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Abstract

In this paper we introduce a broad class of nonlinear mappings which contains
the class of constractive mappings and the class of generahzed hybrid mappings in a
Hilbert space. Then we prove a fixed point theorem for such mappings in a Hilbert
space. Furthermore, we prove a nonlinear ergodic theorem of Baillon’s type in a
Hilbert space. Their results generalize the fixed point theorem and the nonlinear
ergodic theorem proved by Kocourek, Takahashi and Yao [10].

1 Introduction
Let $H$ be a real Hilbert space. $A$ mapping $T$ from $H$ into $H$ is said to be contractive if

there exists a real number $\alpha$ with $0<\alpha<1$ such that

$\Vert Tx-Ty\Vert\leq\alpha\Vert x-y\Vert$

for any $x,$ $y\in H$ . By Banach [2] it is known that any constraction mapping has a unique
fixed point. Let $C$ be a non-empty subset of $H.$ $A$ mapping $T$ from $C$ into $H$ is said to be
nonexpansive if

$\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$

for any $x,$ $y\in C$ . By Baillon [1] we know the following nonlinear ergodic theorem in a
Hilbert space.

Theorem 1.1. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be a nonexpansive mapping from $C$ into $C$ with a fixed point. Then for any
$x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

is weakly convergent to a fixed point of $T.$
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An important example of nonexpansive mappings in a Hilbert space is a firmly nonex-
pansive mapping. $A$ mapping $T$ from $C$ into $H$ is said to be firmly nonexpansive if

$\Vert Tx-Ty\Vert^{2}\leq\langle x-y, Tx-Ty\rangle$

for any $x,$ $y\in C$ ; see Browder [4] and Goebel and Kirk [6]. It is known that a firmly
nonexpansive mapping can be deduced from an equilibrium problem in a Hilbert space; see
Blum and Oettli [3] and Combettes and Hirstoaga [5]. Recently Kohsaka and Takahashi
[12], and Takahashi [16] introduced the following nonlinear mappings which are deduced
from a firmly nonexpansive mapping in a Hilbert space. $A$ mapping $T$ from $C$ into $H$ is
said to be nonspreading if

$2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

for any $x,$ $y\in C.$ $A$ mapping $T$ from $C$ int$oH$ is said to be hybrid if

$3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

for any $x,$ $y\in C$ . Motivated by these mappings, Kocourek, Takahashi and Yao [10] defined
a class of nonlinear mappings in a Hilbert space. $A$ mapping $T$ from $C$ into $H$ is said to
be generalized hybrid if there exist real numbers $\alpha$ and $\beta$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for any $x,$ $y\in C$ . We call such a mapping an $(\alpha, \beta)$-generalized hybrid mapping. We
observe that the class of the mappings above covers the classes of well-known mappings.
For example, an $(\alpha, \beta)$-generalized hybrid mapping is nonexpansive for $\alpha=1$ and $\beta=0,$

nonspreading for $\alpha=2$ and $\beta=1$ , and hybrid for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$ . They proved fixed
point theorems for such mappings; see also Kohsaka and Takahashi [11] and Iemoto and
Takahashi [7]. Moreover $Ko$courek, Takahashi and Yao [10] proved the following nonlinear
ergodic theorem.

Theorem 1.2. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$, let $T$ be a generalized hybrid mapping from $C$ into $C$ which has a fixed point, and let $P$

be the metric projection of $H$ onto the set of fixed points of T. Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T$, where $p= \lim_{narrow\infty}PT^{n}x.$

In this paper we introduce a broad class of nonhnear mappings $T$ from $C$ into $H$ which
contains the class of constractive mappings and the class of generalized hybrid mappings.
Then we prove a fixed point theorem for such mappings in a Hilbert space. Furthermore,
we prove a nonlinear ergodic theorem of Baillon’s type in a Hilbert space. There results
generalize the fixed point theorem and the nonlinear ergodic theorem proved by Kocourek,
Takahashi and Yao [10].
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2 Preliminaries
Let $H$ be a real Hilbert space with inner product $\langle\cdot,$ $\cdot\rangle$ and norm $\Vert\cdot\Vert$ . We denote the

strong convergence and the weak convergence of $\{x_{n}\}$ to $x\in H$ by $x_{n}arrow x$ and $x_{n}arrow x,$

respectively. Let $A$ be a nonempty subset of $H$ . We denote by $\overline{co}A$ the closure of the
convex hull of $A$ . In a Hilbert space, it is known that

