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Abstract

In this paper, we consider to visualize the set of values of some payoff function for a specific two-
person zero-sum game with three strategies and two objectives, that is, each payoff function can be
represented by one pair of two 3 x 3 skew symmetric matrices. Moreover, we give a characterization
for each pair of two matrices above based on the observation for the image set of the payoff function
defined by its pair.

1 Introduction

The famous “minimax theorem” says, in scalar-valued two-person zero-sum games, if the payoff function
has a saddle-point then minimax and maximin values coincide and the value attains the saddle-value.
In some vector-valued cases, however, the existence of vectorial saddle-points does not always remain
this property. So, in [1, 2] Tanaka considers how many properties on minimax and maximin values and
saddle-points remains in vector-valued cases. Moreover, 3, 4] give some characterizations for each pair
of two 2 x 2 matrices based on the observation for the image set of the payoff function defined by its
pair. On the other hand, the equivalence between a vector-valued linear programming problem and a
multi-criteria two-person skew symmetric matrix game has been shown in [5]. In consequence, the study
of properties of payoff functions for multi-criteria two-person 3 x 3 or more large size skew symmetric
matrix games are required.

In the paper, we study shapes of each image set of payoff functions for bicriteria two-person skew
symmetric matrix games, We clarify some relationship between a payoff matrix and the image set, and
classify payoff matrices of the game by the shape of image set.

Notations

For each n, we denote an n-dimensional Euclidean space by R™ and the origin of R by 8. For = and
y € R™, we denote the line segment joining = and y by [z,y]. T stands for the transpose operation. R}
and R", denote the nonnegative cone and the positive cone in R", respectively. z > y iff z —y € R].
z>yiff x —y € R},. Let X be a subset of R". coX stands for the convex hull of the set X. z Xy
denotes the outer product of two vectors z and y € R™. ||z|| stands for the norm of z € R™.
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2 Classification of matrices for bicriteria matrix game with 3 x 3
skew symmetric matrices

Let X and Y be the following two strategies sets of Player 1 and Player 2, respectively:
X =Y =¢0{(1,0,0)T,(0,1,0)T,(0,0,1)T}.

Let A and B be two 3 x 3 skew symmetric matrices and f the payoff function of Player 1 from X x Y to
R? defined by
f(z,y) = (a7 Ay,2T By)

and —f the payoff function of Player 2.

0 a) as 0 b1 b2
The rest of the paper, let A = —ay 0 a3 and B = —-by 0 b3 |. Let P, =
—a2 —ag 0 -bz —b3 0
(al,bl)T, P2 = (ag,bz)T,P;; = (a3,b3)T.
In this section, we consider each shape of image sets of payoff functions i.e., the shape of the following

set:
S:=f(X,Y)= U {(mTAy,zTBy)T} .
(x,y)EX XY
Let
f(X,y) = U (-’BTAy, $TBy)T for any fixed y € Y and
zeX
flz,Y):= U (=T Ay, zTBy)T for any fixed = € X.
yeY

Now, we see that every element of S is a convex combination of 8, +F;,i = 1,2,3. So we have the
following proposition.

Proposition 1. S C P:=co {8, P, P,,P;,—P,,—P2,—Ps}.
Because A and B are skew-symmetric matrices, we see that the following proposition.

Proposition 2. S is origin symmetry.

2.1 Singleton
When P, = P, = P3 = 0, obviously S = {6}, i.e., singleton.

2.2 Line segment

When the linear hull of P is a subspace of R® with one dimension, i.e.,
|P: x P;|| =0 for all 4, € {1,2,3}

and
max. [Pl £0,

S is a line segment.
Proof. Without loss of generality, we assume that || P;|| = max, [lP;|l. From Proposition 1, § C [-Py, P;].
=1,2,

For any A € [0,1], AP, = f(z,y) when zT = (1,0,0), ¥T = ((1 — A),A,0). Thus, by Proposition 2,
8D [P, P 0
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2.3 Hexagonal shape
When Py, P, and P; are affinely independent and there exist A > 0 and 0 < & < 1 such that

Py = /\(P1 + P3) + uPs + (1~- /L)Pl.
Then & is hexagonal shape.

Proof. We see that co{£P;, i = 1,2,3} is the hexagonal shape with vertices +P;,i = 1,2,3. Hence S is
a subset of the hexagon. Conversely, when z = (1,0,0)T, we see that f(x,Y) = co {8, P, P,}. Whenz =
(0,1,0)T, f(z,Y) = co{~Py,8, Ps}. When z = (0,0,1)T, f(z,Y) = co{—P,, —P;,6}. Similarly, when
v = (1,0,00%,(0,1,0) and (0,0,1)T, f(X,y) = co{8, —P1,~Ps},co{P;,8,~Ps} and co{Py, Ps,8},
respectively. Thus & covers the hexagon Py, Py, P3, —Py, —P,, —P3. Therefore, S is hexagonal shape. [

- :‘[
Figure 1: Illustration of the above condition Figure 2: Hexagonal shape
(0 0 13 0 2 2
Ezample 1. Let A= 00 0 2 jJandB={ -2 0 0 |. Then P, =(0,2)T,P, = (1.3,2)7,
-13 -2 0 -2 0 0/
and P3 = (2,0)7. So, _
1.3 2.7

1.3 2.7
P2=P1+—§—P3=—4—(P1 + P3) + P1+(1"-4—-)P3.

