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Abstract

We developed a systematic method for obtaining soliton solutions of the Fokas-
Lenells derivative nonlinear Schr\"odinger equation ($FL$ equation shortly) under non-
vanishing boundary condition. In particular, we deal with dark soliton solutions
with a plane wave boundary condition. We first derive the novel system of bilinear
equations which is reduced from the $FL$ equation through a dependent variable
transformation and then construct the general dark $N$-soliton solution of the sys-
tem, where $N$ is an arbitrary positive integer. We then investigate the properties of
the one-soliton solutions in detail, showing that both the dark and bright solitons
appear on the nonzero background which reduce to algebraic solitons in specific
limits. Last, the interaction process of two solitons is described.

1. Introduction

We consider the following Fokas-Lenells ( $FL$) equation which can be derived from
its original version by a simple change of variables combined with a gauge trans-
formation:

$u_{xt}=u-2i|u|^{2}u_{x}$ . (1.1)

Here, $u=u(x, t)$ is a complex-valued function of $x$ and $t$ , and subscripts $x$ and
$t$ appended to $u$ denote partial differentiations. The known results about the $FL$

equation are:
$\bullet$ An integrable generalization of the nonlinear Schr\"odinger equation, Fokas [1].
$\bullet$ Inverse scattering transform method under the vanishing boundary condition,
Lenells and Fokas [2].
$\bullet$ $A$ model equation for the propagation of nonlinear light pulses in monomode
optical fibers, Lenells [3].
$\bullet$ The first negative member of the integrable hierarchy of the derivative nonlinear
Schr\"odinger equation, Lenells [3].
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$\bullet$ Derivation of the bright soliton solutions, Lenells [4], Matsuno [5].

The purposes of the present report are:
$\bullet$ To construct the dark $N$-soliton solution of the $FL$ equation on the background
of a plane wave. Explicitly, we consider the boundary condition

$uarrow\rho\exp\{i(\kappa x-\omega t+\phi^{(\pm)})\}, xarrow\pm\infty$ , (1.2)

where $\rho(>0)$ and $\kappa$ are real constants representing the amplitude and wavenumber,
respectively, $\phi^{(\pm)}$ are real phase constants and the angular frequency $\omega=\omega(\kappa)$

obeys the dispersion relation $\omega=1/\kappa+2\rho^{2}.$

$\bullet$ To investigate the properties of dark soliton solutions.

This report is the summary of the paper by Matsuno [6].

2. Exact method of solution

2.1. Bilinearezation

Proposition 2.1. By means of the dependent variable tmnsformation
$u=\rho e^{i(\kappa x-\omega t)_{\frac{g}{f’}}}$ (2.1)

with $\omega=1/\kappa+2\rho^{2}$ , equation (1.1) can be decoupled into the following system of
bilinear equations for the $tau$ functions $f$ and $g$

$D_{t}f\cdot f^{*}-i\rho^{2}(gg^{*}-ff^{*})=0$, (2.2)

$D_{x}D_{t}f\cdot f^{*}-i\rho^{2}D_{x}g\cdot g^{*}+i\rho^{2}D_{x}f\cdot f^{*}+2\kappa\rho^{2}(gg^{*}-ff^{*})=0$, (2.3)

$D_{x}D_{t}g\cdot f+i\kappa D_{t}g\cdot f-i\omega D_{x}g\cdot f=0$ . (2.4)

Here, $f=f(x, t)$ and $g=g(x, t)$ are complex-valued functions of $x$ and $t$ , and the
asterisk appended to $f$ and $g$ denotes complex conjugate and the bilinear opemtors
$D_{x}$ and $D_{t}$ are defined by

$D_{x}^{m}D_{t}^{n}f \cdot g=(\frac{\partial}{\partial x}-\frac{\partial}{\partial x’})^{m}(\frac{\partial}{\partial t}-\frac{\partial}{\partial t’})^{n}f(x, t)g(x’, t’)|_{x’=x,t’=t}$ , (2.5)

where $m$ and $n$ are nonnegative integers.

Proof. Substituting (2.1) into (1.1) and rewriting the resultant equation in terms
of the bilinear operators, equation (1.1) can be rewritten as

$\frac{1}{f^{2}}(D_{x}D_{t}g\cdot f+i\kappa D_{t}g\cdot f-i\omega D_{x}g\cdot f)$
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$- \frac{g}{f^{3}f^{*}}\{f^{*}D_{x}D_{t}f\cdot f-2\kappa\rho^{2}f^{2}f^{*}-2i\rho^{2}g^{*}(g_{x}f-gf_{x}+i\kappa fg)\}=0$. (2.6)

