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Abstract

A system of equivalence relations on a base set $A=\{1, \ldots,n\}$ is semirigid if only the trivial functions
(i.e., projections and constant functions) preserve all the equivalence relation jointly. First we explore
properties of semirigid systems $R$ of equivalence relations, especially we show that the graph correspond-
ing to a such system has doubly-comectedness property. We show that $R=\{\theta_{12},\theta_{2{\},}\theta_{n-1,*},\theta_{*1}\}$ (a
loop of $n$ nodes connected by distinctively colored $n$ edges) is semirigid where $\theta:j$ is a minimum partition
of $A$ which has sole non-singleton block $\{i,j\}$ . In the last part of the paper we show that $n$ is the
minimum of $|R|$ such that $R$, a subset of $\{\theta_{:j} : 1\leq i<j\leq n\},$ $g^{r}ows$ into semirigidity. For the proof we
present a notion of compositions of two semirigid systems and show as a main theorem that it preserves
$\infty m\ddot{m}$gidity. We also exhibit that the compositions yield a variety of semirigid systems.

1 Introduction

Let $n$ be a positive integer $n>2$ and set $A=\{1, \ldots, n\}$ . For all positive integers $m$

denote by $O^{(m)}$ all meary functions (operations) of the $r\vdash$-valued logic; i.e., the set of maps
$f$ : $A^{m}arrow A$ . In particular $O^{(1)}$ is the set of all selfinaps of $A$ . Then $O= \bigcup_{m=1}O^{m}$ is the
set of $r\vdash$-valued functions. An $m$-ary function $f(x)$ is called i-th projection if $f(x)=x_{i}$ for
all $x=(x_{1}, \ldots, \ldots,x_{m})\in A^{m}$ for some $1\leq i\leq m$ . In particular, the identity selfinap $e$ of
$A$ , defined by setting $e(x)$ $:=x$ for all $x\in A$ , belongs to $O^{(1)}$ . An mary function $f(x)$ is a
constant if $f(x)=c$ for all $x\in A^{m}$ , where $c$ is an element from $A$ . The set $K$ of projections
and all constant functions are called trivial functions. $A$ clone $C\subseteq O$ is a composition closed
subset of $O$ and by definition it contains all projections. The sets $K$ and $O$ are clones. For
a clone $C$ its unary part $C^{(1)};=C\cap O^{(1)}$ is the foundation of $C$ . We call a set $R$ of relations
on A semirigid if the set of functions which preserves every relation in $R$ coincides with the
trivial functions. The study of semirigidity of relational system has important theoretical
apphcations [4]. For example, every semirigid relational system from equivalence relations
is a generator of the congruence lattices on $A[8]$ . We focus our attention on equivalence
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relations. In [8] it is shown that the minimum number of the elements of a semirigid system
$R$ of equivalence relations is three and a system of three concrete partitions is given. $A$ new
proof of its semirigidity by using a purely relational method [1, 2] is given in [5]. We represent
a system of equivalence relations by a colored graph where the set of nodes is the base set
and edges represent binary relations whereby each relation is distinguished by its color. In
this paper we explore properties of semirigid systems of equivalence relations. We show that
if the system is semirigid then every edge of the graph is doubly connected (i.e., every two
nodes at the ends of an edge are connected by a second path which uses only edges colored
differently from the color of the edge). We show that $R=\{\theta_{12}, \theta_{23}, \ldots, \theta_{n-1,n}, \theta_{n1}\}$ (a loop
of $n$ nodes connected by distinctively colored $n$ edges) is semirigid, where $\theta_{1j}$ is a minimum
partition of $A$ which has sole non-singleton block $\{i,j\}$ . Then we introduce an intuitive
notion of graphical compositions of systems of equivalence relations. As a main theorem
we show that the composition preserves semirigidity (for the proof we use the existence of
a second path). As a consequence of compositions we show that $n$ is the minimum of $|R|$

such that $R$ , a subset $R$ of $\{\theta_{1j} : 1\leq i<j\leq n\}$ , is semirigid. This answers the question of
determining a minimum number of different $\{\theta_{ij}\}$ so that the subset grows into a semirigid
system. We also show that a variety of semirigid systems can be obtained through the
composition of semirigid systems.

The main idea was given in [5]. Here we present a full proof of the main theorem. We
also give further problems which involve the notion of compositions.

