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Abstract

In this note, we review the authors’ recent results in [1] on the
stability analysis of asymptotic profiles of solutions to the Cauchy-
Dirichlet problem for the fast diffusion equation.

1 Introduction
Let $\Omega$ be a bounded domain of $\mathbb{R}^{N}$ with smooth boundary $\partial\Omega$ . We are concerned
with the Cauchy-Dirichlet problem for the fast diffusion equation of the form

$\partial_{t}(|u|^{m-2}u)=\triangle u$ in $\Omega\cross(0, \infty)$ , (1)
$u=0$ on $\partial\Omega\cross(0, \infty)$ , (2)

$u(\cdot, 0)=u_{0}$ in $\Omega$ , (3)

where $\partial_{t}=\partial/\partial t$ and $\triangle$ denotes the $N$-dimensional Laplace operator. Throughout
this note, we assume that

$2<m<2^{*}:=\{\begin{array}{ll}2 N/(N-2) if N\geq 3,\infty if N=1,2\end{array}$ and $u_{0}\in H_{0}^{1}(\Omega)$ (4)

(then $H_{0}^{1}(\Omega)$ is compactly embedded in $L^{m}(\Omega)$ ). By putting $w=|u|^{m-2}u$ , Equation
(1) can be rewritten in a usual form of fast diffusion equation,

$\partial_{t}w=\triangle(|w|^{r-2}w)$ in $\Omega\cross(0, \infty)$

with the exponent $r=m/(m-1)<2$ . Fast diffusion equations arise in the studies
of plasma physics (see [3]), kinetic theory of gases, solid state physics and so on.
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It is well known that every solution of (1)$-(3)$ vanishes in finite time (see [15], [2]).
Moreover, Berryman and Holland [4] studied asymptotic profiles of solutions as well
as the explicit rate of the extinction of solutions.

In this note, we address ourselves to the stability and instability of each asymptotic
profile. Namely, our question is the following: For any initial data $u_{0}\in H_{0}^{1}(\Omega)$

sufficiently close to an asymptotic profile $\phi$ , does the asymptotic profile of the unique
solution $u=u(x, t)$ for (1)$-(3)$ also coincide with $\phi$ or not? In [4] and [12], the
stability of the unique positive asymptotic profile is discussed for nonnegative initial
data in some special cases $(e.g., N=1)$ . However, to the best of our knowledge,
the notions of stability and instability of asymptotic profiles for (1)$-(3)$ have not
been precisely defined so far, and moreover, the stability analysis has not been done
for (possibly) $sign$-changing initial data. In this note, we give precise definitions of
the stability and instability of profiles for (possibly) $sign$-changing initial data, and
furthermore, we present criteria for the stability and for the instability. We also
perform the stability analysis in several concrete cases of the domain $\Omega$ and the
exponent $m.$

Our method of analysis is based on a dynamical system generated by a rescaled
problem,

$\partial_{s}(|v|^{m-2}v)=\triangle v+\lambda_{m}|v|^{m-2}v$ in $\Omega\cross(0, \infty)$ (5)

with some constant $\lambda_{m}>0$ and a transformed time-variable $s$ , on a surface $\mathcal{X}$ in the
energy space $H_{0}^{1}(\Omega)$ . The gradient structure of the equation above and variational
features of a Lyapunov energy function over the phase surface $\mathcal{X}$ play a crucial role.
Moreover, as a by-product, we classify the whole of the energy space $H_{0}^{1}(\Omega)$ for initial
data in terms of large-time behaviors of solutions to the Cauchy-Dirichlet problem
for (5).

Notation. Let $H_{0}^{1}(\Omega)$ be the closure of $C_{0}^{\infty}(\Omega)$ in the usual Sobolev space $H^{1}(\Omega)=$

$W^{1,2}(\Omega)$ . Let us denote by $\Vert$ $\Vert_{m}$ the usual norm of $L^{m}(\Omega)$-space, and moreover,
$\Vert$ $\Vert_{1,2}$ $:=\Vert\nabla$ $\Vert_{2}$ stands for the norm of $H_{0}^{1}(\Omega)$ . For a function $u=u(x, t)$ :
$\Omega x(0, \infty)arrow \mathbb{R}$ , we often write $u(t)$ $:=u(\cdot, t)$ , which is a function from $\Omega$ into $\mathbb{R}$ , for
a fixed time $t>0.$