$\Vert\alpha x+(1-\alpha)y\Vert^{2}=\alpha\Vert x\Vert^{2}+(1-\alpha)\Vert y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$ (1)

for any $x,$ $y\in H$ and for any $\alpha\in \mathbb{R}$ ; see [15]. Furthermore, in a Hilbert space, we have that

$2\langle x-y, z-w\rangle=\Vert x-w\Vert^{2}+\Vert y-z\Vert^{2}-\Vert x-z\Vert^{2}-\Vert y-w\Vert^{2}$ (2)

for any $x,$ $y,$ $z,$ $w\in H$ . Let $C$ be a nonempty subset of $H$ and let $T$ be a mapping from $C$

into $H$ . We denote by $F(T)$ the set of fixed points of $T.$ $A$ mapping $T$ from $C$ into $H$ with
$F(T)\neq\emptyset$ is called quasi-nonexpansive if $\Vert x-Ty\Vert\leq\Vert x-y\Vert$ for any $x\in F(T)$ and for any
$y\in C$ . It is well-known that the set $F(T)$ of fixed points of a quasi-nonexpansive mapping
$T$ is closed and convex; see Ito and Takahashi [8]. It is not difficult to prove such a result
in a Hilbert space. In fact, for proving that $F(T)$ is closed, take a sequence $\{z_{n}\}\subset F(T)$

with $z_{n}arrow z$ . Since $C$ is weakly closed, we have $z\in C$ . Furthermore, from

$\Vert z-Tz\Vert\leq\Vert z-z_{n}\Vert+\Vert z_{n}-Tz\Vert\leq 2\Vert z-z_{n}\Vertarrow 0,$

$z$ is a fixed point of $T$ and so $F(T)$ is closed. Let us show that $F(T)$ is convex. For
$x,$ $y\in F(T)$ and $\alpha\in[0,1]$ , put $z=\alpha x+(1-\alpha)y$ . Then, we have from (1) that

$\Vert z-Tz\Vert^{2}=\Vert\alpha x+(1-\alpha)y-Tz\Vert^{2}$

$=\alpha\Vert x-Tz\Vert^{2}+(1-\alpha)\Vert y-Tz\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$

$\leq\alpha\Vert x-z\Vert^{2}+(1-\alpha)\Vert y-z\Vert^{2}-\alpha(1-\alpha)\Vertx-y\Vert^{2}$

$=\alpha(1-\alpha)^{2}\Vert x-y\Vert^{2}+(1-\alpha)\alpha^{2}\Vert x-y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$

$=\alpha(1-\alpha)(1-\alpha+\alpha-1)\Vert x-y\Vert^{2}$

$=0.$

This implies $Tz=z$ . So, $F(T)$ is convex. Let $C$ be a nonempty closed convex subset of
$H$ and $x\in H$ . Then, we know that there exists a unique nearest point $z\in C$ such that
$\Vert x-z\Vert=\inf_{y\in C}\Vert x-y\Vert$ . We denote such a correspondence by $z=P_{C}x$ . The mapping $P_{C}$

is called the metric projection of $H$ onto $C$ . It is known that $P_{C}$ is nonexpansive and

$\langle x-P_{C}x, P_{C}x-u\rangle\geq 0$

for any $x\in H$ and for any $u\in C$ ; see [15] for more details. For proving a nonlinear ergodic
theorem in this paper, we also need the following lemma proved by Takahashi and Toyoda
[17].
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Lemma 2.1. Let $D$ be a nonempty closed convex subset of H. Let $P$ be the metric pro-
jection from $H$ onto D. Let $\{u_{n}\}$ be a sequence in H. If $\Vert u_{n+1}-u\Vert\leq\Vert u_{n}-u\Vert$ for any
$u\in D$ and for any $n\in \mathbb{N}$ , then $\{Pu_{n}\}$ converges strongly to some $u_{0}\in D.$

Let $l^{\infty}$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be
an element of $(l^{\infty})^{*}$ (the dual space of $l^{\infty}$ ). Then, we denote by $\mu(f)$ the value of $\mu$ at
$f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ . Sometimes, we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . $A$ linear
functional $\mu$ on $l^{\infty}$ is called a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1, \ldots)$ . $A$ mean $\mu$

is called a Banach limit on $l^{\infty}$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a Banach
limit on $l^{\infty}$ . If $\mu$ is a Banach limit on $l^{\infty}$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty},$

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}.$

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ and $x_{n}arrow a\in \mathbb{R}$ , then we have $\mu(f)=\mu_{n}(x_{n})=a.$

See [14] for the proof of existence of a Banach limit and its other elementary properties.
Using means and the Riesz theorem, we can obtain the following result; see [13] and

[14].

