hopf algebra by the bar construction. The bar construction is a procedure
to construct a commutative Hopf algebra from a $DGA$ . By a $DGA$ we mean
a graded commutative $(a\cdot b=(-1)^{\deg(a)\deg(b)}b\cdot a)$ , associative differential
graded algebra $A$ over $\mathbb{Q}$ with nnit. $A$ should be given an augmentation

$\epsilon:Aarrow \mathbb{Q}$

which is a map of differential graded algebras. First we briefly recall the bar
construction. The differential of $A$ is denoted by $\partial$ . It is of degree 1.
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Let $M$ and $N$ be differential graded left $A$-modules. We can view $M$ and $N$

as right $A$-modules by defining

$n\cdot a=(-1)^{\deg(a)\deg(n)}a\cdot n$

Write
$T(N, A, M)=N \otimes T(A)\otimes M=\bigoplus_{r\geq 0}N\otimes T^{r}(A)\otimes M$

where $\otimes$ denotes $\otimes_{\mathbb{Q}}$ and $T(A)=\mathbb{Q}\oplus A\oplus A\otimes A\oplus\cdots$ is the tensor algebra.
$T(N, A, M)$ is generated by elements of the form

$n\otimes a_{1}\otimes a_{2}\otimes\cdots\otimes a_{r}\otimes m=n[a_{1}|a_{2}|\cdots|a_{r}]m$

We give $T(N, A, M)$ a complex structure. The differential $d$ is given as a sum
of two differetials $d_{\otimes}$ and $\delta$ . The inner differential $d_{\otimes}$ is the differential of the
total complex of the tensor product $T(N, A, M)$ . The outer differential $\delta$ is
defined as follows. On $N\otimes T^{r}(A)\otimes M$ let

$\delta_{0}(n[a_{1}|\cdots|a_{r}]m)=n\cdot a_{1}[a_{2}|\cdots|a_{r}]m$

$\delta_{i}(n[a_{1}|\cdots|a_{r}]m)=n[a_{1}|\cdots|a_{i}\cdot a_{i+1}|\cdots|a_{r}]m(1\leq i\leq r-1)$

$\delta_{r}(n[a_{1}|\cdots|a_{r}]m)=a[a_{1}|\cdots|a_{r-1}]a_{r}\cdot m$

The differential $\delta=\sum(-1)^{i}\delta_{i}$ . The total degree of the element

$n[a_{1}| \cdots|a_{r}]m=\deg(n)+\deg(m)+\sum_{i}\deg(a_{i})-r$

and the total differential is defined by

$d(n[a_{1}|\cdots|a_{r}]m)=d_{\otimes}(n[a_{1}|\cdots|a_{r}]m)+(-1)^{\deg(n)+\deg(m)+\Sigma_{:}\deg(a.)}\delta(n[a_{1}|\cdots|a_{r}]m)$

In the case where the modules $N$ and $M$ equal to $\mathbb{Q}$ and the module structure
is given by the augmentation, the complex

$B(A)=B(\mathbb{Q}, A, \mathbb{Q})$

is a graded Hopf algebra. The product is given by the shuffle product

$[0_{1}| \cdots|0_{r}]\otimes[0_{r+1}|\cdots|0_{r+s}]\mapsto\sum_{\mu}(-1)^{\sigma(\mu)}[0_{\mu(1)}|\cdots|a_{\mu(r+s)}]$
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where the sum is over the set of $(r, s)$ shuffles in the symmetric group on $r+s$

letters, and $(-1)^{\sigma(\mu)}$ is the $sign$ of the graded permutation. For example when
$\mu=(1,2)$ acting on $[a_{1}|a_{2}]$ then the $sign(-1)^{\sigma(\mu)}=(-1)^{1+\deg(a1})\deg(a2)$ .
The coproduct $\psi$ : $B(A)arrow B(A)\otimes B(A)$ is given by