2 Asymptotic profiles of vanishing solutions
Throughout this note, we are concemed with solutions of (1)$-(3)$ defined by

Definition 2.1 (Solution of (1)$-(3)$ ) $.$

$A$ function $u:\Omega\cross(0, \infty)arrow \mathbb{R}$ is said to be a
(weak) solution of (1) $-(3)$ , if the following conditions are all satisfied:

$\bullet$ $u\in C([O, \infty);H_{0}^{1}(\Omega))$ and $|u|^{m-2}u\in C^{1}([0, \infty);H^{-1}(\Omega))$ .

$\bullet$ For all $t\in(O, \infty)$ and $\psi\in C_{0}^{\infty}(\Omega)$ ,

$\langle\frac{d}{dt}(|u|^{m-2}u)(t), \psi\rangle_{H_{0}^{1}}+\int_{\Omega}\nabla u(x, t)\cdot\nabla\psi(x)dx=0.$
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$\bullet$ $u(\cdot, t)arrow u_{0}$ strongly in $H_{0}^{1}(\Omega)$ as $tarrow+O.$

Then for any $u_{0}\in H_{0}^{1}(\Omega)$ , the problem (1)$-(3)$ admits a unique solution (see, e.g., [5]
and [17, 18] $)$ .

Moreover, every solution $u=u(x, t)$ of (1)$-(3)$ for $u_{0}\neq 0$ vanishes at a finite time
$t_{*}>0$ at the rate $(t_{*}-t)^{1/(m-2)}$ (see [4], [12], [16]).

Proposition 2.2 (Extinction rate of solutions). Assume that $2<m\leq 2^{*}$ Then for
any $u_{0}\in H_{0}^{1}(\Omega)\backslash \{0\}$ , the unique solution $u=u(x, t)$ of (1) $-(3)$ vanishes at a finite
time $t_{*}=t_{*}(u_{0})>0$ . Moreover, it holds that

$(t_{*}-t)^{1/(m-2)}\leq C_{1}\Vert u(t)\Vert_{m}\leq C_{2}\Vert u(t)\Vert_{1,2}\leq C_{3}(t_{*}-t)^{1/(m-2)}$

with some constants $C_{i}(i=1,2,3)$ . Hence $\Vert u(t)\Vert_{1,2}$ and $\Vert u(t)\Vert_{m}$ vanish at the $mte$

of $(t_{*}-t)^{1/(m-2)}.$

The finite time $t_{*}=t_{*}(u_{0})$ is called extinction time (of the unique solution u) for
a data $u_{0}$ . Here $t_{*}$ can be regarded as a functional defined on $H_{0}^{1}(\Omega)$ with value in
$[0, \infty)$ :

$t_{*}$ : $H_{0}^{1}(\Omega)$ $arrow$ $[0, \infty)$ ,
$u_{0} \mapsto t_{*}(u_{0})$ .

From the explicit rate of the extinction of all solutions, one can define asymptotic
profiles $\phi=\phi(x)$ of solutions for (1)$-(3)$ by

Definition 2.3 (Asymptotic profiles [1]). Let $u_{0}\in H_{0}^{1}(\Omega)\backslash \{0\}$ and let $u=u(x, t)$ be
a solution for (1) $-(3)$ vanishing at a finite time $t_{*}>0.$ $A$ function $\phi\in H_{0}^{1}(\Omega)\backslash \{0\}$

is called an asymptotic profile of $u$ if there exists an increasing sequence $t_{n}arrow t_{*}$ such
that

$\lim_{t_{n}\nearrow t_{*}}\Vert(t_{*}-t_{n})^{-1/(m-2)}u(t_{n})-\phi\Vert_{1,2}=0.$

In order to characterize $\phi$ , we apply the following transformation:

$v(x, s);=(t_{*}-t)^{-1/(m-2)}u(x, t)$ and $s:=\log(t_{*}/(t_{*}-t))\geq 0$ . (6)