2 Semirigid equivalence relations

Let $A$ be a finite set $(|A|>2)$ . Denote $A$ by the numbers $\{$ 1, $\ldots,$
$n\}$ . An equivalence relation

on $A$ is a reflexive, symmetric and transitive relation on $A$ and it is a partition of $A$ . We
denote the set of all equivalence relations on $A$ by $E$ . Let $\alpha,$ $\beta\in E$ . Call $\alpha,$ $\beta\in E$ orthogonal
if $\alpha\cap\beta=\Delta_{A}=\{(a, a) : a\in A\}$ , i.e., no subset other than a singleton node belongs to two
blocks each from the two partitions.

It is shown in [8]:

Theorem 1. The following three equivalence relations $\rho,$ $\sigma,$ $\tau$ on $A$ are semirigid.

Case $n=2k+1$ for $k\geq 1.$

$\rho= (\{1,3, \ldots , 2k+1\}, \{2,4, \ldots, 2k\})$

$\sigma = (\{1,2\}, \{3,4\}\ldots, \{2k-1,2k\})$

$\tau = (\{2,3\}, \{4,5\}\ldots, \{2k, 2k+1\})$
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Figure 1: Zadori’s semirigid system $z_{k}$ of three equivalence relations $(n=5,k=2)$

Case $n=2k+2$ for $k>1.$

$\rho= (\{1,3, \ldots, 2k+1\}, \{2,4, \ldots, 2k\})$

$\sigma = (\{1,2,2k+2\}, \{3,4\}\ldots, \{2k-1,2k\})$

$\tau = (\{2,3\}, \{4,5\}\ldots, \{2k, 2k+1,2k+2\})$

In Fig 1 we show $z_{k}$ the three relations $\rho,$ $\sigma.\tau$ for $n=5,$ $k=2$ (in the figure {1, 3, 5} is a
block). Note that $\rho$ separates $A$ into the two large components and the blocks from both $\sigma$

and $\tau$ bridge the components. The 3 relations are orthogonal one another. The bridges are
conveniently represented by edges in the graph (where each element from $A$ is a node).

Thus we may represent an equivalence relation by a non-directed graph: the set of nodes
(vertices) of the graph is the set $A$ and each two distinct nodes (pair) is connected by an
edge if and only if it is included in a block of a partition. So each block forms a clique in this
graph. We distinguish two partitions by different colors and for a set of equivalence relations,
we can superpose them on a single graph. Then, the orthogonality of two partitions means
that no edge belongs to two blocks with different colors.

We give a lemma (recall that $K$ is the clone consisting only of trivial functions).

Lemma 2.(Reduction lemma $[6J)$ Let $A>2$ . Then $K^{(1)}$ is the foundation of $a$ done $C$ on
$A$ if and only if $C=K.$

So, semirigidity property of relations can be tested only on unary functions. It is easy to
prove the following simple property of semirigid system.

Lemma 3. If a system $R=(A, \rho_{1}, \ldots, \rho_{k})$ of equivalence relations on $A$ is semirigid, then
each pair of distinct nodes is covered by some block of a partition from $R.$

Proof. Assume that node 1 is not covered by any relation in our graph. Define a unary
function $f$ by setting $f(a)=1$ if $a\neq 1$ for all $a\in A$ and $f(1)=2$. It is easy to check that
any relation $\rho_{i}$ preserves $f$ and $f$ is not a trivial function. $\square$

So if we draw a graph of semirigid system $R$ on the node set $A$ (each partition is distin-
guished by a color), there is no isolated node in our graph. Thus our graph is a connected
colored graph.
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Figure 2: There is no second path between nodes 2 and 6.

3 Properties of semirigid systems of relations

In this section we assume that every relation is on a finite set $A$ . For a set of equivalence
relations $\rho_{1},$

$\ldots,$
$\rho_{k}$ we denote the equivalence relation $\theta$ generated by the union $\rho_{1}\cup\ldots\cup\rho_{k}$

by $\theta=\rho_{1}\vee\ldots\vee\rho_{k}$ , i.e., $x\theta y$ if $x=x_{0},$ $\ldots,$ $x_{m}=y$ and $(x_{i}, x_{i+1})\in\rho j$ for some $1\leq j\leq m.$

Lemma 4. (Eststence of a second path) Assume $(A, \rho_{1}, \ldots, \rho_{k})$ is semirigid. Then for every
$j$ we have

$\rho_{j}\subseteq V_{j^{\rho_{i}}}*\cdot\neq$

(1)

i.e., if $x\rho_{j}y$ then there is a second path connecting $x$ and $y$ via $\rho_{j},$ $j\neq i$ , meaning $x=$

