
Degree of Nondeterminism
for Pushdown Automata

IBARAKI Tatsuya* and KUBOSAWA Shumpei\dagger

1 Introduction
While time complexity and space complexity are commonly studied in computer
science, complexity with respect to nondeterminism for pushdown automata
(PDA) is not known widely. We thought that we can measure nondeterminism
of a PDA by a function which maps an input length n of the PDA to the
maximum number of nondeterministic transitions required to accept the input.

In this paper, we first define the measure of nondeterminism for pushdown
automata, and then consider the measure of nondeterminism for certain context-
free languages (CFL).

While we were preparing materials of this presentation, we found similar
definitions and applications of this kind of complexity in the literature. They
are Salomaa et al. [1] and Goldstine et al. [2]. But, since the languages they
consider are different from ours, we think it worth to present our original ones
in this paper.

2 Preliminaries
The definition of PDA which we use here is similar to the definition given by
M. Sipser [3]. In this paper we consider only non-deterministic PDA’s.

Definition 2.1
For any alphabet A we denote $A\cup\{\epsilon\}$ by A_{ϵ} . We define non-deterministic PDA

as a 6-tuple
$\Lambda I=(Q, \Sigma, \Gamma, \delta, q_{0}, F)$

where Q is a finite set of states, Σ is an input alphabet, Γ is a stack alphabet,
δ : $Q\cross\Sigma_{\epsilon}\cross\Gamma_{\epsilon}arrow\wp(Q\cross\Gamma_{\epsilon})$ is a transition function, $q_{0}\in Q$ is an initial state
and $F\subseteq Q$ is a set of final states.

For these pushdown automata, we define acceptance by final state acceptance
rather than by empty-stack acceptance.

*Faculty of Commerce and Management, Hitotsubashi University
\dagger Faculty of Social Sciences, Hitotsubashi University

数理解析研究所講究録
第 1846巻 2013年 27-34 27

Definition 2.2
Let $M=(Q, \Sigma, \Gamma, \delta, q_{0}, F)$ be a PDA . We define a configuration of M by a tuple
$c=(r, w, s)$ where $r\in Q_{i}w\in\Sigma^{*}$ and $s\in\Gamma^{*}$ $Acon$figuration $c=(r, w, s)$ is
an accepting configuration when $r\in F$ and $w=\epsilon$. For any two configurations
$c_{1}=(r_{1}, w_{1}, s_{1})$ and $c_{2}=(r_{2}, w_{2}, s_{2})$, we say that there is a transition from c_{1} to
$c_{2},$ $c_{1}\vdash c_{2}$, if $(r_{2}, b)\in\delta(r_{1}, x, a)$ where $w_{1}=xw_{2}$ for $x\in\Sigma_{\epsilon}$ and $s_{1}=at,$ $s_{2}=bt$

for $a,$ $b\in\Gamma_{\epsilon}$ and $t\in\Gamma^{\star}$ A sequence of configuration $C=(c_{0}, c_{1}, \ldots, c_{m})$ for
$m\in \mathbb{N}$ is a computation of M when $c_{i}\vdash c_{i+1}$ for all $0\leq i\leq m-1.$ A

computation $C=(c_{0}, c_{1}, \ldots, c_{m})$ is an accepting computation for $w\in\Sigma^{\star}$ if
$c_{0}=(q_{0}, w, \epsilon)$ and c_{m} is an accepting configuration. When there is at least one
accepting computation for $w,$ M accepts w . The language accepted by M is
$L(M)=$ { $w\in\Sigma^{\star}|w$ is accepted by $M.$ }.

3 Degree of nondeterminism
Let $M=(Q, \Sigma, \Gamma, \delta, q_{0}, F)$ be a PDA . For each configuration c on M , we define
$\nu_{M}(c)$ by

$\nu_{M}(c)=\{\begin{array}{ll}0 if \#\{c’|c\vdash d\}<21 if \#\{c’|c\vdash c’\}\geq 2\end{array}$

For each computation $C=(c_{0}, c_{1}, \ldots, c_{m})$ of M , we define $\nu_{M}(C)$ by

$\nu_{M}(C)=\sum_{i=0}^{m-1}\nu_{M}(c_{i})$.