Then $s$ tends to infinity as $t\nearrow t_{*}$ . Moreover, the asymptotic profile $\phi=\phi(x)$ of
$u=u(x, t)$ is reformulated as $\phi(x)$ $:= \lim_{s_{n}\nearrow\infty}v(x, s_{n})$ in $H_{0}^{1}(\Omega)$ . Furthermore, the
Cauchy-Dirichlet problem (1)$-(3)$ for $u=u(x, t)$ is rewritten as the following rescaled
problem:

$\partial_{s}(|v|^{m-2}v)=\triangle v+\lambda_{m}|v|^{m-2}v$ in $\Omega\cross(0, \infty)$ , (7)
$v=0$ on $\partial\Omega\cross(0, \infty)$ , (8)

$v(\cdot, 0)=v_{0}$ in $\Omega$ , (9)

where the initial data $v_{0}$ and the constant $\lambda_{m}$ are given by

$v_{0}=t_{*}(u_{0})^{-1/(m-2)}u_{0}$ and $\lambda_{m}=(m-1)/(m-2)>0$ . (10)

Then we have:
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Theorem 2.4 (Existence of asymptotic profiles and their characterization [1]). For
any sequence $s_{n}arrow\infty$ , there exist a subsequence $(n’)$ of $(n)$ and $\phi\in H_{0}^{1}(\Omega)\backslash \{0\}$ such
that $v(s_{n’})arrow\phi$ strongly in $H_{0}^{1}(\Omega)$ . Moreover, $\phi$ is a nontrivial stationary solution of
(7) $-(9)$ , that is, $\phi$ solves the Dirichlet problem,

一 $\triangle\phi$ $=\lambda_{m}|\phi|^{m-2}\phi$ $in$ $\Omega,$ $\phi=0$ $on$ $\partial\Omega$ . (11)

Remark 2.5. (i) Berryman and Holland [4] first proved the existence of asymp-
totic profiles for positive classical solutions of (1)$-(3)$ , and then, Kwong [12]
extended their result to nonnegative weak solutions. Furthermore, Savar\’e and
Vespri [16] proved the convergence of $v(s_{n})$ strongly in $L^{m}(\Omega)$ as $s_{n}arrow\infty$ for
$sign$-changing solutions. Combining their methods of proof, one can prove the
theorem stated above.

(ii) If $\phi$ is a nontrivial solution of (11), then the function $U(x, t)=(1-t)_{+}^{1/(m-2)}\phi(x)$

solves (1)$-(3)$ with $U(O)=\phi(x)$ . Hence $t_{*}(\phi)=1$ and the profile of $U(x, t)$ is
$\phi(x)$ .

(iii) By Theorem 2.4 and (ii), the set of all asymptotic profiles of solutions for (1)$-$

(3) coincides with the set of all nontrivial solutions of (11). We shall denote
these sets by $S.$

3 Stability and instability of asymptotic profiles

Our stability analysis is based on the transformation (6) and the rescaled problem
(7)$-(9)$ . Taking account of the relation, $v_{0}=t_{*}(u_{0})^{-1/(m-2)}u_{0}$ , and introducing the
set

$\mathcal{X} :=\{t_{*}(u_{0})^{-1/(m-2)}u_{0}:u_{0}\in H_{0}^{1}(\Omega)\backslash \{0\}\},$

we define the (asymptotic) stability and instability of each profile as follows:

Definition 3.1 (Stability and instability of profiles [1]). Let $\phi\in H_{0}^{1}(\Omega)$ be an asymp-
totic profile of vanishing solutions for (1) $-(3)$ .

(i) $\phi$ is said to be stable, if for any $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that any
solution $v$ of (7) $-(9)$ satisfies

$v(0) \in \mathcal{X}\cap B(\phi;\delta) \Rightarrow \sup_{s\in[0,\infty)}\Vert v(s)-\phi\Vert_{1,2}<\epsilon,$

where $B(\phi;\delta):=\{w\in H_{0}^{1}(\Omega):\Vert\phi-w\Vert_{1,2}<\delta\}.$

(ii) $\phi$ is said to be unstable, if $\phi$ is not stable.