Lemma 2.2. Let $H$ be a Hilbert space, let $\{x_{n}\}$ be a bounded sequence in $H$ and let $\mu$ be
a mean on $l^{\infty}$ . Then there exists a unique point $z_{0}\in\overline{co}\{x_{n}|n\in \mathbb{N}\}$ such that

$\mu_{n}\langle x_{n}, y\rangle=\langle z_{0}, y\rangle, \forall y\in H.$

3 Fixed point theorems
Let $H$ be a real Hilbert space and let $C$ be a nonempty subset of $H.$ $A$ mapping $T$ from

$C$ into $H$ is said to be widely generalized hybrid if there exist $\alpha,$
$\beta,$

$\gamma,$
$\delta,$

$\epsilon,$
$\zeta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$ (3)
$+ \max\{\epsilon\Vert x-Tx\Vert^{2}, \zeta\Vert y-Ty\Vert^{2}\}\leq 0$

for any $x,$ $y\in C$ ; see [9]. Such a mapping $T$ is called $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized
hybrid. An $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$ -widely generalized hybrid mapping is generalized hybrid in the
sense of Kocourek, Takahashi and Yao [10] if $\alpha+\beta=-\gamma-\delta=1$ and $\epsilon=\zeta=0$ . We first
prove a fixed point theorem for widely generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset
of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$ -widely generalized hybrid mapping from $C$ into itself
which satisfies the following conditions (1) and (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ ;

(2) $\epsilon+\alpha+\gamma>0$ , or $\zeta+\alpha+\beta>0.$
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Then $T$ has a fixed point if and only if there exists $z\in C$ such that $\{T^{n}z|n=0,1, \ldots\}$ is
bounded. In particular, a fixed point of $T$ is unique in the case of $\alpha+\beta+\gamma+\delta>0$ on the
condition (1).

Remark 3.2. We can also prove Theorem 3.1 by using the following condition instead of
the condition (2):

(2)’ $\epsilon-\beta-\delta>0$ , or $\zeta-\gamma-\delta>0.$

In the case of the condition $\epsilon-\beta-\delta>0$ , we obtain from (1) that

$\epsilon-\beta-\delta\leq\epsilon+\alpha+\gamma.$

Thus we obtain the desired result by Theorem 3.1. Similary, for the case of $\zeta-\gamma-\delta>0,$

we can obtain the result by using the case of $\zeta+\alpha+\beta>0.$

As a direct consequence of Theorem 3.1, we obtain the following.

Theorem 3.3. Let $H$ be a real Hilbert space, let $C$ be a non-empty bounded closed convex
subset of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$ -widely genemlized hybrid mapping from $C$ into
itself which satisfies the following conditions (1) and (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ ;

(2) $\epsilon+\alpha+\gamma>0$ , or $\zeta+\alpha+\beta>0.$

Then $T$ has a fixed point. In particular, a fixed point of $T$ is unique in the case of $\alpha+\beta+$

$\gamma+\delta>0$ on the condition (1).

Note that an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping $T$ above with $\alpha=1,$

$\beta=\gamma=\epsilon=\zeta=0$ and-l $<\delta<0$ is a contractive mapping. Using Theorem 3.1, we can
show the Banach fixed point theorem in a Hilbert space.

Theorem 3.4 (the Banach fixed point theorem). Let $H$ be a real Hilbert space and
let $T$ be a contmctive mapping from $H$ into $H$ , that is, there exists a real number $\alpha$ with
$0<\alpha<1$ such that

$\Vert Tx-Ty\Vert\leq\alpha\Vert x-y\Vert$

for any $x,$ $y\in H$ . Then $T$ has a unique fixed point.

Using Theorem 3.1, we can show the following fixed point theorem for generalized hybrid
mappings in a Hilbert space.