Inserting the identity

$f^{*}D_{x}D_{t}f\cdot f=fD_{x}D_{t}f\cdot f^{*}-2f_{x}D_{t}f\cdot f^{*}+f(D_{t}f\cdot f^{*})_{x}$ , (2.7)

which can be verified by direct calculation, int$0$ the second term on the left-hand
side of (2.6), one modifies it in the form

$\frac{1}{f^{2}}(D_{x}D_{t}g\cdot f+i\kappa D_{t}g\cdot f-i\omega D_{x}g\cdot f)$

$- \frac{g}{f^{3}f^{*}}[f\{D_{x}D_{t}f\cdot f^{*}-i\rho^{2}D_{x}g\cdot g^{*}+i\rho^{2}D_{x}f\cdot f^{*}+2\kappa\rho^{2}(gg^{*}-ff^{*})\}$

$-2f_{x}\{D_{t}f\cdot f^{*}-i\rho^{2}(gg^{*}-ff^{*})\}+f\{D_{t}f\cdot f^{*}-i\rho^{2}(gg^{*}-ff^{*})\}_{x}]=0$ . (2.8)

By virtue of equations $(2.2)-(2.4)$ , the left-hand side of (2.8) vanishes identically.
口

It follows from (2.1) and (2.2) that

$|u|^{2}= \rho^{2}+i\frac{\partial}{\partial t}\ln\frac{f^{*}}{f}.$ (2.9)

2.2. Trilinear equation

Proposition 2.2. The trilinear equation for $f$ and $g$

$f^{*} \{g_{xt}f-(f_{x}-i\kappa f)g_{t}-i(\frac{1}{\kappa}+\rho^{2})(g_{x}f-gf_{x})\}=f_{t}^{*}(g_{x}f-gf_{x}+i\kappa fg)$ ,

(2.10)
is a consequence of the bilinear equations (2.2)-(2.4).

Proof. By direct calculation, one can show the following trilinear identity among
the tau functions $f$ and $g$ :

$f^{*} \{g_{xt}f-(f_{x}-i\kappa f)g_{t}-i(\frac{1}{\kappa}+\rho^{2})(g_{x}f-gf_{x})\}-f_{t}^{*}(g_{x}f-gf_{x}+i\kappa fg)$

$=f^{*}(D_{x}D_{t}g\cdot f+i\kappa D_{t}g\cdot f-i\omega D_{x}g\cdot f)$

$- \frac{g}{2}[\{D_{t}f\cdot f^{*}-i\rho^{2}(gg^{*}-ff^{*})\}_{x}+(D_{x}D_{t}f\cdot f^{*}-i\rho^{2}D_{x}g\cdot g^{*}+i\rho^{2}D_{x}f\cdot f^{*}-2i\kappa D_{t}f\cdot f^{*})]$

$+g_{x}\{D_{t}f\cdot f^{*}-i\rho^{2}(gg^{*}-ff^{*})\}$ . (2.11)

Replacing a term $2i\kappa D_{t}f\cdot f^{*}$ on the right-hand side of (2.11) by (2.2), the right-
hand side becomes zero by $(2.2)-(2.4)$ . This yields (2.10). 口
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3. Dark $N$-soliton solution

3. 1. Main result

Theorem 3.1. The dark $N$ -soliton solution of the system of bilinear equations
(2.2)-(2.4) is expressed by the following determinants

$f=|D|, (31a)$
$D$

$g=\tau^{1_{Z_{t}^{*}}}\rho$

$z_{1}^{T}|=|D|+\frac{1}{\rho^{2}}|_{z_{t}^{*}}^{D}$ $z_{0}^{T}|.$ $(31b)$

Here, $D$ is an $N\cross N$ matrix and $z$ and $z_{t}$ are $N$ -component row vectors defined
below and the symbol $T$ denotes the tmnspose:

$D=(d_{jk})_{1\leq j,k\leq N}, d_{jk}= \delta_{jk}+\frac{\kappa-ip_{j}}{p_{j}+p_{k}^{*}}z_{j}z_{k}^{*},$

$z_{j}= \exp(p_{j}x+\frac{\kappa\rho^{2}}{p_{j}}t+\frac{1}{p_{j}+i\kappa}\tau+\zeta_{j0}) , (3.2a)$

$Z=(z_{1}, z_{2}, \ldots, z_{N}) , z_{t}=(\frac{\kappa\rho^{2}z_{1}}{p_{1}}, \frac{\kappa\rho^{2}z_{2}}{p_{2}}, \ldots, \frac{\kappa\rho^{2}z_{N}}{p_{N}}) , (3.2b)$

where $p_{j}$ are complex pammeters satisfying the constraints

$(p_{j}+ i\kappa)(p_{j}^{*}-i\kappa)=\frac{1+\kappa\rho^{2}}{\kappa\rho^{2}}p_{j}p_{j}^{*}, j=1,2, \ldots, N, (3.2c)$

$\zeta_{j0}(j=1,2, \ldots, N)$ are arbitmry complex pammeters, $\delta_{jk}$ is kronecker’s delta and
$\tau$ is an auxiliary variable.