(iii) $\phi$ is said to be asymptotically stable, if $\phi$ is stable, and moreover, there exists
$\delta_{0}>0$ such that any solution $v$ of (7) $-(9)$ satisfies

$v( O)\in \mathcal{X}\cap B(\phi;\delta_{0}) \Rightarrow \lim_{s\nearrow\infty}\Vert v(s)-\phi\Vert_{1,2}=0.$
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Here we enumerate several properties of the set $\mathcal{X}$ in the following:

(i) If $v_{0}\in \mathcal{X}$ , then $v(s)\in \mathcal{X}$ for all $s\geq 0.$

(ii) $\mathcal{X}=\{v_{0}\in H_{0}^{1}(\Omega):t_{*}(v_{0})=1\}$ , which is homeomorphic to a unit sphere in
$H_{0}^{1}(\Omega)$ .

(iii) $S:=$ {nontrivial solutions of (11)} $\subset \mathcal{X}$ $($because, $t_{*}(\phi)=1$ for $\phi\in S$ by (ii)
of Remark 2.5).

(iv) If $v_{0}\in \mathcal{X}$ , then $v(s_{n})arrow\phi$ strongly in $H_{0}^{1}(\Omega)$ with some $\phi\in S$ along some
sequence $s_{n}arrow\infty$ (by Theorem 2.4).

Hence (7)$-(9)$ generates a dynamical system in the phase surface $\mathcal{X}$ . Then solutions
of (11) can be regarded as stationary points of the dynamical system. Therefore the
notions of stability and instability of asymptotic profiles defined above are regarded
as those in Lyapunov’s sense for the stationary points. Moreover, (7)$-(9)$ can be
written as $a$ (generalized) gradient system,

$\frac{d}{ds}|v|^{m-2}v(s)=-\nabla J(v(s)) , s>0, v(0)=v_{0}\in \mathcal{X},$

where $\nabla J$ stands for the Fr\’echet derivative of the functional

$J(w)= \frac{1}{2}\Vert w\Vert_{1,2}^{2}-\frac{\lambda_{m}}{m}\Vert w\Vert_{m}^{m}$ for $w\in H_{0}^{1}(\Omega)$ .

Then one can prove that $s\mapsto J(v(s))$ is non-increasing by multiplying (7) by $\partial_{s}v(x, s)$

and integrating this over $\Omega$ . Here let us recall that $\phi$ is an asymptotic profile if and
only if $\phi$ is a nontrivial solution of (11) $($equivalently, $\nabla J(\phi)=0$ and $\phi\neq 0$). There-
fore one can reveal the stability/instability of profiles by investigating variational
properties of the functional $J$ over $\mathcal{X}$ . However, some difficulties may arise due to
the lack of explicit representation of the functional $t_{*}(\cdot)$ (cf. we can obtain upper and
lower estimates for $t_{*}(\cdot)$ in terms of initial data).

Remark 3.2. Since $m>2,$ $J$ forms a mountain pass structure over the whole of
$H_{0}^{1}(\Omega)$ . Hence $0$ is the unique local minimizer of $J$ and all nontrivial critical points
are saddle points of $J$ . However, our stability analysis will be carried out on the
surface $\mathcal{X}$ in $H_{0}^{1}(\Omega)$ . Hence our conclusion on the stability of profiles will differ from
this observation, and moreover, it would be troublesome to show the instability of
profiles due to the restriction of $\mathcal{X}.$

4 Stability criteria
Let $d_{1}$ be the least energy of $J$ over nontrivial solutions, i.e.,

$d_{1}$

$:= \inf_{v\in S}J(v)$ with $S=$ {nontrivial solutions of (11)}.
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A least energy solution $\phi$ of (11) means $\phi\in S$ satisfying $J(\phi)=d_{1}$ . One can prove
that every least energy solution of (11) is $sign$-definite by using the strong maximum
principle.

In [1], the authors obtained the following criteria for the stability and instability
of asymptotic profiles:

Theorem 4.1 (Stability of profiles [1]). Let $\phi$ be a least energy solution of (11). Then
it follows that

(i) $\phi$ is a stable profile, if $\phi$ is isolated in $H_{0}^{1}(\Omega)$ from the other least energy solu-
tions.

(ii) $\phi$ is an asymptotically stable profile, if $\phi$ is isolated in $H_{0}^{1}(\Omega)$ from the other
sign-definite solutions.

Theorem 4.2 (Instability of profiles [1]). Let $\phi$ be a sign-changing solution of (11).
Then it follows that

(i) $\phi$ is not an asymptotically stable profile.