$\psi[a_{1}|a_{2}|\cdots|a_{r}]=\sum_{p=0}^{r}[a_{1}|\cdots|a_{p}]\otimes[a_{p+1}|\cdots|a_{r}]$

The shuffle product is a map of complexes and the copoduct is a map of
complexes and also is a map of algebras under the shuffle product. So that
the complex $B(A)$ is a graded commutative differential Hopf algebra, and
$H^{0}(B(A))$ is a commutative Hopf algebra.
In the construction of Bloch and Kriz the $DGA\mathcal{N}$ is defined as follows. Let
$k$ be the base field and let $\square ^{n}=(\mathbb{P}_{k}^{1}-\{1\})^{n}$. Then the wreath product

$G_{n}=S_{n}\ltimes(\mathbb{Z}/2\mathbb{Z})^{n}$

acts on $\coprod^{n}$ . Let $Cycle^{r}\langle n\rangle$ be the $\mathbb{Q}$-vector space freely generated by codi-
mension $r$ subvarieties of
coordinates of $\square ^{n}$ to $0$ or $\infty$ ) properly. For $i\geq 0$ and $r\geq 0$ let $\mathcal{N}(r)^{i}$ be
$AltCycle^{r}\langle 2r-i\rangle$ where Alt means the alternating part under the action of
the gronp $G_{2r-i}$ . The $DGA\mathcal{N}$ is defined by

$\mathcal{N}=\oplus_{r\geq 0}N(r)$
.

The product on $\mathcal{N}$ is given by the exterior product and the differential

$\partial=\sum_{p=1}^{n}(-1)^{p-1}(\partial_{\infty}^{p}-\partial_{0}^{p})$

where the map
$\partial_{*}^{p}:\mathcal{N}(r)^{i}arrow \mathcal{N}(r)^{i+1}$

is the pnllback by the map
$i_{p,*}:\coprod^{n-1}\hookrightarrow\square ^{n}$

which is the inclnsion given by setting the p-th coordinate to be $*$ . By
Lemma 4.3 in [1] the complex $\mathcal{N}$ is a $DGA$ in our sense. $\mathcal{N}$ has an Adams
grading given by $r$ and so does the bar complex $B(\mathcal{N})$ . As a consequense
the commutative Hopf algebra

$\chi_{mot}=H^{0}(B(\mathcal{N}))=\oplus_{r\geq 0}H^{0}(B(\mathcal{N}))(r)$

is also Adams graded. The category of mixed Tate motives over $k$ is defined
to be the category of finite dimensional graded comodules over $\chi_{mot}.$
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3 Hodge realization
In the following the base field is $\mathbb{C}$ . First we recall the definition of a mixed
Hodge structure. A Hodge structure of weight $n$ is a finite dimensional $\mathbb{Q}-$

vector space $H$ (the betti lattice) with a finite decreasing filtration $F^{\cdot}$ on
$H_{\mathbb{C}}=H\otimes \mathbb{C}$ such that

$H_{\mathbb{C}}= \oplus H^{p,q}$

$p+q=n$

where $H^{p,q}$ is defined to be $F^{p}H_{\mathbb{C}}\cap\overline{FqH_{\mathbb{C}}}$. The filtration $F^{\cdot}$ is called the
Hodge filtration. For $r\in \mathbb{Z}$ let $\mathbb{Q}(r)$ be the Hodge structure with the betti
lattice $H=\mathbb{Q}(2\pi i)^{r}$ with the Hodge filtration

