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Abstract

In this paper, we consider to visualize the set of values of some payoff function for a specffic two-
person zero-sum game with three strategies and two objectives, that is, each payoff function can be
represented by one pair of two $3\cross 3$ skew symmetric matrices. Moreover, we give a characterization
for each pair of two matrices above based on the observation for the image set of the payoff function
defined by its pair.

1 Introduction
The famous “minimax theorem” says, in scalar-valued two-person zero-sum games, if the payoff function
has a saddle-point then minimax and maximin values coincide and the value attains the saddle-value.
In some vector-valued cases, however, the existence of vectorial saddle-points does not always remain
this property. So, in [1, 2] Tanaka considers how many properties on minimax and maximin values and
saddle-points remains in vector-valued cases. Moreover, [3, 4] give some characterizations for each pair
of two $2\cross 2$ matrices based on the observation for the image set of the payoff function defined by its
pair. On the other hand, the equivalence between a vector-valued linear programming problem and a
multi-criteria two-person skew symmetric matrix game has been shown in [5]. In consequence, the study
of properties of payoff functions for multi-criteria two-person $3\cross 3$ or more large size skew symmetric
matrix games are required.

In the paper, we study shapes of each image set of payoff functions for bicriteria two-person skew
symmetric matrix games. We clarify some relationship between a payoff matrix and the image set, and
classify payoff matrices of the game by the shape of image set.

Notations
For each $n$ , we denote an $n$-dimensional Euclidean space by $\mathbb{R}^{n}$ and the origin of $\mathbb{R}^{n}$ by $\theta$ . For $x$ and
$y\in \mathbb{R}^{n}$ , we denote the line segment joining $x$ and $y$ by $[x, y].$ $T$ stands for the transpose operation. $\mathbb{R}_{+}^{n}$

and $\mathbb{R}_{++}^{n}$ denote the nonnegative cone and the positive cone in $\mathbb{R}^{n}$ , respectively. $x\geq y$ ffi $x-y\in \mathbb{R}_{+}^{n}.$

$x>y$ ffi $x-y\in \mathbb{R}_{++}^{n}$ . Let $X$ be a subset of $\mathbb{R}^{n}$ . co $X$ stands for the convex hull of the set X. $x\cross y$

denotes the outer product of two vectors $x$ and $y\in \mathbb{R}^{n}.$ $\Vert x\Vert$ stands for the norm of $x\in \mathbb{R}^{n}.$
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2 Classification of matrices for bicriteria matrix game with $3\cross 3$

skew symmetric matrices
Let $X$ and $Y$ be the following two strategies sets of Player 1 and Player 2, respectively:

$X=Y=co\{(1,0,0)^{T}, (0,1,0)^{T}, (0,0,1)^{T}\}.$

Let $A$ and $B$ be two $3\cross 3$ skew symmetric matrices and $f$ the payoff function of Player 1 from $X\cross Y$ to
$\mathbb{R}^{2}$ defined by

$f(x, y)=(x^{T}Ay, x^{T}By)$

$and-f$ the payoff function of Player 2.

The rest of the paper, let $A=$ $(\begin{array}{lll}0 a_{1} a_{2}-a_{1} 0 a_{3}-a_{2} -a_{3} 0\end{array})$ and $B=(\begin{array}{lll}0 b_{1} b_{2}-b_{1} 0 b_{3}-b_{2} -b_{3} 0\end{array})$ . Let $P_{1}=$

$(a_{1}, b_{1})^{T},$ $P_{2}=(a_{2}, b_{2})^{T},$ $P_{3}=(a_{3}, b_{3})^{T}.$

In this section, we consider each shape of image sets of payoff functions i.e., the shape of the following
set:

$S:=f(X, Y)= \bigcup_{(x,y)\in XxY}\{(x^{T}Ay, x^{T}By)^{T}\}.$

Let

$f(X, y):= \bigcup_{x\in X}(x^{T}Ay, x^{T}By)^{T}$ for any fixed $y\in Y$ and

$f(x, Y);= \bigcup_{y\in Y}(x^{T}Ay, x^{T}By)^{T}$ for any fixed $x\in X.$

Now, we see that every element of $S$ is a convex combination of $\theta,$ $\pm P_{i},$ $i=1,2,3$ . So we have the
following proposition.