For all $w\in L(M)$, we define $\nu_{M}(w)$ by

$\nu_{M}(w)=\min${ $\nu_{M}(C)|C$ is an accepting computation of M for w }.

For all $n\in \mathbb{N}$. we define $v_{M}(n)$ by

$\nu_{M}(n)=\{\begin{array}{ll}\max\{\nu_{M}(w)|w\in L(M)^{(n)}\} if L(M)^{(n)}\neq\phi 0 if L(M)^{(n)}=\phi\end{array}$

For a function f : $\mathbb{N}arrow \mathbb{N}$, we say that M runs at nondeterministic degree of
$f(n)$, if $\nu_{M}(n)\leq f(n)$ for all $n\in \mathbb{N}.$ \mathbb{R}rthermore, for a function t : $\mathbb{N}arrow \mathbb{N}$, vve
define the class $ND(t(n))$ of languages by

$ND(t(n))=\{L|L=L(M)$ and M runs at nondeterministic degree of $\mathcal{O}(t(n))$

for some $PDAM$}.

4 A language in $ND(\log n)$

Definition 4. 1 (language)
Let a sequence $\{c_{t}\}_{t=0}^{\infty}$ of strings on $\Sigma=\{0, \#\}$ be defined as follows:

28

$\{\begin{array}{ll}c_{t}=0 t=0c_{t}=c_{t-1}\# 0^{2^{t}} t\geq 1\end{array}$

Let L_{1} and L_{2} be defined by

$L_{1}=\{c_{t}|t\geq 1\}$

and
$L_{2}=\overline{L_{1}}(=\Sigma^{*}\backslash L_{1})$.

Here are $some$ examples of strings contained in $L_{1}.$

0#00
0#00#0000
0#00#0000#00000000

Theorem 4.1
L_{2} has nondeterministic degree of $\mathcal{O}(\log n)$, i.e.,

$L_{2}\in ND(\log n)$.

The idea of following proof is that if M , a recognizer of L_{2} , read a string
w with nondeterministic transitions only when M read a $\#$, the number of
nondeterministic transitions never exceed $\log|w|$. This is because if a string w

which contains more $\#$ ’s than the string which is in L_{1} with the same length,
M accepts w before arriving at the terminal.

Proof of Theorem 4.1
We prove this theorem by showing the existence of $PDAM$ that accepts L_{2}

and runs by nondeterministic degree of $\mathcal{O}(\log n)$. Here we define that the stack
alphabet of M is { X , $}. And we denote a sequence of 0 ’s by a “block” and
blank symbol on the input tape as $B.$

We construct M as follows.
$M=On$ input string w :

Step 1 Push $ onto the stack.
Step 2 If the input head reads $0,$ $pushX$ onto the stack.

If the input head reads $\#$, ACCEPT.
Step 3 $\langle\langle$ Nondeterministic step $\rangle\rangle$

If the input head reads $\#$, nondeterminisitically either go
to Step 4 or $Step5.$

If the input head reads 0, push XX onto the stack and go to
Step 3.

Step4 Clear the stack and go to step 3.
Step 5 (Check the number of 0’s-main process)

If the input head reads 0 and the stack head reads X , pop X

up from the stack and go to Step 5.
If the input head reads 0 and the stack head reads $ up from
the stack, go to step 6. If the input head reads B, ACCEPT

29

Step 6 If the input head reads 0, ACCEPT.

First, it is clear that M accepts $L.$

Next, we show that M runs at nondeterministic degree of $\mathcal{O}(\log n)$.
By the definition of M, the number of M ’s guessing steps is less than or equal

to the number of $\# s$ in Step 3.
Therefore, it suffices to show that number of $\# s$ in c_{t} is less than a constant

multiple of $\log|c_{t}|.$

$|c_{t}|= \sum_{k=0}^{t}(2^{k}+1)-1=2^{t+1}+t-1$

$\log(|c_{t}|-t+1)-1=t$

Therefore we have
$t\leq\log|c_{t}|.$

\square

5 A language in $ND(\sqrt{n})$

In order to describe the next example, we use directed graphs expressed by
adjacency matrices. A source is a node with at least one outgoing arc and no
incoming arc. A sink is a node with no outgoing arcs and at least one incoming
arc.