$x_{0},x_{1},$ $\ldots,$ $x_{m}=y$ with $x_{t-1\rho j_{t}^{X_{t},j_{t}}}\neq i$ for every $t=1,$ $\ldots,$ $m.$

Proof. Suppose that $(A, \rho_{1}, \ldots, \rho_{k})$ is semirigid. Let $(x, y)\in\rho_{1}$ with $x\neq y$ . Let $\theta=$

$\rho_{2}\vee\ldots\vee\rho_{k}$ . We are to prove $(x, y)\in\theta$ . Suppose not. Let $E_{\theta}(y)$ be the equivalence class of
$y$ with respect to $\theta$ , i.e., $E_{\theta}(y)=\{z:z\theta y\}$ . Let $f$ : $Aarrow A$ be a map defined by

$f(z)=\{\begin{array}{ll}x : if z\not\in E_{\theta}(y)y : if z\in E_{\theta}(y)\end{array}$

The map $f$ is not a trivial function provided $|A|>2.$

Claim. $f$ preserves $\rho_{1},$
$\ldots,$

$\rho_{k}$ . Let $i,$ $i=1\ldots,$ $k$ and $(a, b)\in\rho_{i}$ . We have to prove that
$(f(a), f(b))\in\rho_{i}$ . Suppose not, then first $f(a)\neq f(b)$ . Next $i\neq 1$ . With no loss of generality
we may suppose $f(a)=x$ and $f(b)=y$ . By definition $b\in E_{\theta}(y),$ $a\not\in E_{\theta}(y)$ , hence $(a, b)\not\in\theta.$

But $(a, b)\in\rho_{*}$. and $i\neq 1$ , and $\theta=\rho_{2}\vee\ldots\vee\rho_{k}$ , thus $(a, b)\in\theta.$ $A$ contradiction. $\square$

In Fig. 2 we give an example of a graph (with 3 colors) having no second path (there is no
second path between nodes 2 and 6). In Fig. 3 we give an example of doubly connected graph
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Figure 3: Non semirigid doubly connected graph (6 colors)

(with 6 colors) that is not semirigid (so doubly connectedness is not a sufficient condition
for semirigidity).

Corollary 5. If $(A, \rho_{1}, \ldots, \rho_{k})$ is semiigid, then there is no node urith the degree (i.e., the
number of edges connected to the node) $=1.$

Proof. Assume that $(a, b)\in\rho_{1}$ and assume that there is no element of the form $(b,x)$ ,
$x\neq a,$ $b$ in $\rho_{i},$ $i=2,$ $\ldots,$

$k$ (the degree of the node $b$ is 1 and it is a pendant node in the
graph made from this semirigid system). Then obviously there is no path which connect $b$

and $a$ not via $\rho_{1}$ . This contradicts to Lemma 4. $\square$

$Th\infty rem6$ . An $n$-loop $R=\{\theta_{12}, \theta_{23}, \ldots, \theta_{n-1,n}, \theta_{n1}\}$ for every integer $n\geq 3$ which consists
of $n$ nodes with $n$ edges distinctly colored is semirigid. nnher, $n$ is the minimum number
of $\theta_{a,b}$ in $R=\{\theta_{a,b}:(a, b)\in I\}$ such that $R$ for the subset $I\subseteq\{(i,j):1\leq i\leq j\leq n\}$ grows
into a $semin\ddot{\wp}d$ system.

Proof. From $(1, 2)\in\theta_{12}$ we have $(f(1), f(2))\in\theta_{12}$ . We have three cases: case 1. $f(1)=$
$1,$ $f(2)=2$: From $f\in\theta_{23}$ we have $f(3)=3$, and eventually we have $f(i)=i,$ $1\leq i\leq n.$

Case 2. $f(1)=2,$ $f(2)=1$ : From $f\in\theta_{23}$ we have $f(3)=1$ , and eventually we have $f(i)=1,$
$2\leq i\leq n$ , but this contradicts $f\in\theta_{n1}$ . Case 3. $f(1)=f(2)=m,$ $m\neq 1,2$ : From $f\in\theta_{23}$

we have $f(3)=m$, and eventually we have $f(i)=m,$ $1\leq i\leq n$, a constant function. Thus
$R$ is semirigid. The proof of the second part is given in Section 4 as we need a notion of
compositions. $\square$

In Fig.4 we show an example of a semirigid loop for $k=6.$

Let $\rho_{1},$ $\ldots,$ $\rho_{k}$ be a set of distinct equivalence relation on set $A$ . Denote $0;=\Delta_{A}=$

$\{(x, x) : x\in A\}$ and 1 $:=A\cross A=\{(x, y) : x, y\in A\}.$
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1 3 5

Figure 4: $N$-loop with distinctly colored $n$-edges is semirigid.