(ii) $\phi$ is an unstable profile, if $\phi$ is isolated in $H_{0}^{1}(\Omega)$ from any $\psi\in S$ satisfying
$J(\psi)<J(\phi)$ .

Let us exhibit several examples of $\Omega$ and $m$ that satisfy assumptions stated above.
We first note that $sign$-definite solutions are isolated in $H_{0}^{1}(\Omega)$ from all $sign$-changing
solutions. Moreover, least energy solutions are also isolated from all $sign$-definite ones
in the following cases:

Corollary 4.3 (Examples of asymptotically stable profiles [1]). Least energy solutions
of (11) are asymptotically stable profiles in the following cases:

$\bullet$
$\Omega$ is a ball and $2<m<2^{*}$ (see Gidas-Ni-Nirenberg [10]).

$\bullet$
$\Omega\subset \mathbb{R}^{2}$ is bounded and convex and $2<m<2^{*}$ (see $Lin[13]$ and also Dancer
[6], Pacella [14] $)$ .

$\bullet$
$\Omega\subset \mathbb{R}^{N}$ is bounded and $2<m<2+\delta$ (see Dancer [7] and also $Zou[19]$ ).

$\bullet$
$\Omega\subset \mathbb{R}^{N}$ is symmetric with respect to the planes $[x_{i}=0]$ and convex in the axes
$x_{i}$ for all $i=1,2,$ $\ldots,$

$N$ and $2^{*}-\delta<m<2^{*}$ (see Grossi [11]).

As for the instability of $sign$-changing solutions, we have:

Corollary 4.4 (Instability of $sign$-changing least energy profiles [1]). Least energy
solutions among sign-changing solutions (sign-changing least energy solutions, for
short) of (11) are unstable profiles.
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Since $m<2^{*}$ and $\Omega$ is bounded, one can always assure the existence of $sign$-changing
least energy solutions of (11). Moreover, $sign$-changing least energy solutions are
distinct from all nontrivial solutions of (11) with lower energies.

Furthermore, in the one-dimensional case, one can explicitly solve (11),
$-\phi"=\lambda_{m}|\phi|^{m-2}\phi$ in $(0,1)$ , $\phi(0)=\phi(1)=0$ , (12)

and then, the set $S$ of all nontrivial solutions for (12) consists of the $sign$-definite
ones $\pm\phi_{1}$ and the $sign$-changing ones $\pm\phi_{n}$ with $(n-1)$ zeros in $(0,1)$ for $n=2,3,$ $\ldots.$

Moreover, it follows that

$J(\pm\phi_{1})<J(\pm\phi_{2})<\cdots<J(\pm\phi_{n})arrow\infty$ as $narrow\infty.$

In particular, they are distinct from each other. Then all the asymptotic profiles
turned out to be either asymptotically stable or unstable.
Corollary 4.5 (Stability and instability of profiles in $N=1$ ). Sign-definite profiles
are asymptotically stable. All the other profiles are unstable.

5 Sket$ch$ of proof of Theorem 4.1
In order to prove Theorem 4.1, we employ the following facts: From the continuous
dependence of solutions on initial data, we have,

Proposition 5.1 (Continuity of $t_{*}(\cdot)[1]$ ). If $u_{0,n}arrow u_{0}$ weakly in $H_{0}^{1}(\Omega)$ and $(u_{0,n})$

is bounded in $H_{0}^{1}(\Omega)$ , then $t_{*}(u_{0,n})arrow t_{*}(u_{0})$ .
Let us recall that $\mathcal{X}=\{w\in H_{0}^{1}(\Omega):t_{*}(w)=1\}$ . By the proposition above, we

obtain the following lemma.
Lemma 5.2 (Closedness of $\mathcal{X}[1]$ ). If $u_{n}\in \mathcal{X}$ and $u_{n}arrow u$ weakly in $H_{0}^{1}(\Omega)$ , then
$u\in \mathcal{X}.$

Furthermore, we obtain,

Lemma 5.3 (Variational feature of $\mathcal{X}[1]$ ). Let $d_{1}= \inf_{\mathcal{S}}$ J. Then it follows that
$\mathcal{X}\subset[d_{1}\leq J]:=\{v_{0}\in H_{0}^{1}(\Omega):d_{1}\leq J(v_{0})\}.$