Now, we introduce another type of node which we call a quasi-sink.

$quasi-\nearrow_{\uparrow_{\wedge}’\nearrow}sink4_{\backslash _{\backslash }}?sink$

Figure 1: Quasi-sink and sink

Definition 5.1
A quasi-sink is a node of a directed graph with exactly one outgoing arc which
goes to some sink and no other outgoing arcs. (It may have any number, in-
cluding 0, of incoming arcs.)

In this paper, an adjacency matrix is converted into a string in the following
way.

$(\begin{array}{lllll}1 0 1 0 l0 0 0 0 00 0 1 1 10 1 0 0 01 0 l 1 0\end{array})arrow\# 10101\# 00000\# 00111\# 01000\# 10110$

30

Each row is serially aligned from left to right and separated by $\#’ s.$

Definition 5.2
For an alphabet $\Sigma=\{0,1, \#\}$ and $l\geq 0$ let Σ^{l} denote the set of strings over
Σ whose length is l . Let $L_{AM}=\{w|^{\exists}l\in \mathbb{N}, w\in(\#\{0,1\}^{\iota})^{\iota}\}$ which consists of
adjacency matrices expressed by strings as described above. Now, let

$L_{1}=\Sigma_{\backslash }^{*}L_{AM}$

and L_{2} be the language consisting of strings which correspond to adjacency
matrices of directed graphs with at least one quasi-sink. Finally we define that

$L_{qs}=L_{1}^{\cup}L_{2}.$

Theorem 5.1
L_{qs} has nondeterministic degree of $\mathcal{O}(\sqrt{n})$, i.e.,

$L_{qs}\in ND(\sqrt{n})$.

Before proving the theorem, we explain how our recognizer of L_{qs} works.
L_{qs} is the union of two languages L_{1} and L_{2} as above.

L_{1} can further be classified in two cases.
One is the case where there exist at least one pair of adjacent rows with

different length. In this case, the recognizer only guesses at each $\#$ ’s till it reads
rows whose length is equal to the next row. Here is an example of those strings.

#01000
#00101
#10000
#00110
#0000

In the above case, the recognizer nondeterministically transit only four times.
At the first three $\#’ s$, the machine guesses whether compare the following row
and the next row, or not. But at the fourth $\#$, the recognizer has a chance to
accept the input because the length of the fourth and the fifth row are different.
So $v_{M}(n)\leq\sqrt{n}$ holds. In this case, $n=29$ and $4<\sqrt{29}$ where M is the
recognizer.

The other case is the case where a string forms a matrix, but it is not a
square matrix. The followings are examples of those strings.

#01010
#01010000101010#00101
#10111111101111

#00000
$\# 010101i1010101$

#00100

31

To accept these strings, the recognizer is required to guess only at the first $\#.$

In other words, the machine needs to compare the length of the first row and
the number of columns.

L_{2} can be accepted with less than or equal to \sqrt{n} nondeterministic transi-
tions if the stack is efficiently used. The recognizer needs to transit its state
nondeterministically at each $\#$ before arriving at the quasi-sink or sink row. So
the number of guessing does not exceed the square root of the input length.

$\#_{\phi} 10011011$

$si*\#_{A}00000000$
#10110111

input string

Figure 2: An adjacency matrix with quasi-sink and sink

Encircled letters in Figure 2 indicate the places where nondeterministic tran-
sitions occur. Pushing operations occur at these places. So after reading 5th $\#,$

there is 5 letters on the stack of the recognizer.
In this figure, tiny arrows located at right-bottom of some letters mean stack

operation. The direction of arrows indicates the direction of the result of an
operation on the stack. Downward arrows depict popping of one letter, and
upward ones depict pushing. And downward arrows with bottom bar express
clearing of the stack by the last popping.