Lemma 7. Assume that $R:=(A, \rho_{1}, \ldots, \rho_{k})$ is semirigid. Then for every $j_{f}j=1,$
$\ldots,$

$k$ ;

$v_{i\neq j}\rho_{\dot{*}}=1$ (2)
$\bigwedge_{i\neq j}\rho_{i}=0$ . (3)

Proof of (2): in fact we showed in Lemma 4 that $\rho_{j}\subseteq _{i\neq j}\rho_{\dot{*}}$ . To conclude observe that
$\vee\rho_{\dot{*}}=1$ as this means that the graph is connected (Lemma??).

Proof of (3). We suppose $j=1$ . We show that $\bigwedge_{i\neq 1}\rho_{1}=0$ . Suppose not. That means
$\bigcap_{i\neq 1}\rho_{i}\neq\Delta_{A}$ . Let

$(x, y) \in\bigcap_{i\neq 1}\rho_{i}\backslash \Delta_{A}$

Case 1. $(x, y)\in\rho_{1}$ . We have $(x, y) \in\bigcap_{i}\rho_{i}$ . In this case, the map $f$ : $Aarrow A$ defined by
$f(z):=x$ if $z\neq y$ and $f(z)$ $:=x$ if $z=y$ preserves each $\rho_{i}$ , hence preserves $R$ , Its image is
a 2-element set. We have forbidden this. Thus Case 1 does not occur.

Case 2. $(x, y)\not\in\rho_{1}$ . Let $f$ : $Aarrow A$ be the map defined by

$f(z)=\{\begin{array}{ll}x : if (z, y)\not\in\rho_{1}y : otherwise.\end{array}$

Claim. The map $f$ preserves the set of relations $R.$

Proof of the claim. Let $i\in\{1, \ldots, k\}$ and $(u, v)\in\rho_{i}$ . We prove that $(f(u), f(v))\in\rho_{i}.$

If $f(u)=f(v)$ , this holds since $\Delta_{A}\subseteq\rho_{i}$ . Hence we may suppose $f(u)\neq f(v)$ . Then either

$(f(u)=x$ and $f(v)=y)$ or $(f(u)=y$ and $f(v)=x)$ .

If $i\neq 1$ , then, since $(x, y)\in\rho_{i},$ $(f(u), f(v))\in\rho_{i}$ follows. The case $i=1$ is impossible.
Indeed, in this case, if $f(u)=x$ and $f(v)=y$ then $(u, y)\not\in\rho_{1}$ and $(v, y)\not\in\rho_{1}$ , but,
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since $(u,v)\in\rho_{1}$ we get $(u, y)\in\rho_{1}$ , a contradiction. If $f(u)=y$ and $f(v)=x$ we get a
contradiction, too. $\square$

Note. We could get (2) and (3) under the weaker condition that there is no unary
operation which preserve $R$ and whose image has two elements.

As we have seen that the case $k=3$ (3 colors) is a minimum for semirigidity, we give the
proof of the orthogonality for this case.

Corollary 8. If $(A,\rho_{1},\rho_{2}, n)$ is semirigid, then $\rho_{i}$ is orthogonal with $\rho_{j}$ for $i\neq j.$

Proof. By Lemma 7 we have that if $(A,\rho_{1}, \ldots, \rho_{k})$ is semirigid, then intersection of $k-1$

of these relations is the equality. Set $k=3$. Then we have $\rho_{1}\cap\rho_{2}=\Delta_{A},$ $\rho_{1}\cap\rho_{3}=\Delta_{A},$

$n\cap\rho_{3}=\Delta_{A}.$ $\square$

It is shown [8] that, if $(A, \rho_{1},\rho_{2},\rho_{3})$ is semirigid, then the system of relations $\{\Delta_{A},\rho_{1},\rho_{2},\rho_{3},$ $A\cross$

$A\}$ forms a sublattice of the lattice of the equivalences on $A.$

4 Semirigidity extension by identifying subsets of the nodes

In this section we discuss a system of relations obtained by two systems of relations through
identifying subsets of the nodes. We show that many systems of semirigid relations can be
obtained by this method.

