On graphical image of the value of payoff function for a vector matrix game

Kenji Kimura Education Center Niigata Insutitute of Technology

Tamaki Tanaka Graduate School of Science and Technology Niigata University

> Moon-Hee Kim School of Free Majors Tongmyong University

Gue-Myung Lee Department of Applied Mathematics College of Natural Sciences Pukyong National University

Abstract

In this paper, we consider to visualize the set of values of some payoff function for a specific twoperson zero-sum game with three strategies and two objectives, that is, each payoff function can be represented by one pair of two 3×3 skew symmetric matrices. Moreover, we give a characterization for each pair of two matrices above based on the observation for the image set of the payoff function defined by its pair.

1 Introduction

The famous "minimax theorem" says, in scalar-valued two-person zero-sum games, if the payoff function has a saddle-point then minimax and maximin values coincide and the value attains the saddle-value. In some vector-valued cases, however, the existence of vectorial saddle-points does not always remain this property. So, in [1, 2] Tanaka considers how many properties on minimax and maximin values and saddle-points remains in vector-valued cases. Moreover, [3, 4] give some characterizations for each pair of two 2×2 matrices based on the observation for the image set of the payoff function defined by its pair. On the other hand, the equivalence between a vector-valued linear programming problem and a multi-criteria two-person skew symmetric matrix game has been shown in [5]. In consequence, the study of properties of payoff functions for multi-criteria two-person 3×3 or more large size skew symmetric matrix games are required.

In the paper, we study shapes of each image set of payoff functions for bicriteria two-person skew symmetric matrix games. We clarify some relationship between a payoff matrix and the image set, and classify payoff matrices of the game by the shape of image set.

Notations

For each n, we denote an n-dimensional Euclidean space by \mathbb{R}^n and the origin of \mathbb{R}^n by θ . For x and $y \in \mathbb{R}^n$, we denote the line segment joining x and y by [x, y]. T stands for the transpose operation. \mathbb{R}^n_+ and \mathbb{R}^n_{++} denote the nonnegative cone and the positive cone in \mathbb{R}^n , respectively. $x \ge y$ iff $x - y \in \mathbb{R}^n_+$. x > y iff $x - y \in \mathbb{R}^n_{++}$. Let X be a subset of \mathbb{R}^n . co X stands for the convex hull of the set X. $x \times y$ denotes the outer product of two vectors x and $y \in \mathbb{R}^n$. ||x|| stands for the norm of $x \in \mathbb{R}^n$.

2 Classification of matrices for bicriteria matrix game with 3×3 skew symmetric matrices

Let X and Y be the following two strategies sets of Player 1 and Player 2, respectively:

$$X = Y = \operatorname{co} \{ (1,0,0)^T, (0,1,0)^T, (0,0,1)^T \}.$$

Let A and B be two 3×3 skew symmetric matrices and f the payoff function of Player 1 from $X \times Y$ to \mathbb{R}^2 defined by

$$f(x,y) = \left(x^{T}Ay, x^{T}By\right)$$

and -f the payoff function of Player 2

The rest of the paper, let $A = \begin{pmatrix} 0 & a_1 & a_2 \\ -a_1 & 0 & a_3 \\ -a_2 & -a_3 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & b_1 & b_2 \\ -b_1 & 0 & b_3 \\ -b_2 & -b_3 & 0 \end{pmatrix}$. Let $P_1 = (a_1, b_1)^T, P_2 = (a_2, b_2)^T, P_3 = (a_3, b_3)^T$.

In this section, we consider each shape of image sets of payoff functions i.e., the shape of the following set: (-7, -7, -7, -7)

$$\mathcal{S} := f(X, Y) = \bigcup_{(x,y) \in X \times Y} \left\{ \left(x^T A y, x^T B y \right)^T \right\}$$

Let

$$\begin{split} f(X,y) &:= \bigcup_{x \in X} \left(x^T A y, x^T B y \right)^T \text{ for any fixed } y \in Y \text{ and} \\ f(x,Y) &:= \bigcup_{y \in Y} \left(x^T A y, x^T B y \right)^T \text{ for any fixed } x \in X. \end{split}$$

Now, we see that every element of S is a convex combination of $\theta, \pm P_i, i = 1, 2, 3$. So we have the following proposition.