Proof of Theorem 5.1
We prove it by construction of the $PDAM$ which runs by nondeterministic
degree of $\mathcal{O}(\sqrt{n})$ and recognizes L_{qs} as follows. Here the stack alphabet of M

is $\{{\}, X\}.$

$M=On$ input string w :
$Step1$ If the input head reads $\#$, push $ onto the stack.

Otherwise, ACCEPT.
Step 2 $\langle\langle$ Nondeterministic step $\rangle\rangle$

Nondeterministically go to $Step3$, go to Step 4, go to $Step$

5 or go to Step 6.
Step 3 $\langle\langle$ Nondeterministic step $\rangle\rangle$

Nondeterministically process either following (a) or (b) .

32

(a) Check th e length of current row and that of the next row.
If these rows are different, ACCEPT.

(b) Do nothing while th e head read current row.
And go to Step 3.

Step 4 (Check if the number of rows and columns are different.)
Pop two let ters up from the stack.
While the input head reads 0 or 1, push X onto the stack.
If the input head read $\#$ and the stack head reads X, pop X

up from the stack an d do nothing while reading following 0 or
1.
If the input head read $\#$ and the s tack $head$ reads$, ACCEPT.
If the input head read B and the stack head reads $, REJECT.
Otherwise, ACCEPT.

Step 5 (Check if a quasi-sink exist prior to the sink.)
In this case, M can decide in the way we described above with
Figure 2.

Step 6 $\langle\langle$ Nondeterministic step $\rangle\rangle$

Nondeterministically process either following (a) or (b) .
(a) If the input head reads 0, repeat this step.

If th e input h ead reads 1, REJECT.
If the input head reads $\#$ and the stac head reads X, pop

X from the stack and go to Step 7.
(b) If the input head reads 0 or 1, repeat this step.

If the input head reads $\#$, push X onto the stack and go
to Step 6.

Step 7 $\langle\langle$ Nondeterministic step $\rangle\rangle$

Nondeterministically process either following (a-l) or (b) .
(a-l) If the input head reads 0 an d the stack head reads $X,$

pop X from the stack and repeat this step.
If the input head reads 1 and the stack head reads $, go

to (a-2).
(a-2) If the input head reads 0, continue (a-2).
(a-3) If the input head reads $\#$ or B, ACCEPT.
(b) If the input head reads 0 or 1, repeat this step.

If the input head reads $\#$, go to $Step7$. “

On this PDA , the number of nondeterministic transitions required to L_{1}

and a half part of L_{2} is stated above. So here we describe why the other
part of L_{2} can be recognized by nondeterministic degree of $\mathcal{O}(\sqrt{n})$. In step 6,
nondeterministic transitions only occur at each $\#’ s$. And it is clear that the input
forms adjacency matrix in this case. Otherwise such input string is accepted
by step 3 or step 4. The worst case of this part is that a $quasi$-sink is located
at the last row. In this case, nondeterministic transitions occur r times if the
input matrix consists of r rows. Now this string contains $r\#$ ’s and r^{2} numbers,
so the length is $r+r^{2}$ Hence the number of nondeterministic transitions r is
always less than $\sqrt{|w|}=\sqrt{r+r^{2}}.$ \square

33

6 Conclusion
We have defined the degree of nondeterminism for pushdown automata, and
obtained an upper bound of the degree of nondeterminism for two languages.
The first language can be recognized by a pushdown automaton which runs by
nondeterministic degree of $\mathcal{O}(\log(n))$, so it is in $ND(\log(n))$. And the second
one is in $ND(\sqrt{n})$.

7 Acknowledgment
We thank all the participants of “RIMS Research Meeting” held in October
2009. And let us express our heartfelt appreciation to Professor Machida for
giving us the oppotunity to make this presentation.

References
[1] K. Salomaa, D. Wood, S. Yu, Pumping and pushdown machines, Inform.

Th\’eor. Appl. 28 (1994) 221-232.

[2] J. Goldstine, H. Leung, D. Wotschke. Measuring nondeterminism in push-
down automata, J. Comput. System Sci. 71 (2005) 440-466.

[3] M. Sipser, Introduction to the Theory of Computation, Second Edition,
Thomson, MA, 2006.

34