Moreover, if $v_{0}\in \mathcal{X}$ and $J(v_{0})=d_{1}$ , then $\nabla J(v_{0})=0.$

This lemma also holds in the Sobolev-critical case $m=2^{*}$ . Here we give a simpler
$pro$of only for the subcritical case $m<2^{*}.$

Proof. Let $v_{0}\in \mathcal{X}$ and assume $J(v_{0})<d_{1}$ . Let $v(s)$ be a solution of (7)$-(9)$ with
$v(O)=v_{0}$ . Then by Theorem 2.4 one can take a sequence $s_{n}arrow\infty$ such that

$v(s_{n})arrow\phi$ strongly in $H_{0}^{1}(\Omega)$ and $\phi\in S.$

Since $s\mapsto J(v(s))$ is non-increasing, we deduce that
$J(v_{0})\geq J(v(s))\geq J(\phi)\geq d_{1},$

which implies a contradiction. Hence $d_{1}\leq J(v_{0})$ .
If $v_{0}\in \mathcal{X}$ and $J(v_{0})=d_{1}$ , then $J(v_{0})= \min_{\mathcal{X}}J$ . Hence $v(s)\equiv v_{0}.$ $\square$
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Denote by $\mathcal{L}\mathcal{E}S$ the set of all least energy solutions of (11). Now, let us assume
that

$B(\phi;r)\cap \mathcal{L}\mathcal{E}S=\{\phi\}$ (13)

with some $r>0.$

Claim 5.1. For any $\epsilon\in(0, r)$ , it holds that

$c:= \inf\{J(v):v\in \mathcal{X}, \Vert v-\phi\Vert_{1,2}=\epsilon\}>d_{1}.$

Remark 5.4. Here we remark that the infimum of $J$ over any small sphere centered
at $\phi$ in $H_{0}^{1}(\Omega)$ is never greater than $d_{1}$ , because $\phi$ is a saddle point. This claim would
be essential in our proof.

Assume on the contrary that $c=d_{1}$ , i.e., there exits $v_{n}\in \mathcal{X}$ such that

$\Vert v_{n}-\phi\Vert_{1,2}=\epsilon$ and $J(v_{n})arrow d_{1}.$

Since $m<2^{*}$ , it entails that, up to a subsequence,

$v_{n}arrow v_{\infty}$ weakly in $H_{0}^{1}(\Omega)$ and strongly in $L^{m}(\Omega)$ .

By Lemmas 5.2 and 5.3, we obtain

$v_{\infty}\in \mathcal{X}$ , and hence, $d_{1}\leq J(v_{\infty})$ .

Therefore it follows that

$\frac{1}{2}\Vert v_{n}\Vert_{1,2}^{2}=J(v_{n})+\frac{\lambda_{m}}{m}\Vert v_{n}\Vert_{m}^{m}$

$arrow d_{1}+\frac{\lambda_{m}}{m}\Vert v_{\infty}\Vert_{m}^{m}\leq J(v_{\infty})+\frac{\lambda_{m}}{m}\Vert v_{\infty}\Vert_{m}^{m}=\frac{1}{2}\Vert v_{\infty}\Vert_{1,2}^{2}.$

By using the weak lower semicontinuity,

$\lim_{s_{n}arrow}\inf_{\infty}\Vert v_{n}\Vert_{1,2}\geq\Vert v_{\infty}\Vert_{1,2}$ ,

and the uniform convexity of $\Vert\cdot\Vert_{1,2}$ , we deduce that $v_{n}arrow v_{\infty}$ strongly in $H_{0}^{1}(\Omega)$ .
Hence $\Vert v_{\infty}-\phi\Vert_{1,2}=\epsilon$ and $J(v_{\infty})=d_{1}.$

We have proved that

$v_{\infty}\in \mathcal{X},$ $J(v_{\infty})=d_{1}$ and $\Vert v_{\infty}-\phi\Vert_{1,2}=\epsilon.$

Hence $v_{\infty}\in \mathcal{L}\mathcal{E}S$ by Lemma 5.3. However, the fact that $\Vert v_{\infty}-\phi\Vert_{1,2}=\epsilon<r$

contradicts (13). $\square$

Let $\epsilon\in(0, r)$ be arbitrarily given. Choose $\delta\in(0, \epsilon)$ so small that

$J(v)<c$ for all $v\in B(\phi;\delta)$ .