$F^{j}H_{\mathbb{C}}=\{\begin{array}{ll}\{0\} j<-r\mathbb{C} j\geq-r\end{array}$

The Hodge structure $\mathbb{Q}(r)$ is of the weight -$2r$ . For $m\in \mathbb{Z}_{\geq 0}$ the direct sum
$\mathbb{Q}(r)^{m}$ is called a Tate Hodge structure. $A$ mixed Hodge structure is a finite
dimensional $\mathbb{Q}$-vector space $H$ with an increasing filtration $W.H$ (the weight
filtration) and a decreasing filtration $FH_{\mathbb{C}}$ (the Hodge filtration) such that
for each $r$ the image of $F^{\cdot}H_{\mathbb{C}}$ to the graded quotients of the weight filtration
$gr_{r}^{W}H$ gives a Hodge structure of weight $r$ . Here the image of $F^{j}H_{\mathbb{C}}$ to $gr_{r}^{W}H$

is defined to be the image of
$F^{j}H_{\mathbb{C}}\cap W_{r}H_{\mathbb{C}}arrow gr_{r}^{W}H_{\mathbb{C}}=(gr_{f}^{W}H)\otimes \mathbb{C}.$

A mixed Tate Hodge structure is a mixed Hodge structure
$(H, W., F^{\cdot})$

such that the weight graded quotients $gr_{r}^{W}H$ are Tate Hodge structures of
weight $r$ . To define the Hodge realization we need to associate to each graded
comodule over $\chi_{mot}=H^{0}(B(\mathcal{N}))$ a mixed Tate Hodge structure in a natural
way.

Proposition 3.1. Suppose we have a mixed Tate Hodge structure $J$ such
that

1. $J$ has a comodule structure

$\Delta:Jarrow J\otimes H^{0}(B(\mathcal{N}))$

which is a morphism of mixed Tate Hodge structures. Here $H^{0}(B(\mathcal{N}))=$

$\oplus_{r\geq 0}H^{0}(B(\mathcal{N}))(r)$ is regarded as a direct sum of the pure Tate Hodge
structure $H^{0}(B(\mathcal{N}))(r)$ of weight $2r.$
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2. There is an isomorphism

$gr_{2r}^{W}Jarrow H^{0}(B(\mathcal{N}))(r)$

for $r\geq 0$ and the coproduct on $gr_{2r}^{W}J$ induced by $\Delta$ is compatible with
the coproduct $\psi$ on $H^{0}(B(\mathcal{N}))(r)$ under this isomorphism.

Then for a graded left $H^{0}(B(\mathcal{N}))$ -comodule $M$ the cotensor product

$J\square M=Ker(J\otimes M^{\Delta\otimes\underline{1-t},\otimes\Delta}J\otimesH^{0}(B(\mathcal{N}))\otimes M)$

is a mixed Tate Hodge structure such that there are isomorphisms
$gr_{2r}^{W}(J\otimes M)\simeq M(r)$

for $r\in \mathbb{Z}.$

So it suffices to give a mixed Tate Hodge structure $J$ with the properties
above. The main claim of this note is the following.

Theorem 3.1. Assume that there exist certain complexes $C(n)$ . in $\square ^{n}$ for
$n\geq 1$ of topological chains with the following properties.

1. For each $i\geq 0C(n)_{i}$ is a $\mathbb{Q}$ -vector space freely generated by cer-
tain topological chains of dimension $i$ in $\square ^{n}$ . The boundary maps

$\delta$ : $C(n)_{i}arrow C(n)_{i-1}$ induces a complex structure on $C(n)..$

2. For each $n\geq 1$ the complex $C(n)$ . is acyclic.

3. Intersection with a face $\{z_{j}=0\}$ resp. $\{z_{j}=\infty\}$ gives a map
$\partial_{0}^{t}(resp.\partial_{\infty}^{j}):C(n)_{i}arrow C(n-1)_{i-2}$

which induces a map of complexes
$C(n). arrow C(n-1)_{-2}$

4. For each $r\geq 0$ and $i\geq 0$ there is a natuml inclusion
$\mathcal{N}(r)^{i}\hookrightarrow C(2r-i)_{2r-2i}$

and this is compatible with the intersection with the faces $\partial_{0}^{?}$ and $\partial_{\infty}^{j}.$
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5. Let
$\omega_{n}=\frac{1}{(2\pi i)^{n}}\frac{dz}{z1}\wedgearrow dzz\wedge\cdots\wedge\frac{dz}{z}n2n$

be a n-fom on $\square ^{n}$ . For each element $\gamma\in C(n)_{n}$ the integral
$\int_{\gamma}\omega_{n}$

is well defined. For each element $\gamma\in C(n)_{n+1}$ there is a Cauchy for-
mula