Proposition 1. $S\subset \mathcal{P}$ $:=$ co $\{\theta, P_{1}, P_{2}, P_{3}, -P_{1}, -P_{2}, -P_{3}\}.$

Because $A$ and $B$ are skew-symmetric matrices, we see that the following proposition.

Proposition 2. $S$ is oregin symmetry.

2.1 Singleton
When $P_{1}=P_{2}=P_{3}=\theta$ , obviously $S=\{\theta\}$ , i.e., singleton.

2.2 Line segment
When the linear hull of $\mathcal{P}$ is a subspace of $\mathbb{R}^{2}$ with one dimension, i.e.,

$\Vert P_{i}xP_{j}\Vert=0$ for all $i,j\in\{1,2,3\}$

and
$\max_{i=1,2,3}\Vert P_{i}\Vert\neq^{J}0,$

$S$ is a line segment.

Proof. Without loss of generality, we assume that $\Vert P_{1}\Vert=i1,2,3\max_{=}\Vert P_{i}\Vert$ . Rom Proposition 1, $S\subset[-P_{1}, P_{1}].$

For any $\lambda\in[0,1],$ $\lambda P_{1}=f(x, y)$ when $x^{T}=(1,0,0),$ $y^{T}=((1-\lambda), \lambda, 0)$ . Thus, by Proposition 2,
$S\supset[-P_{1}, P_{1}].$ $\square$
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2.3 Hexagonal shape
When $P_{1},$ $P_{2}$ , and $P_{3}$ are affinely independent and there exist $\lambda>0$ and $0<\mu<1$ such that

$P_{2}=\lambda(P_{1}+P_{3})+\mu P_{3}+(1-\mu)P_{1}.$

Then $S$ is hexagonal shape.

Proof. We see that co $\{\pm P_{i}, i=1,2,3\}$ is the hexagonal shape with vertices $\pm P_{i},$ $i=1,2,3$ . Hence $S$ is
a subset of the hexagon. Conversely, when $x=(1,0,0\rangle^{T}, we see that f(x, Y)=$ co $\{\theta, P_{1}, P_{2}\}$ . Wfien $x=$
$(0,1, O)^{T},$ $f(x, Y)=$ co $\{-P_{1},\theta, P_{3}\}$ . When $x=(0,0,1)^{T},$ $f(x, Y)=$ co $\{-P_{2}, -P_{3},\theta\}$ . Similarly, when
$y=(1,0,0)^{T},$ $(0,1,0)^{\tau}$ and $(0,0,1)^{T},$ $f(X,y)=$ co $\{\theta, -P_{1}, -P_{2}\}$ , co $\{P_{1}, \theta, -P_{3}\}$ and co $\{P_{2}, P_{3}, \theta\},$

respectively. Thus $S$ covers the hexagon $P_{1},$ $P_{2},$ $P_{3},$ $-P_{1},$ $-P_{2},$ $-P_{3}$ . Therefore, $S$ is hexagonal shape. $\square$

Figure 1: mustration of the above condition Figure 2: Hexagonal shape

Example 1. Let $A=(\begin{array}{lll}0 0 1.30 0 2-l.3 -2 0\end{array})$ and $B=(\begin{array}{lll}0 2 2-2 0 0-2 0 0\end{array})$ . Then $P_{1}=(0,2)^{T},$ $P_{2}=(1.3,2)^{T},$

and $P_{3}=(2,0)^{T}$ . So,

$P_{2}=P_{1}+ \frac{1.3}{2}P_{3}=\frac{1.3}{4}(P_{1}+P_{3})+\frac{2.7}{4}\mathcal{P}_{1}+(1-\frac{2.7}{4})P_{3}.$

Hence $S$ is hexagonal shape. Indeed, the graph is Figure 2,

2.4 Tetragon
When $\theta,$ $P_{1},$ $P_{2}$ and $P_{3}$ are not on any same straight line and satisfy one of the following three conditions:

(i) $P_{2}\in[P_{1}, P_{3}],$

$(ii\rangle$ $P_{3}\in[P_{2}, -P_{1}],$

(iii) $P_{1}\in[P_{2}, -P_{3}].$

Then $S$ is square.