Theorem 3.5 (Kocourek, Takahashi and Yao [10]). Let $H$ be a real Hilbert space, let
$C$ be a non-empty closed convex subset of $H$ and let $T$ be a genemlized hybrid mapping
from $C$ into $C$ , that is, there exist real numbers $\alpha$ and $\beta$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for any $x,$ $y\in C.$ Then $T$ has a fixed point if and only if there exists $z\in C$ such that
$\{T^{n}z|n=0,1, \ldots\}\dot{u}$ bounded.
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Example 3.6. Let $H$ be the real line and let $T$ be a mapping from $H$ into $H$ defined by
$Tx=2x$ for any $x\in H$ . Taking $\alpha=1,$ $\beta=\gamma=-2,$ $\delta=4$ and $\epsilon=\zeta=2$ , we have that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+ \max\{\epsilon\Vert x-Tx\Vert^{2}, \zeta\Vert y-Ty\Vert^{2}\}$

$=|2x-2y|^{2}-2|x-2y|^{2}-2|2x-y|^{2}+4|x-y|^{2}+ \max\{2x^{2},2y^{2}\}$

$=8|x-y|^{2}-2|(x-y)-y|^{2}-2|x+(x-y)|^{2}+ \max\{2x^{2},2y^{2}\}$

$=-2x^{2}-2y^{2}+ \max\{2x^{2},2y^{2}\}\leq 0$

for any $x,$ $y\in H$ . Furthermore, since $\{T^{n}0|n=0,1, \ldots\}=\{0\},$ (1) $\alpha+\beta+\gamma+\delta=1>0$

and (2) $\epsilon+\alpha+\gamma=1>0$ , we have from Theorem 3.1 that $T$ has a unique fixed point.
However $T$ is not a contractive mapping. Moreover, taking $x=0$ and $y=1$ , we have that
for any real numbers $\alpha$ and $\beta,$

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}-\beta\Vert Tx-y\Vert^{2}-(1-\beta)\Vert x-y\Vert^{2}$

$=4\alpha+4(1-\alpha)-\beta-(1-\beta)=3>0.$

Thus $T$ is not generalized hybrid.

4 Nonlinear ergodic theorem
In this section, usming the technique developed by Takahashi [13], we prove a nonlinear

ergodic theorem of Baillon’s type in a Hilbert space. Before proving the result, we need
the following lemmas.

Lemma 4.1. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$ -widely generalized hybrid mapping from $C$ into $C$ which
has a fixed point and satisfies the condition:

(2) $\epsilon+\alpha+\gamma>0$ , or $\zeta+\alpha+\beta>0.$

Then the set of fixed points of $T$ is closed.

Lemma 4.2. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$ -widely genemlized hybrid mapping from $C$ into $C$ which
has a fixed point and satisfies the conditions (1) and (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ ;

(2) $\epsilon+\alpha+\gamma>0$ , or $\zeta+\alpha+\beta>0.$

Then the set of fixed points of $T$ is convex.

Lemma 4.3. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$ -widely genemlized hybrid mapping from $C$ into $C$ which
has a fixed point and satisfies the conditions (1) and (3):
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(1) $\alpha+\beta+\gamma+\delta\geq 0$;

(3) $\alpha+\gamma>0$ , or $\alpha+\beta>0.$

Then $T$ is quasi-nonexpansive.

Theorem 4.4. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta,\epsilon, \zeta)$-widely genemlized hybrid mapping from $C$ into $C$ which
has a fixed point and satisfies the conditions (1) and (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$;

(2) $\epsilon+\alpha+\gamma>0$, or $\zeta+\alpha+\beta>0$ ;

(3) $\alpha+\gamma>0$ , or $\alpha+\beta>0$ ;

respectively. Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T$ , where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}PT^{n}x.$

Using Theorem 4.4, we can show the following nonlinear ergodic theorem for generalized
hybrid mappings in a Hilbert space.

Theorem 4.5 (Kocourek, Takahashi and Yao [10]). Let $H$ be a real Hilbert space, let
$C$ be a non-empty closed convex subset of $H$ and let $T$ be a genemlized hybrid mapping
from $C$ into $C$ , that is, there exist $\alpha,$

$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for any $x,$ $y\in C$ . Suppose that $F(T)$ is nonempty. Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T$ , where $p= \lim_{narrow\infty}PT^{n}x$ and $P$ is the metric
projection from $H$ onto $F(T)$ .
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