Assume that we are given two colored graphs $G_{1}$ and $G_{2}$ on respective sets of vertices $A$

and $B(A\cap B=\phi)$ . For simplicity we assume in this section that every system of equivalence
relations is orthogonal, i.e., if $\alpha,\beta\in R$ then $\alpha\cap\beta=\Delta_{A}=\{(a, a):a\in A\}.$

We state a definition of graphical composition of the two graphs given by identifying
subsets of the nodes.

Type 1 composition. $G_{1}*G_{2}$ (identifying a single node): Two nodes, each from $G_{1}$ and
$G_{2}$ , are simply identified and the two graphs are connected through the identified node.
Note that $|C|=|A|+|B|-1$ for the new base set and the number of partitions on $C$

is simply the sum of the numbers of the partitions of the graphs.

Type 2 composition. $G_{1}+G_{2}$ (identifying two or more nodes): Two subsets $S_{A}$ and $S_{B},$

each from the nodes of $G_{1}$ and $G_{2}$ with $|S_{A}|=|S_{B}|=t$ and with the property that
both are single colored, are identified and the two graphs are connected through the
identified nodes. Note that the two partitions confluent into a single partition on the
new base set $C:|C|=|A|+|B|-t$ . Hence the number of partitions is less than the
sum of the numbers of the partitions of the graphs exactly by one.

To illustrate our definition, let us denote Zadori’s constmction on the base set $A$ with
$|A|=2i+1$ by $z_{i}$ for $i>0$ . Thus $z_{1}$ shown in Fig. 5 represents the semirigid system of
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Figure 5: $z_{1}$ : the semirigid triangle
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Figure 6: Compositions $z_{1}*z_{1}$ and $z_{1}+z_{1}$

three partitions on the 3-element set.In Fig. 6 we show two graphs a: $z_{1}*z_{1}$ (6 colors) and
$b:z_{1}+z_{1}$ (5 colors) obtained by identifying a single node and by identifying two nodes,
respectively.

Simple consideration leads to the following theorem.

Theorem 9. Assume that both graphs $G_{1}$ and $G_{2}$ are semirigid. Then:
The graph $G=G_{1}*G_{2}$ is quasi semirzgid. That is, it admits exactly two more functions as

well as the trivial functions: one is the identity on $A$ and takes the constant on $B$ determined
by the identity, and the other is obtained by interchanging the roles of $A$ and $B.$

Proof. Assume that a function $f$ admits $G$ . Then it should be a trivial function on $A$ (in
this case we took only the set of partitions on $G_{1}$ into our consideration, leaving the nodes
outside $A$ as singletons). By the symmetry, $f$ should be a trivial functions on $B$ . As the
consequence the case 1 results. As for the case 2, no freedom like the case 1 is admitted since
an edge $(a, b)$ among the identified nodes determines the values of $f$ either as a constant or
as those of the identity function. $\square$

In order to state a theorem we formulate the definition of the composition in more detail.
Let $G_{1}$ be a graph defined by $G_{1};=(A, \rho_{1}, \ldots, \rho_{p})$ , where $\rho_{1},$

$\ldots,$ $\rho_{p}$ are equivalence
relations on $A$ , and let $G_{2}$ be a graph defined by $G_{2}:=(B, \sigma_{1}, \ldots, \sigma_{q})$ , where $\sigma_{1},$

$\ldots,$ $\sigma_{q}$ are
equivalence relations on $B$ . Let the equivalence blocks of $\rho_{1}$ and $\sigma_{1}$ be $\rho_{1}=\{r_{1}, \ldots, r_{\ell}\}$ and
$\sigma_{1}=\{s_{1}, \ldots, s_{m}\}$ , respectively. We identify node $a_{i}\in A$ with node $b_{*}\cdot\in B$ for $i=1,$ $\ldots,$

$t.$

Assume further that the two subset $\{a_{*}\cdot\}$ and $\{b_{i}\}$ belong to $r_{1}$ and $s_{1}$ , respectively:

$S_{A}=\{a_{1}, \ldots, a_{t}\}\subset r_{1}, S_{B}=\{b_{1}, \ldots, b_{t}\}\subset s_{1}.$

73



Put $G$ the graph obtained from $G_{1}$ and $G_{2}$ by “gluing” subsets of the nodes (each subset
from a single color). For convenience we write this operation in symbol $G=G_{1}+G_{2}$ . The
base set of $G$ is $C=A\cup B$ with the identities $a_{i}=b_{1},$ $i=1,$ $\ldots,$

$t$ . The relations $\rho_{1}$ and $\sigma_{1}$

become a confluent relation $\tau=\rho_{1}\vee\sigma_{1}$ by gluing.