Proposition 1. $S \subset \mathcal{P} := co \{\theta, P_1, P_2, P_3, -P_1, -P_2, -P_3\}.$

Because A and B are skew-symmetric matrices, we see that the following proposition.

Proposition 2. S is origin symmetry.

2.1 Singleton

When $P_1 = P_2 = P_3 = \theta$, obviously $S = \{\theta\}$, i.e., singleton.

2.2 Line segment

When the linear hull of \mathcal{P} is a subspace of \mathbb{R}^2 with one dimension, i.e.,

$$||P_i \times P_j|| = 0$$
 for all $i, j \in \{1, 2, 3\}$

and

$$\max_{i=1,2,3} \|P_i\| \neq 0$$

S is a line segment.

Proof. Without loss of generality, we assume that $||P_1|| = \max_{i=1,2,3} ||P_i||$. From Proposition 1, $\mathcal{S} \subset [-P_1, P_1]$. For any $\lambda \in [0,1]$, $\lambda P_1 = f(x,y)$ when $x^T = (1,0,0)$, $y^T = ((1-\lambda),\lambda,0)$. Thus, by Proposition 2, $\mathcal{S} \supset [-P_1, P_1]$.

2.3 Hexagonal shape

When P_1, P_2 , and P_3 are affinely independent and there exist $\lambda > 0$ and $0 < \mu < 1$ such that

$$P_2 = \lambda(P_1 + P_3) + \mu P_3 + (1 - \mu)P_1.$$

Then S is hexagonal shape.

Proof. We see that $\operatorname{co} \{\pm P_i, i = 1, 2, 3\}$ is the hexagonal shape with vertices $\pm P_i, i = 1, 2, 3$. Hence S is a subset of the hexagon. Conversely, when $x = (1,0,0)^T$, we see that $f(x,Y) = \operatorname{co} \{\theta, P_1, P_2\}$. When $x = (0,1,0)^T$, $f(x,Y) = \operatorname{co} \{-P_1, \theta, P_3\}$. When $x = (0,0,1)^T$, $f(x,Y) = \operatorname{co} \{-P_2, -P_3, \theta\}$. Similarly, when $y = (1,0,0)^T, (0,1,0)^T$ and $(0,0,1)^T, f(X,y) = \operatorname{co} \{\theta, -P_1, -P_2\}, \operatorname{co} \{P_1, \theta, -P_3\}$ and $\operatorname{co} \{P_2, P_3, \theta\}$, respectively. Thus S covers the hexagon $P_1, P_2, P_3, -P_1, -P_2, -P_3$. Therefore, S is hexagonal shape. \Box

Figure 1: Illustration of the above condition

Figure 2: Hexagonal shape

Example 1. Let
$$A = \begin{pmatrix} 0 & 0 & 1.3 \\ 0 & 0 & 2 \\ -1.3 & -2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 2 & 2 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix}$. Then $P_1 = (0, 2)^T$, $P_2 = (1.3, 2)^T$, and $P_3 = (2, 0)^T$. So,

$$P_2 = P_1 + \frac{1.3}{2}P_3 = \frac{1.3}{4}(P_1 + P_3) + \frac{2.7}{4}P_1 + (1 - \frac{2.7}{4})P_3$$

Hence S is hexagonal shape. Indeed, the graph is Figure 2.

2.4 Tetragon

When θ , P_1 , P_2 and P_3 are not on any same straight line and satisfy one of the following three conditions:

 $\begin{array}{lll} ({\rm i}) & P_2 \in [P_1,P_3],\\ ({\rm ii}) & P_3 \in [P_2,-P_1],\\ ({\rm iii}) & P_1 \in [P_2,-P_3]. \end{array}$

Then S is square.

Proof. We can consider Tetragon as a special case of hexagonal shape. By similar argument, we see that S is square.

Example 2. Let
$$A = \begin{pmatrix} 0 & 0 & 0.5 \\ 0 & 0 & 2 \\ -0.5 & -2 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 2 & 1.5 \\ -2 & 0 & 0 \\ -1.5 & 0 & 0 \end{pmatrix}$. Then $P_1 = (0,2)^T, P_2 = (0.5, 1.5)^T$, and $P_3 = (2,0)^T$. So,

$$P_2 = \frac{3}{4}P_1 + \frac{1}{4}P_3$$
, i.e., $P_2 \in [P_1, P_3]$.