Proof. We can consider Tetragon as a special case of hexagonal shape. By similar argument, we see that
$S$ is square. $\square$

Example 2. Let $A=(\begin{array}{lll}0 0 0.50 0 2-0.5 -2 0\end{array})$ and $B=(\begin{array}{lll}0 2 l.5-2 0 0-1.5 0 0\end{array})$ . Then $P_{1}=(0,2\rangle^{T},$ $P_{2}=$

$(0.5,1.5)^{T},$ $ar\iota dP_{3}=(2,0\rangle^{T}$ . So,

$P_{2}= \frac{3}{4}P_{1}+\frac{1}{4}P_{3}$ , i.e., $P_{2}\in[P_{1}, P_{3}].$

Hence $S$ is Tetragon. Indeed, the graph is Figure 4.

179



Figure 3: Illustration of condition (ii) Figure 4: Tetragon

2.5 Envelope

When $\theta,$ $P_{1},$ $P_{2}$ and $P_{3}$ are not on any same straight line and satisfy one $oi$ the following three conditions:
(i) $P_{2}\in$ co $\{P_{1}, P_{3)}\theta, (1-\lambda)(-P_{3}), \lambda(-P_{1})+(1-\lambda)(-P_{2})\}$ for some $\lambda\in[0,1],$

(ii) $-P_{1}\in$ co $\{P_{3}, -P_{2}, \theta, (1-\lambda)P_{2}, \lambda(-P_{3})+(1-\lambda)P_{1}\}$ for some $\lambda\in[0,1]$ , or
(iii) $-P_{3}\in$ co $\{-P_{2}, P_{1}, \theta, (1-\lambda)(-P_{1}), \lambda P_{2}+(1-\lambda)P_{3})\}$ for some $\lambda\in[0,1].$

Then $S$ has envelope.

Proof. Assume that (i) are satisfied. Let $\overline{S}$ be the union of six triangles consisting of co $\{\theta, P_{1}, P_{2}\},$

co $\{-P_{1}, \theta, P_{3}\}$ , co $\{-P_{2}, -P_{3}, \theta\}$ , co $\{\theta, -P_{1}, -P_{2}\}$ , co $\{P_{1}, \theta, -P_{3}\}$ , and co $\{P_{2}, P_{3}, \theta\}$ . Then $\overline{S}\subset S\subset$

co $\{\pm P_{i}, i=1,2,3\}$ . If we focus sub-matrices $(\begin{array}{ll}a_{1} a_{2}0 a_{3}\end{array})$ and $(\begin{array}{ll}b_{1} b_{2}0 b_{3}\end{array})$ , we see that $S$ has an

envelope curve in the intersection of two triangles co $\{\theta, P_{1}, P_{3}\}$ and co $\{P_{1}, P_{2}, P_{3}\}$ ; see [6]. Then $S$ has
envelope curves. $\square$

$1|\prime 4.-|$

$-\psi_{1}$

Figure 5: $\nwarrow$Illustration of condition $(i).\nearrow$ Figure 6:
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Example 3. Let $A=(\begin{array}{lll}0 0 20 0 -0.4-2 0.4 0\end{array})$ and $B=(\begin{array}{lll}0 2 0-2 0 0.40 0.4 0\end{array})$ . Then $P_{1}=(0,2)^{T},$ $P_{2}=$