3.2. Remarks
$\bullet$ The dark $N$-soliton solution is parameterized by $2N$ complex parameters $p_{j}$ and
$\zeta_{j0}(j=1,2, \ldots, N)$ . The parameters $p_{j}$ determine the amplitude and velocity of
the solitons whereas the parameters $\zeta_{j0}$ determine the phase of the solitons. As
opposed to the bright soliton case, however, the real and imaginary parts of $p_{j}$ are
not independent because of the constraints (3.2c).
$\bullet$ The dark $N$-soliton solution (3.1) solves the bilinear equations (2.2) and (2.3)
without the constraints (3.2c).
$\bullet$ The trilinear equation (2.10) will be proved in place of the bilinear equation (2.4)
where we use the relations

$f_{t}=(1+\kappa\rho^{2})f_{\tau}, g_{t}=(1+\kappa\rho^{2})g_{\tau}.$

as well as the constraints (3.2c).
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4. Stability of the plane wave
We have considered the dark solitons on the background of a plane wave $\rho e^{i(\kappa x-\omega t)}$

with $\omega=1/\kappa+2\rho^{2}$ . It is important to see whether the background field is stable
or not against perturbations. If unstable, then dark solitons would not exist. Here,
we perform the linear stability analysis of the plane wave.

Following the standard procedure, we seek a solution of the form

$u=(\rho+\triangle\rho)e^{i(\kappa x-\omega t+\triangle\phi)}$ , (4.1)

where $\Delta\rho=\triangle\rho(x, t)$ and $\triangle\phi=\triangle\phi(x, t)$ are small perturbations. Substituting
(4.1) into the $FL$ equation (1.1) and linearizing about the plane wave, we obtain
the system of linear PDEs for $\triangle\rho$ and $\triangle\phi$

$\triangle\rho_{xt}+\rho(\omega-2\rho^{2})\triangle\phi_{x}-\kappa\rho\triangle\phi_{t}-4\kappa\rho^{2}\triangle\rho=0, (4.2a)$

$\rho\triangle\phi_{xt}-(\omega-2\rho^{2})\triangle\rho_{x}+\kappa\Delta\rho_{t}=0. (4.2b)$

Assume the perturbations of the form $e^{i(\lambda x-\nu t)}$ with $\lambda$ real and $v$ possibly complex
and substitute them into (4.2) to obtain a homogeneous linear system for $\triangle\rho$ and
$\triangle\phi$

$(\lambda\nu-4\kappa\rho^{2})\triangle\rho+i\{\rho\lambda(\omega-2\rho^{2})+\kappa\rho v\}\triangle\phi=0, (4.3a)$

$-i\{(\omega-2\rho^{2})\lambda+\kappa\nu\}\triangle\rho+\rho\lambda v\triangle\phi=0. (4.3b)$

The nontrivial solution exists if $v$ satisfies the quadratic equation

$( \lambda^{2}-\kappa^{2})\nu^{2}-2(2\kappa\rho^{2}+1)\lambda\nu-\frac{\lambda^{2}}{\kappa^{2}}=0$. (4.4)

Solving this equation, we obtain

$\nu=\frac{\lambda}{\lambda^{2}-\kappa^{2}}[2\kappa\rho^{2}+1\pm\frac{1}{\kappa}\sqrt{\lambda^{2}+4\kappa^{3}(\kappa\rho^{2}+1)\rho^{2}}]$ (4.5)

Thus, if the condition
$\kappa(\kappa\rho^{2}+1)>0$ , (4.6)

is satisfied, then $\nu$ becomes real for all values of real $\lambda$ , implying that the plane
wave is neutrally stable. It is evident that this condition always holds for $\kappa>0.$

For negative $\kappa$ , on the other hand, we put $\kappa=-K$ with $K>0$ and see that the
stability criterion turns out to be as $K\rho^{2}>1.$

5. Properties of dark soliton solutions

We first parametrize the complex parameters $p_{j}$ and $\zeta_{j0}$ by the real quantities
$a_{j},$ $b_{j},$ $\theta_{j0}$ and $\chi_{j0}$ as

$p_{j}=a_{j}+ib_{j}, \zeta_{j0}=\theta_{j0}+i\chi_{j0}, j=1,2, \ldots, N$ , (5.1)
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and introduce the new independent variables $\theta_{j}$ and $\chi_{j}$ according to the relations