Here it is possible, because $c>d_{1}=J(\phi)$ by Claim 5.1, and $J$ is continuous in
$H_{0}^{1}(\Omega)$ . For any $v_{0}\in \mathcal{X}\cap B(\phi;\delta)$ , let $v(s)$ be a solution of (7)$-(9)$ . Then $v(s)\in \mathcal{X}.$
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Claim 5.2. For any $s\geq 0_{f}v(s)\in B(\phi;\epsilon)$ , and hence $\phi$ is stable.

Assume on the contrary that $v(s_{0})\in\partial B(\phi;\epsilon)$ at some $s_{0}>0$ . By the definition
of $c$ , it holds that

$c\leq J(v(s_{0}))$ .

However, it contradicts the fact that $J(v(s_{0}))\leq J(v_{0})<c.$

Moreover, if $\phi$ is isolated from all $sign$-definite solutions of (11), then $v(s_{n})$ con-
verges strongly in $H_{0}^{1}(\Omega)$ to $\phi$ along some sequence $s_{n}arrow\infty.$

6 Sket$ch$ of proof of Theorem 4.2
Let $\phi$ be a $sign$-changing solution of (11) (hence $\phi$ admits more than two nodal
domains).

Claim 6.1. The function $\phi$ is not an asymptotically stable profile.

Let $D$ be a nodal domain of $\phi$ and define

$\phi_{\mu}(x)\cdot=\{\begin{array}{ll}\mu\phi(x) if x\in D,\phi(x) if x\in\Omega\backslash D\end{array}$ for $\mu\geq 0$

(Note: $\phi_{\mu}$ might not belong to $\mathcal{X}$). Then one can observe that
$\bullet$ $\phi_{\mu}arrow\phi$ strongly in $H_{0}^{1}(\Omega)$ as $\muarrow 1,$

$\bullet$ if $\mu\neq 1$ , then $J(c\phi_{\mu})<J(\phi)$ for any $c\geq 0.$

Moreover, we set

$u_{0,\mu}:=\phi_{\mu}, \tau_{\mu}:=t_{*}(u_{0,\mu}) , v_{0,\mu}:=\tau_{\mu}^{-1/(m-2)}u_{0,\mu}\in \mathcal{X}.$

It then follows that
$\bullet$ $\tau_{\mu}arrow t_{*}(\phi)=1$ and $v_{0,\mu}arrow\phi$ strongly in $H_{0}^{1}(\Omega)$ as $\muarrow 1,$

$\bullet$ if $\mu\neq 1$ , then $J(v_{0,\mu})<J(\phi)$ .

Hence the solution $v_{\mu}(s)$ of (7)$-(9)$ with $v_{\mu}(O)=v_{0,\mu}$ never converges to $\phi$ as $sarrow\infty.$

Therefore $\phi$ is not an asymptotically stable profile.

Remark 6.1 (Another deformation of $\phi$). One can also deform $\phi$ in a simpler way
such as $\psi_{\mu}$ $:=\mu\phi$ . Then we observe

$J(\psi_{\mu})<J(\phi)$ if $\mu\neq 1,$

and this fact entails that every nontrivial solution is not $a$ (local) minimizer of $J$ over
$H_{0}^{i}(\Omega)$ . However, we find that $\phi_{\mu}\not\in \mathcal{X}$ , and moreover,

$\hat{v}_{0,\mu}:=t_{*}(\psi_{\mu})^{-1/(m-2)}\psi_{\mu}$

belongs to $\mathcal{X}$ and coincides with $\phi$ for any $\mu\in \mathbb{R}$ . Hence $J(\hat{v}_{0,\mu})=J(\phi)$ , and the
argument above might not follow.
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In addition, let us assume that

$\overline{B(\phi;R)}\cap\{\psi\in S:J(\psi)<J(\phi)\}=\emptyset$ (14)

with some $R>0.$

Claim 6.2. If $\mu\neq 1$ , then $v_{\mu}(s)\not\in\overline{B(\phi;R)}$ for any $s\gg 1.$

Assume on the contrary that $v_{\mu}(s_{n})\in\overline{B(\phi;R)}$ with some sequence $s_{n}arrow\infty.$

Then by Theorem 2.4, we deduce that, up to a subsequence,

$v_{\mu}(s_{n})arrow\psi$ strongly in $H_{0}^{1}(\Omega)$

with some $\psi\in\overline{B(\phi;R)}\cap S$ . Moreover, we have

$J(\psi)\leq J(v_{0,\mu})<J(\phi)$ ,

which contradicts (14). Thus $\phi$ is an unstable profile.