$(2,0)^{T}$ , and $P_{3}=(-0.4,0.4)^{T}$ . Assume that $\lambda=0.5$ , the set of above condition (iii) is as follows:

co $\{(\begin{array}{l}-20\end{array}),$ $(\begin{array}{l}02\end{array})$ $(\begin{array}{l}00\end{array})$ $(\begin{array}{l}0-1\end{array})$ $(\begin{array}{l}0.8-0.2\end{array})\cdot\}$

We see that $(\begin{array}{l}0.5-0.5\end{array})\in[(\begin{array}{l}0-1\end{array}),$ $(\begin{array}{l}0.8-0.2\end{array})]$ and $(\begin{array}{l}0.4-0.4\end{array})\in[(\begin{array}{l}00\end{array}),$ $(\begin{array}{l}0.5-0.5\end{array})]$ . Thus, $-P_{3}\in\{-P_{2},P_{1},$ $\theta,$ $(1-$

$0.6)(-P_{1}),$ $0.5P_{2}+(1-0.5)P_{3}\}$ . Hence $S$ has an envelope. Indeed, the graph is Figure 7,

Figure 7: Envelope

2.6 The other patterns
The other patterns are combining envelope and butterfly.

3 Analysis of solution by the graphical approach
A point $\overline{x}\in X$ is said to be a vector solution of bicriteria $3\cross 3$ skew symmetric matrix game, if

$(\overline{x}^{T}Ax,\overline{x}^{T}Bx)^{T}\not\leq(\overline{x}^{T}A\overline{x},\overline{x}^{T}B\overline{x}\rangle^{T}\not\leq(x^{T}A\overline{x}, x^{T}B\overline{x})^{T}$ for all $x\in X,$

i.e.,
$\overline{f}(x, Y)\cap(-\mathbb{R}_{++}^{2}\rangle=\emptyset.$

We see that $x\in X$ is a solution of bicriteria $3\cross 3$ skew symmetric matrix game, if ome of the following
three conditions are satisfied:

(i) $P_{1},$ $P_{2}\not\in(-\mathbb{R}_{++}^{2}\}$ ;

(ii) $-P_{1},P_{3}\not\in(-\mathbb{R}_{++}^{2})$ ; and

(iii) $-P_{2},$ $P_{3}\not\in(-\mathbb{R}_{++}^{2})$ .

Proof. Assume (i) is satisfied. Then at least one of the following three conditions are held:
(a) the triangle co $\{\theta, P_{1}, P_{2}\}\cap(-\mathbb{R}_{++}^{2})=\emptyset$ ;

(b) the triangle co $\{\theta, -P_{1}, P_{3}\}\cap(-\mathbb{R}_{++}^{2})=\emptyset$ ; and

$(c\rangle the$ triangle $co \{\theta, -P_{2}, -P_{3}\}\cap(-\mathbb{R}_{++}^{2})=\emptyset.$
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If (a) is held, for $x=(1,0,0)^{T},$ $f(x, Y)\cap(-\mathbb{R}_{++}^{2})=\emptyset$ . If (b) or (c) is held, for $x=(0,1,0)^{T}$ or
$x=(0,0,1)^{T},$ $f(x, Y)\cap(-\mathbb{R}_{++}^{2})=\emptyset$ . When (u) or (iii) are satisfied, by the same way, we see that
$f(x, Y)\cap(-\mathbb{R}_{++}^{2})=\emptyset forx=(1,0,0)^{T},$ $x=(0,1,0)^{T}$ , or $x=(O, 0,1)^{T}.$ $\square$

Example 4. Let $A=(\begin{array}{lll}0 0 -0.20 0 -l0.2 l 0\end{array})$ and $B=(\begin{array}{lll}0 l 0.2-1 0 -0.4-0.2 0.4 0\end{array})$ . Then $P_{1}=(0,1)^{T}$ and

$P_{2}=(-0.2,0.2)^{T}$ . So, $(1,0, 0)^{T}$ is a solution.

$\rho_{3}$

Figure 8: Figure 9:
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