$\int_{\delta(\gamma)}\omega_{n}+\int_{\partial\gamma}\omega_{n-1}=0$

Here the map $\partial=\sum_{i=1}^{n}(-1)^{i-1}(\partial_{0}^{i}-\partial_{\infty}^{i})$ is the cubical differential.

Then a mixed Tate Hodge structure $J$ as in Pmposition 3.1 can be con-
structed.

Remark 1. We conjecture that a complex $C(n)$ . as above can be constructed
from semi-algebraic sets. $A$ subset of $\mathbb{R}^{n}$ is said to be semi-algebraic if it
belongs to the Boolean class of subsets of $\mathbb{R}^{n}$ which is generated by those of
the form

$\{x\in \mathbb{R}^{n}|f(x)\geq 0\}$

where $f$ is any polynomial fimction on $\mathbb{R}^{n}$ . A Boolean class of subsets is
characterized by the following properties.

1. Closedness under taking finite intersection.

2. Closedness under taking finite union.

3. Closedness under taking complementary set.

We explain how to construct a mixed Tate Hodge structure $J$ from the
complexes $C(n).$ . We need to modify the numbering of the complexes $C(n)$ .
to obtain a cohomological complex. Let $C(n)^{j}$ $:=C(n)_{2n-j}$ and let the total
complex

$TC=\oplus_{n\geq 0}C(n)$
.

with the differential $d=\delta+\partial$ . The total degree of elements in $C(n)^{j}=j-n.$

The inclusion
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$\mathcal{N}(r)^{i}\hookrightarrow C(2r-i)^{r}$

induces a map of complexes $\mathcal{N}arrow TC$ . Also there is a natural right $\mathcal{N}$

modnle strncture on $TC$ by exterior product.

Proposition 3.2. The map

$I$ : $TCarrow \mathbb{C},$ $\gamma\mapsto\sum_{n=0}^{\infty}\int\omega_{n}$

is a map of complexes.

Proof. This follows from the properties of the complexes $C(N)$ . $\square$

Corollary 3.1. The map

$I_{\mathbb{C}}:TC\otimes \mathbb{C}arrow \mathbb{C}, \gamma\otimes\alpha\mapsto I(\gamma)\alpha$

is a quasiisomorphism.

Lemma 3.1. Consider the bar complex $B(TC, \mathcal{N})$ . Then the complex $B(TC,\mathcal{N})\otimes$

$\mathbb{C}$ is quasi isomorphic to $B(\mathcal{N})\otimes \mathbb{C}.$

Proof. By Corollary 3.1 the map $I_{\mathbb{C}}$ : $TC\otimes \mathbb{C}arrow \mathbb{C}$ is a quasiisomorphism
and it is a map of right $\mathcal{N}$ modules: For $\gamma\in C(n)^{j}$ and $z\in \mathcal{N}^{i}(r)$ one has

$I(\gamma\cdot z)=I(\gamma)\epsilon(z)$

for reason of type. Here the map $\epsilon$ is the augmentation. Hence there exists
a map of complexes

$I\otimes 1:B(TC,\mathcal{N})arrow B(\mathbb{C},\mathcal{N})=B(\mathcal{N})\otimes \mathbb{C}$