Hence S is Tetragon. Indeed, the graph is Figure 4.

Figure 3: Illustration of condition (ii)

Figure 4: Tetragon

$\mathbf{2.5}$ Envelope

When θ , P_1 , P_2 and P_3 are not on any same straight line and satisfy one of the following three conditions:

- (i) $P_2 \in \operatorname{co} \{P_1, P_3, \theta, (1-\lambda)(-P_3), \lambda(-P_1) + (1-\lambda)(-P_2)\}$ for some $\lambda \in [0, 1]$, (ii) $-P_1 \in \operatorname{co} \{P_3, -P_2, \theta, (1-\lambda)P_2, \lambda(-P_3) + (1-\lambda)P_1\}$ for some $\lambda \in [0, 1]$, or (iii) $-P_3 \in \operatorname{co} \{-P_2, P_1, \theta, (1-\lambda)(-P_1), \lambda P_2 + (1-\lambda)P_3\}$ for some $\lambda \in [0, 1]$.
- Then S has envelope.

Proof. Assume that (i) are satisfied. Let \overline{S} be the union of six triangles consisting of $\operatorname{co} \{\theta, P_1, P_2\}$, $\operatorname{co}\{-P_1,\theta,P_3\}, \operatorname{co}\{-P_2,-P_3,\theta\}, \operatorname{co}\{\theta,-P_1,-P_2\}, \operatorname{co}\{P_1,\theta,-P_3\}, \operatorname{and} \operatorname{co}\{P_2,P_3,\theta\}.$ Then $\overline{S} \subset S \subset S \subset S$ $co \{\pm P_i, i = 1, 2, 3\}$. If we focus sub-matrices $\begin{pmatrix} a_1 & a_2 \\ 0 & a_3 \end{pmatrix}$ and $\begin{pmatrix} b_1 & b_2 \\ 0 & b_3 \end{pmatrix}$, we see that $\mathcal S$ has an envelope curve in the intersection of two triangles $co \{\theta, P_1, P_3\}$ and $co \{P_1, P_2, P_3\}$; see [6]. Then S has envelope curves.

Figure 5:

 \mathbb{N} Illustration of condition (i).

Figure 6:

Example 3. Let
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -0.4 \\ -2 & 0.4 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 2 & 0 \\ -2 & 0 & 0.4 \\ 0 & 0.4 & 0 \end{pmatrix}$. Then $P_1 = (0,2)^T$, $P_2 = (2,0)^T$, and $P_3 = (-0.4, 0.4)^T$. Assume that $\lambda = 0.5$, the set of above condition (iii) is as follows:

$$\operatorname{co}\left\{ \begin{pmatrix} -2\\0 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1 \end{pmatrix}, \begin{pmatrix} 0.8\\-0.2 \end{pmatrix} \right\}$$

We see that $\begin{pmatrix} 0.5\\-0.5 \end{pmatrix} \in \begin{bmatrix} 0\\-1 \end{pmatrix}, \begin{pmatrix} 0.8\\-0.2 \end{pmatrix} \end{bmatrix}$ and $\begin{pmatrix} 0.4\\-0.4 \end{pmatrix} \in \begin{bmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 0.5\\-0.5 \end{pmatrix} \end{bmatrix}$. Thus, $-P_3 \in \{-P_2, P_1, \theta, (1-0.5)(-P_1), 0.5P_2 + (1-0.5)P_3\}$. Hence \mathcal{S} has an envelope. Indeed, the graph is Figure 7.

Figure 7: Envelope

2.6 The other patterns

The other patterns are combining envelope and butterfly.