Lemma 10. Assume that the graph $G$ is obtained by $G_{1}$ and $G_{2}$ through gluing as described
in the above procedure. Then the composed system of relations is

$G=(A\cup B,\rho_{1}\vee\sigma_{\iota,\hslash}, \ldots,\rho_{p},\sigma_{2}, \ldots,\sigma_{q})$

where:
1$)$ the blocks of $\tau:=\rho_{1}\vee\tau_{1}$ are

$\{r_{1}\cup s_{1},r_{2}, \ldots, r_{\ell}, s_{2}, \ldots, s_{m}\}.$

That is, the two blocks each containing the identifying subset merge into a single block and
the other blocks from $\rho_{1}$ and $\sigma_{1}$ remain as blocks without changes in $G.$

2$)$ The relations $\rho_{2}\ldots,$ $\rho_{p}$ and $\sigma_{2},$ $\ldots,\sigma_{q}$ are the equivalence relations naturally extended
to on $C$, i. e., exactly the loops $\{(x,x);x\in C\}$ are added to the original relations.

Proof of the lemma. 1) Let the two blocks be $r_{1}\supseteq S_{A}=\{a_{1}, \ldots, a_{t}\}$ and $s_{1}\supseteq S_{B}=$

$\{b_{1}, \ldots, b_{t}\}$ . For each distinct $x,$ $y\in r_{1}\cup s_{1}$ there is $x_{0}=x,$ $\ldots,$ $x_{m}=y(m>1),$ $(x_{i},x_{i+1})\in$

$r_{1}^{2}$ or $(x_{i}, x_{i+1})\in s_{1}^{2}$ for $1\leq i<m$ . In particular, if $x\in r_{1}\backslash S_{A}$ and $y\in s_{1}\backslash S_{B}$ there is
$z\in S_{A}=S_{B}$ such that $(x, z)\in r_{1}^{2}$ and $(z, y)\in s_{1}^{2}$ , where $z=a_{i}=b_{i}$ for some $1\leq i\leq t$ . So
$(x,y)\in\tau.$

2$)$ For distinct $x,$ $y\in C$ , if $(x, y)\in\rho_{i}(i>1)$ , then $(x, y)\in A^{2}$ . Further, as the system
$\{\rho_{i}\},$ $\{\sigma_{1}\}(i>0)$ are orthogonal in $G_{1}$ and $G_{2}$ , respectively, $\rho_{i}$ and $\tau,$ $\sigma_{i}$ and $\tau$ and $\rho_{i}$ and

$\sigma_{j}$ are orthogonal. Thus $G$ is orthogonal. $\square$

$\bullet 2 s_{m}$

Figure 7: Confluence of the two relations $\rho_{1}$ and $\sigma_{1}$
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2 5

3 6

$\epsilon$

$\epsilon$

Figure 8: Two semirigid systems obtained by the composition (with 5 partitions).

Note. It is easy to check that the graphs $G$ is connected and each two distinct node of
$C$ is doubly connected. From a node in $A$ one reaches a node in $B$ via a node in the shared
nodes $S_{A}=S_{B}.$

Theorem 11. If the graphs $G_{1};=(A, \rho_{1}, \ldots, \rho_{p})$ and $G_{2};=(B, \sigma_{1}, \ldots, \sigma_{q})$ are semirigid,
then the graph $G=G_{1}+G_{2}$ is semirigid, i. e., if a map $h:Carrow C$ preserves the relations
$\{\rho_{1}\vee\sigma_{1}, \rho_{2}, \ldots, \rho_{p}, \sigma_{2}, \ldots, \sigma_{q}\}$ then $h$ is a trivial function on $C.$

We show a lemma.