7 Global dynamics for the rescaled problem

The final section is devoted to further discussion of the surface $\mathcal{X}$ , which was a
phase space in our stability analysis, and then, we shall reveal the global dynamics
of solutions to the rescaled problem (7)$-(9)$ for any data $v_{0}\in H_{0}^{1}(\Omega)$ .

The following proposition classifies the whole of the energy space $H_{0}^{1}(\Omega)$ in terms
of large-time behaviors of solutions for (7)$-(9)$ (cf. see [9] for the semilinear heat
equation), and in particular, $\mathcal{X}$ is a separatrix between the stable and unstable sets.

Proposition 7.1 (Characterization of $\mathcal{X}$). Let $v(s)$ be a solution of (7) $-(9)$ with
$v(O)=v_{0}$ . Then it follows that

(i) If $v_{0}\in \mathcal{X}=\{v_{0}\in H_{0}^{1}(\Omega):t_{*}(v_{0})=1\}$ , then $v(s_{n})$ converges to some nontrivial
solution $\phi$ of (11) strongly in $H_{0}^{1}(\Omega)$ along some sequence $s_{n}arrow\infty.$

(ii) If $v_{0}\in \mathcal{X}^{+}:=\{v_{0}\in H_{0}^{1}(\Omega):t_{*}(v_{0})>1\}$, then $v(s)$ blows up in infinite time.
Hence $\mathcal{X}^{+}$ is an unstable set.

(iii) If $v_{0}\in \mathcal{X}^{-}$ $:=\{v_{0}\in H_{0}^{1}(\Omega):t_{*}(v_{0})<1\}$ , then $v(s)$ vanishes in finite time.
Hence $\mathcal{X}^{-}$ is a stable set.

Moreover, $\mathcal{X}$ does not coincide with the Nehari manifold of $J,$

$\mathcal{N}:=\{w\in H_{0}^{1}(\Omega):\langle\nabla J(w), w\rangle=0\}.$

Furthermore, $\mathcal{X}$ is surrounded by $\mathcal{N}(i.e., \mathcal{N}\subset \mathcal{X}\cup \mathcal{X}^{+})$ and $\mathcal{N}\cap \mathcal{X}=S.$
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We finally give conceptual diagrams of the mountain pass structure of the Lya-
punov functional $J$ and two surfaces $\mathcal{X}$ and $\mathcal{N}$ with critical points of $J$ on $H_{0}^{1}(\Omega)$ for
the one-dimensional case in Fig.1, where the thick gray curve and the dashed curve
denote the sets $\mathcal{X}$ and $\mathcal{N}$ , respectively. Moreover, the thick arrows mean the flow
of the dynamical system generated by the rescaled problem (7)$-(9)$ in the whole of
$H_{0}^{1}(\Omega)$ . The dots stand for critical points of $J$ ; in particular, $\pm\phi_{1}$ denote least energy
solutions (i.e., positive and negative ones) and $\pm\phi_{2}$ denote the $sign$-changing least
energy solutions $(with only one node in (0,1)$ ).

The least energy solutions $\pm\phi_{1}$ are saddle points of $J$ over $H_{0}^{1}(\Omega)$ . However, the
flow of the dynamical system generated by (7)$-(9)$ is invariant over $\mathcal{X}$ , and therefore,
$\pm\phi_{1}$ become (asymptotically) stable in our stability analysis.

$J(u)$

Fig.1. The mountain pass structure of the Lyapunov functional $J$ and two surfaces
$\mathcal{X}$ and $\mathcal{N}$ with critical points of $J$ on $H_{0}^{1}(\Omega)$ .
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