$\gamma[z_{1}|\cdots|z_{k}]\mapsto I(\gamma)[z_{1}|\cdots|z_{k}]$

which is a quasiisomorphism. $\square$

We will define a mixed Tate Hodge structure $J$ such that the weight graded
quotient $gr_{2r}^{W}J$ is canonically isomorphic to $H^{0}(B(\mathcal{N}))(r)$ .
The betti lattice $J$ is defined to be $H^{0}(B(TC,\mathcal{N}))$ . For $r\geq 0$ , let
$W_{2r}B(TC, \mathcal{N})=W_{2r-1}B(TC,\mathcal{N})$ be the snbcomplex of $B(TC,\mathcal{N})$ generated
by cochains of the form

$\gamma\otimes z_{1}\otimes\cdots\otimes z_{k},$
$\sum_{i}$ codim$z_{i}\leq r$

Then the snbspace $W_{2r}H^{0}(B(TC,\mathcal{N}))$ is defined to be the image of $H^{0}(W_{2r}B(TC,\mathcal{N}))$

in $H^{0}(B(TC,\mathcal{N}))$ .
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Proposition 3.3. Let $r\geq 0$ . The weight gmded quotient $gr_{2r}^{W}J$ is canonically
isomorp $hic$ to $H^{0}(B(\mathcal{N}))(r)$ .

Proof. Let $gr_{2r}^{W}B(TC,\mathcal{N})$ be the quotient

$W_{2r}B(TC,\mathcal{N})$

$W_{2(r-1)}B(TC,\mathcal{N})$

.

One sees that this is the tensor product

$TC\otimes B(\mathcal{N})(r)$

as a complex. So the cohomology

$H^{0}(gr_{2r}^{W}B(TC,\mathcal{N}))=\oplus_{i+j=0}H^{i}(TC)\otimes H^{j}(B(\mathcal{N})(r))$

$=H^{0}(TC)\otimes H^{0}(B(\mathcal{N})(r))=H^{0}(B(\mathcal{N})(r))$ .

The short exact sequence

$0arrow W_{2(r-1)}B(TC,\mathcal{N})arrow W_{2r}B(TC,\mathcal{N})arrow gr_{2r}^{W}B(TC,\mathcal{N})arrow 0$

induces the long exact sequence of cohomology

. . . $arrow H^{i}(W_{2(r-1)}B(TC,\mathcal{N}))arrow H^{i}(W_{2r}B(TC,\mathcal{N}))arrow H^{i}(gr_{2r}^{W}B(TC,\mathcal{N}))arrow\cdots$

The same argument as in Lemma 0.2 shows that the complex $W_{2r}B(TC,\mathcal{N})\otimes$

$\mathbb{C}$ is quasiisomorphic to

$W_{2r}B(\mathcal{N})\otimes \mathbb{C}=\oplus_{j\leq r}B(\mathcal{N})(j)\otimes\mathbb{C}$

and this long exact sequence becomes direct snm of short exact sequences:

$0arrow H^{i}(W_{2(r-1)}B(\mathbb{C},\mathcal{N}))arrow H^{i}(W_{2r}B(\mathbb{C},\mathcal{N}))arrow H^{i}(gr_{2r}^{W}B(TC,\mathcal{N})\otimes \mathbb{C})arrow 0.$

So we have a short exact sequence

$0arrow H^{0}(W_{2(r-1)}B(TC,\mathcal{N}))arrow H^{0}(W_{2r}B(TC,\mathcal{N}))arrow H^{0}(gr_{2r}^{W}B(TC,\mathcal{N}))arrow 0.$

This concludes the proof. $\square$

We define the Hodge filtration. By Lemma 0.2 $J_{\mathbb{C}}=J\otimes \mathbb{C}$ is isomorphic to
$H^{0}(B(\mathcal{N}))\otimes \mathbb{C}$ . For $k\geq 0$ , the Hodge filtration $F^{k}J_{\mathbb{C}}$ is defined to be