Lemma 12. Suppose that the function $h$ : $Carrow C$ is such given in the theorem. If the
restriction $h_{|A}$ is not an injections into $A$ , then

$h_{|A}=c$ (a constant), $c\not\in A.$

Proof of the lemma. Assume that $f$ $;=h_{|A}$ is not an injection in $A$ . Then there is $a\in A$

such that $h(a)=f(a)=c\in B\backslash A$ . Assume $h_{|A}(a’)=c’$ for $a’\in A(a\neq a’)$ . We distinguish
two cases: 1) $(a, a’)\in v_{*=2}^{p}\rho_{\dot{*}}$ and 2) there are distinct $b,$ $b’$ such that $(a, b)\in _{i=2}^{p}\rho_{i},$ $(b, b’)\in\rho_{1}$

and $(b’, a’)\in v_{\dot{*}=2}^{p}\rho_{i}.$

Case 1. $h$ preserves all $\rho_{i},$ $i>1$ , we have $(h(a)),$ $h(a’))\in v_{*=2}^{p}\rho_{i}$ . This means $c=d$ as
$c\not\in A.$

Case 2. For $(b, b’)\in\rho_{1}$ by Lemma 4 there is a second path from $b$ to $b’$ not via edge in
$\rho_{1}$ . So this case is reduce to the case 1. $\square$
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1 3 5

Figure 9: Gluing subsets with distinctively-colored edges yields a semirigid graph.

Lemma 13. Suppose that the function $h:Carrow C$ preserves the relahons $\{\rho_{1}\vee\sigma_{1},$
$\rho_{2},$ $\ldots,\rho_{p},$

$\sigma_{2},$ $\ldots,\sigma_{q}\}$ (given in the theorem). Then the restrictions $h_{|A}(h_{|B})$ preserves the relations
$\rho_{1},$

$\ldots,$
$\rho_{p}(\sigma_{1}, \ldots,\sigma_{q})$, respectively.

Proof of the lemma. If $f:=h_{|A}$ is not an injection into $A$, then from the previous lemma
$h=c\in B$ (a constant) on $C$ and so, we are done. Thus we assume that $f$ is an injection
into $A$ . Assume $(a, b)\in\rho_{i},$ $i>1$ . Then, since $h$ preserves $\rho_{i}$ we have $(f(a), f(b))\in\rho_{i}$ . Next
assume that $(a, b)\in\rho_{1},$ $a,$ $b\in A$ . As $h$ preserves $\tau=\rho_{1}\vee\sigma_{1}$ , assume that $(f(a), f(b))\in\sigma_{1}\backslash \tau.$

Then we have $f(a),$ $f(b)\in B$ and this contradicts that $f$ is an injection. Thus we have
$(f(a), f(b))\in\rho_{1}.$ $\square$

Proof of the theorem. Suppose that the unary function $h:Carrow C$ is a function given in
the theorem. Then by the Lemmas 12 and 13, together with that $G_{1}$ is semirigid, $h_{|A}$ is a
trivial function on A or a constant valued (from $C$) function. The same situation holds for
$h_{|B}$ . Thus the function $h$ is the identity on $C$ or a constant function $h=c\in C.$ $\square$

In Fig 6 we show examples of semirigid composition: in (a) three nodes {1, 4, 7} are glued,
while in (b) two nodes {3, 5} are glued.

Applications
In the situation of the composition described just before Lemma 10, assume that all

relations $\rho_{i}$ and $\sigma_{j}$ are from the set of $\Theta_{A}=\{\theta_{jj} : 1\leq i<j\leq|A|\}$ and $\Theta_{B}=\{\theta_{1j}$ : $1\leq i<$

$j\leq|B|\}$ , respectively, i.e., a distinctive smallest partition on $A$ and on $B$ . Further assume
that the identifying nodes are from $k$ consecutive chains $\rho_{1},$

$\ldots,$ $\rho_{k-1}$ and $\sigma_{1},$ $\ldots$ , $\sigma_{k-1}$ where
$\rho_{i}=\theta_{a;\alpha+1}$ and $\sigma_{i}=\theta_{b_{j}b_{1+1}}:S_{A}=\{a_{1}, \ldots, a_{k}\}$ and $S_{B}=\{b_{1}, \ldots , b_{k}\}$ with identitiae $a_{i}=b_{i}$

$(i=1, \ldots, k)$ . Then we have a similar theorem
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Figure 10: Two loops coalesced by distinctively colored edges

Theorem 14. If the graphs $G_{1};=(A, \rho_{1}, \ldots, \rho_{p})$ and $G_{2}$ $:=(B, \sigma_{1}, \ldots, \sigma_{q})$ are semirigid,
then the graph $G=G_{1}+G_{2}$ is semingid, i. e., if a map $h:Carrow C$ preserves the relations
$\{\rho_{1}=\sigma_{1}, , \ldots, \rho_{h-1}=\sigma_{k-1}, \rho_{h}, \ldots, \rho_{p}, \sigma_{k}, \ldots, \sigma_{q}\}$ then $h$ is a trivial function on $C.$

It is easy to check that Lemmas 12 and 13 hold in this case, too. We omit the proof. In
Fig.9 we give an example of this type of composition.