4
Hence S is hexagonal shape. Indeed, the graph is Figure 2.

2.4 Tetragon

When §, Py, P; and P are not on any same straight line and satisfy one of the following three conditions:
(i) P el[P, P,
(ll) P3 € [Pz, —-Pl],

(lll) P e [PQ, "P3].

Then S is square.

Proof. We can consider Tetragon as a special case of hexagonal shape. By similar argument, we see that

$ is square. ]
0 0 05 0 2 1.5

Ezample 2. Let A = 0 0 2 and B = -2 0 0 |. Then P, = (0,2)T,P, =
-05 -2 0 -15 0 0

(0.5,1.5)T, and P3 = (2,0)T. So,
1
Py, = %Pl + ZPg, ie., Py € {Pl., Pg]

Hence S is Tetragon. Indeed, the graph is Figure 4.
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P, on this polygonal line -
[

Figure 3: Illustration of condition (ii) Figure 4: Tetragon

2.5 Envelope

When 8, P;, P; and P; are not on any same straight line and satisfy one of the following three conditions:
(i) Pr€co{P,P3,6,(1 = \)(=Ps),\(=P1) + (1 = X)(—P2)} for some A € [0,1],
(i) —Peco{Ps,—P,0,(1 —A)P2,A\(—P3) + (1 — X)P,} for some X € [0,1], or
(i) —Ps €co{—Pz, P1,0,(1 —A)(—=P,), AP, + (1 — A)P3)} for some X € [0,1].

Then S has envelope.

Proof. Assume that (i) are satisfied. Let S be the union of six triangles consisting of co {6, P1, Pz},
co{—P1,0, Ps}, co{—P,,—P;5,0}, co{8, —P,,— P2}, co{P1,0,—Ps}, and co{P,,P3,0}. Then S C S C
ay a2 1 02

0 as and 0 b3 !
envelope curve in the intersection of two triangles co {8, P1, P3} and co { Py, P2, P3}; see [6]. Then S has
envelope curves.

co{xP;,i = 1,2,3}. If we focus sub-matrices we see that S has an

P ™
Lol
\ / R ,...,.mv'-»v-;".‘\)Pa i /T "
= Ny inghsregion |
' P,. Vsrezwn 5 P, in this regio |

v '4
Py ’ —‘P,

Figure 5: < Illustration of condition (i). * Figure 6:




6 0 2 0 2 0

Ezample 3. Let A = 0 0 -04 |andB=| -2 0 04 |. Then P, = (0,2)T,P, =
-2 04 0 0 04 0

(2,0)T, and P; = (~0.4,0.4)T. Assume that A = 0.5, the set of above condition (iii) is as follows:

“{(5):()-6)- (%) (52) }
We see that (_(.)055> ¢ K_Ol) , (fosz)] and (.?044) e [(3) : (f’fs)} . Thus, —P; € {~Ps, P1,6, (1-

0.5)(—P1),0.5P, + (1 — 0.5)P;}. Hence S has an envelope. Indeed, the graph is Figure 7.

Figure 7: Envelope

2.6 The other patterns

The other patterns are combining envelope and butterfly.

3 Analysis of solution by the graphical approach

A point 7 € X is said to be a vector solution of bicriteria 3 x 3 skew symmetric matrix game, if
T T
(#T Az, 77 Bz)" £ (zTAz,27Bz)" £ («TAz,2TBz)" forall z € X,

ie., _
flz,Y)n(-RZ,) =0.

We see that z € X is a solution of bicriteria 3 x 3 skew symmetric matrix game, if one of the following
three conditions are satisfied:

(i) P, Py ¢ (-R%,);
(i) —P1, Py ¢ (~R%,); and
(iii) ~Pp, Py ¢ (-R3,).
Proof. Assume (i) is satisfied. Then at least one of the following three conditions are held:
(a) the triangle co {6, Py, P} N (~R2, ) = §;
(b) the triangle co {6, ~P1, Ps} N (~R%,) = §; and
(c) the triangle co {8, — P, —P3} N (-R%,) = 0.
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If (a) is held, for z = (1,0,0)T, f(z,Y) N (-R2,) = 0. If (b) or (c) is held, for z = (0,1,0)T or
z = (0,0,1)T, f(z,Y) N (~R2,) = 0. When (ii) or (iii) are satisfied, by the same way, we see that
flz,Y)n(-R2,) =0 for z=(1,0,0)T, z =(0,1,0)T, or z = (0,0,1)T. a

02 1 0 -0.2 04 0
P, = (-0.2,0.2)T. So, (1,0,0)T is a solution.

0 0 -0.2 0 1 0.2
Ezample 4. Let A = 0 0 -1 and B = -1 0 -04 |. Then P, = (0,1)T and

Figure 8: Figure 9:
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