$\oplus_{j\geq k}H^{0}(B(\mathcal{N})(j))\otimes \mathbb{C}.$
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4 Polylog motives
As a example we compute the Hodge realization of the polylog motives. This
is constructed by Bloch ([1]). Note that the chains $\eta_{k}(i)$ which will appear
in the following is defined in [1]. For $a\in \mathbb{C}-\{0,1\}$ consider the locns in
$\mathbb{P}^{1}(\mathbb{C})-\{1\}$ parametrized in nonhomogeneous coordinates by

$(x_{1}, \cdots, x_{k}, 1-x_{1},1-x_{2}/x_{1}, \cdots, 1-x_{k-1}/x_{k-2},1-a/x_{k-1})$

and let $\rho_{k}(a)$ be the alternating projection of this locus. $\rho_{k}(a)$ is an element
in $\mathcal{N}(k)^{1}$ and there is an equality

$\partial\rho_{k}(a)=\rho_{k-1}(a)\cdot\rho_{1}(1-a)$

Let
$Li_{k}(a)\in B(\mathcal{N})$

be the element

$[\rho_{k}(a)]+[\rho_{k-1}(a)|\rho_{1}(1-a)]$

$+[\rho_{k-2}|\rho_{1}(1-a)|\rho_{1}(1-a)]+\cdots$

. . . $+[\rho_{1}(a)|\rho_{1}(1-a)|\cdots|\rho_{1}(1-a)]$

The element $Li_{k}(a)$ is a cocycle of degree $0$ . For $0\leq i\leq k-1$ let $\eta_{k}(i)$ be
the $(k+i)$ -chain in $(\mathbb{P}^{1}-\{1\})^{k+i}$ defined to be the alternating projection of
the locus

$(x_{1}, \cdots, x_{i}, t_{i+1}, \cdots, t_{k-1},1-x_{1}, \cdots, 1-x_{i}/x_{i-1},1-t_{i}/x_{i})$

$t_{k-1}\in(0, a), t_{k-2}\in(0, t_{k-1}), \cdots, t_{i}\in(0, t_{i+1})$ ,
$x_{1}, \cdots, x_{i}\in \mathbb{C}$

Then we have the following equalities.

$\delta\eta_{k}(k-1)=\rho_{k}(a)$ , $\delta\eta_{k}(i)=\eta_{k-1}(i)\cdot\rho_{1}(1-a)+(-1)^{k+i+1}\partial\eta_{k}(i+1)(0\leq i\leq k-2)$ .

Let $Z_{k}(a)\in B(TC,\mathcal{N})$ be the element

$1 [Li_{k}(a)]+\xi_{k}(a)[1]+\xi_{k-1}(a)[\rho_{1}(1-a)]+$

. . . $+\xi_{1}(a)[\rho_{1}(1-a)|\cdots|\rho_{1}(1-a)]$
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where $\xi_{k}(0,)\in TC$ is the element

$\sum_{i=0}^{k-1}\eta_{k}(i)$

Then $Z_{k}(a)$ is a cocycle of degree $0$ and

$(I\otimes 1)Z_{k}(a)$

$=Li_{k}(a)+Li_{k}(a)+Li_{k-1}(a)\rho_{1}(1-a)$

$+\cdots+Li_{1}(a)[\rho_{1}(1-a)|\cdots|\rho_{1}(1-a)]$

$\in H^{0}(B(\mathcal{N}))\otimes \mathbb{C}$

Here
$Li_{k}(a)=$

$\int_{\eta_{k}}(0)^{\frac{dz}{z_{1}}\wedge\cdots\bigwedge_{k}}\frac{dz}{z}A$

$\int_{t_{1}\in(0,t_{2})t_{1}}dtarrow\int_{t_{0}\in(0,t_{1})}\frac{d(1-t_{0})-2\in(0,t}{1-t_{0}}=\int_{-}t_{k1}\in(0,a)\frac{dt_{k-1}}{t_{k-1}}\int_{t_{kk-1})}\frac{dt_{k-2}}{t_{k-2}}\ldots$

is the polylogarithm function. The integral on other chains $\eta_{k}(i)$ vanish for
reason of type.
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