Now we give a proof of the second part of Theorem 6.

Proof of Theorem 6 (a sketch). Given a semirigid set $R$ of relations of the type $\theta_{ab}$ on $A,$

by Lemma 4 (the existence of second path) we may consider the graph of $R$ as compositions
either $by*$ or by $+$ of several loops. By Theorem 9 we can conclude that the composition $*$

cannot be in the graph of $R$ . So we are enough to restrict ourselves on the composition $+$

where more than 1 nodes are shared by the compositions. Now consider the simplest case
that there are only two loops. Suppose the situation on Fig. 10: the node $a$ is a branching
node and it is connected to the node $c$ via edges (let the last node be the node $b$), and at
the same time it is connected to the node $d$ by an edge $(a,$ $b,$ $c,$

$d$ are all from $A$ and $a,$ $c,$ $d$

are distinct nodes). Assume the path from $a$ to $c$ via $d$ and via $b$ contains $\ell$ and $m$ edges,
respectively $(\ell, m>0)$ . We show that there is a semirigid graph with less or equal number
of edges to that in $G$ but having a less by 1 number of loops. Indeed, we can reduce the
number of loops by the following procedure. We attach the end point of the edge $(b, c)(c$’s
side) to the node $d$ replacing the direct connection $(a, d)$ by the chains of edges from $a$ to $c.$

Now the loop $a-d-c-a$ disappears and the path from $a$ to $c$ contains $\ell+m-1$ (the case
when there are two distinctive nodes $a$ and b) or $\ell+m$ (the case $a=b$). Since all the edges
are distinct, by the first part of Theorem 6 the resulting graph remains semirigid and has
less than or equal number of edges (the number of nodes remains invariant). Applying this
procedure to any loop which has coalesced part with other loops, by induction, we eventually
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obtain a single $n_{r}$-loop with distinctively colored edges. This completes the proof. $\square$

5 Discussions

We have introduced the notion of graphical compositions by identifying subsets of the nodes,
and have shown that, in restricted cases where the identifying subsets are single-colored,
or all identifying edges bear distinct colors and these colors do not appear elsewhere, the
composition preserves semirigidity. We have used the compositions to prove the minimality
of $n$-loop semirigid systems. We have also shown that the compositions can yield a variety
of semirigid systems.

As we have already seen we can define gluing of subsets with several colors, i.e., when
$S_{A}$ and $S_{B}$ are isomorphic colored graphs. Indeed, as in Fig. 9 subsets with 2 colors may
be glued to yield a semirigid graph. However, we show by an example that a complicated
situation may arise in the general case. Consider colored subgraphs $G_{1}$ and $G_{2}$ in Fig. 11.
For simplicity assume that each graph is three-colored, and assume for $G_{1}$ we have that $\sigma$

includes $\{\{1,2\}, \{3,4\}\},$ $\rho$ includes $\{\{1,3\}, \{2,4\}\}$ and $\tau$ includes {1, 4}, and similarly, for
$G_{2}$ we have that $\sigma’$ includes $\{\{1’, 2’\}, \{3’, 4’\}\},$ $\rho’$ includes $\{\{1’, 3’\}, \{2’,4’\}\}$ and $\tau’$ includes
$\{$ 1’, $4’\}$ . In $G$ by gluing {1, 3, 4} with $\{1’, 3’,4’\}$ we have that $\sigma_{1}=\sigma\vee\sigma’$ includes

$\{\{1,2\}, \{3,4\}, \{1’, 2’\}, \{2,2’\}\},$
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while $\rho_{1}=\rho\vee\rho’$ includes
$\{\{1,3\}, \{2,4\}, \{2’, 4’\}, \{2,2’\}\}.$

Thus $\rho_{1}\cap\sigma_{1}$ includes $\{$2, $2’\}$ , and this means that $\rho_{1}$ and $\sigma_{1}$ are not orthogonal. As we
assumed 3-colors, every semirigid system should be orthogonal. This suggests that in the
general case, gluing does not keep semirigidity and we need some more investigation.

We note that all the concrete semirigid systems given in this paper are checked by com-
puter program.
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