3 Analysis of solution by the graphical approach

A point $\bar{x} \in X$ is said to be a vector solution of bicriteria 3×3 skew symmetric matrix game, if

$$\left(\bar{x}^{T}Ax, \bar{x}^{T}Bx\right)^{T} \not\leq \left(\bar{x}^{T}A\bar{x}, \bar{x}^{T}B\bar{x}\right)^{T} \not\leq \left(x^{T}A\bar{x}, x^{T}B\bar{x}\right)^{T} \text{ for all } x \in X.$$

i.e.,

$$\bar{f}(x,Y) \cap (-\mathbb{R}^2_{++}) = \emptyset.$$

We see that $x \in X$ is a solution of bicriteria 3×3 skew symmetric matrix game, if one of the following three conditions are satisfied:

(i) $P_1, P_2 \notin (-\mathbb{R}^2_{++});$

(ii)
$$-P_1, P_3 \notin (-\mathbb{R}^2_{++})$$
; and

(iii)
$$-P_2, P_3 \notin (-\mathbb{R}^2_{++})$$
.

Proof. Assume (i) is satisfied. Then at least one of the following three conditions are held:

- (a) the triangle co $\{\theta, P_1, P_2\} \cap (-\mathbb{R}^2_{++}) = \emptyset$;
- (b) the triangle co $\{\theta, -P_1, P_3\} \cap (-\mathbb{R}^2_{++}) = \emptyset$; and
- (c) the triangle $\operatorname{co} \{\theta, -P_2, -P_3\} \cap (-\mathbb{R}^2_{++}) = \emptyset$.

If (a) is held, for $x = (1,0,0)^T$, $f(x,Y) \cap (-\mathbb{R}^2_{++}) = \emptyset$. If (b) or (c) is held, for $x = (0,1,0)^T$ or $x = (0,0,1)^T$, $f(x,Y) \cap (-\mathbb{R}^2_{++}) = \emptyset$. When (ii) or (iii) are satisfied, by the same way, we see that $f(x,Y) \cap (-\mathbb{R}^2_{++}) = \emptyset$ for $x = (1,0,0)^T$, $x = (0,1,0)^T$, or $x = (0,0,1)^T$.

Example 4. Let $A = \begin{pmatrix} 0 & 0 & -0.2 \\ 0 & 0 & -1 \\ 0.2 & 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 & 0.2 \\ -1 & 0 & -0.4 \\ -0.2 & 0.4 & 0 \end{pmatrix}$. Then $P_1 = (0,1)^T$ and $P_2 = (-0.2, 0.2)^T$. So, $(1, 0, 0)^T$ is a solution.

References

- [1] T. Tanaka, Some Minimax Problems of Vector-Valued Functions, Journal of Optimization Theory and Applications, vol.59, pp.505-524, 1988.
- [2] T. Tanaka, Vector-Valued Minimax Theorems in Multi-Criteria Games, New Frontiers of Decision Making for the Information Technology Era, World Scientific, pp.75-99, 2000.
- [3] M. Higuchi and T. Tanaka, Classification of Matrices by Means of Envelops for Bicriteria Matrix Games, International Journal Mathematics, Game Theory, and Algebra, Nova Science Publishers, New York, vol.12, pp.371-378, 2002.
- [4] M. Higuchi and T. Tanaka, On Minimax and Maximin Values in Multi-Criteria Games, Multi-Objective Programming and Goal-Programming: Theory and Applications, Springer-Verlag, Berlin, pp.141-146, 2003.
- [5] J. M. Hong, M. H. Kim and G. M. Lee, On Linear Vector Program and Vector Matrix Game Equivalence, Optimization Letters, vol.6, pp.231-240, 2012.
- [6] M. Higuchi, K. Kimura, and T. Tanaka, Classification of Matrices for Tricriteria Two-Person Zero-Sum Matrix Game, RIMS Kokyuroku vol.1821, pp.206-213, 2013.

Kenji Kimura **Education Center** Niigata Institute of Technology Kashiwazaki 945-1195 Japan E-mail: kkimura@adm.niit.ac.jp 182

Figure 9:

Tamaki Tanaka Graduate School of Science and Technology Niigata University Niigata 950–2181 Japan E-mail: tamaki@math.sc.niigata-u.ac.jp

Moon-Hee Kim School of Free Majors Tongmyong University Busan 608–711 Republic of Korea E-mail: mooni@tu.ac.kr

Gue Myung Lee Department of Applied Mathematics College of Natural Sciences Pukyong National University Busan 608-737 Republic of Korea E-mail: gmlee@pknu.ac.kr