$\theta_{j}=a_{j}(x+c_{j}t)+\theta_{j0},$ $c_{j}= \frac{\kappa\rho^{2}}{a_{j}^{2}+b_{j}^{2}},$ $j=1,2,$ $\ldots,$
$N.$ $(5.2a)$

$\chi_{j}=b_{j}(x-c_{j}t)+\chi_{j0}, j=1,2, \ldots, N. (5.2b)$

In terms of these variables, the variables $z_{j}$ defined by (3.2a) are put into the form

$z_{j}=e^{\theta_{j}+i\chi_{j}}, j=1,2, \ldots, N, (5.2c)$

after setting $\tau=0$ . Substituting (5.1) into (3.2c), the constraints for $p_{j}$ can be
rewritten as a quadratic equation for $b_{j}$

$b_{j}^{2}-2\kappa^{2}\rho^{2}b_{j}+a_{j}^{2}-\kappa^{3}\rho^{2}=0, j=1,2, \ldots, N$ . (5.3)

The solution to this equation is found to be as follows:

$b_{j}=(\kappa\rho)^{2}\pm\sqrt{\kappa^{3}\rho^{2}(1+\kappa\rho^{2})-a_{j}^{2}},j=1,2, \ldots, N$. (5.4)

We can see from the above expression that the real $b_{j}(j=1,2, \ldots, N)$ exist only
when the condition $\kappa^{3}\rho^{2}(1+\kappa\rho^{2})>0$ is satisfied. This coincides with the criterion
(4.6) for the stability of the plane wave. Throughout the analysis, we assume this
condition to assure the existence of soliton solutions. It is to be noted from (5.2)
and (5.3) that the parameters $a_{j}$ and $b_{j}$ are expressed in terms of $c_{j}$ as

$a_{j}^{2}= \frac{\kappa^{2}}{4c_{j}^{2}}(c_{\max}-c_{j})(c_{j}-c_{\min})$ , $b_{j}= \frac{1}{2\kappa c_{j}}(1-\kappa^{2}c_{j})$ , $c_{\min}<c_{j}<c_{\max},$

$(5.5a)$

where
$c_{\max}= \frac{1}{\kappa^{2}}\{1+2\kappa\rho^{2}+2\sqrt{\kappa\rho^{2}(1+\kappa\rho^{2})}\},$

$c_{\min}= \frac{1}{\kappa^{2}}\{1+2\kappa\rho^{2}-2\sqrt{\kappa\rho^{2}(1+\kappa\rho^{2})}\}. (5.5b)$

Thus, the dark $N$-soliton solution is characterized by the $N$ velocities $c_{j}(j=$

$1,2,$
$\ldots,$

$N)$ and the $2N$ real phase constants $\theta_{j0}$ and $\chi_{j0}(j=1,2, \ldots, N)$ , the total
number of which is $3N.$

5. 1. One-soliton solution
The tau functions $f=f_{1}$ and $g=g_{1}$ for the one-soliton solution are given by

$f_{1}=1+ \frac{\kappa-ip_{1}}{p_{1}+p_{1}}*z_{1}z_{1}^{*}, g_{1}=1-\frac{\kappa+ip_{1}^{*}}{p_{1}+p_{1}}\frac{p_{1}}{p_{1}}z_{1^{Z_{1}^{*}}}$ . (5.6)
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The one-soliton solution $u_{1}$ follows from (2.1) with (5.6), yielding

$u_{1}= \rho e^{i(\kappa x-\omega t)}1-\frac{\kappa+b_{1}}{+^{2}}\frac{a_{1}+ib_{1}}{ia_{1}a_{1}-ib_{1},e}e^{2\theta_{1}}1\frac{\kappa+b_{1}-a_{1}+ia_{1}}{2a_{1}}2\theta_{1}$ (5.7)

The above expression can be put into the form

$u_{1}=|u_{1}|e^{i(\kappa x-\omega t)}\exp\{i(\phi+\phi^{(+)})\}$ , (5.8)

where the square of the modulus of $u_{1}$ is represented by

$|u_{1}|^{2}= \rho^{2}-\frac{2a_{1}^{2}csgn(\kappa a_{1})}{\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}}\frac{1}{\cosh 2(\theta_{1}+\delta_{1})+\frac{(\kappa+b_{1})sgna_{1}}{\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}}},$
$c=|c_{1}|,$ $(5.9a)$

with

$\theta_{1}=a_{1}(x+c_{1}t)+\theta_{10},$ $c_{1}= \frac{\kappa\rho^{2}}{a_{1}^{2}+b_{1}^{2}},$ $e^{4\delta_{1}}=\frac{a_{1}^{2}+(\kappa+b_{1})^{2}}{4a_{1}^{2}},$ $(5.9b)$

and the tangent of the phase $\phi$ and $\phi^{(+)}$ being given respectively by

$\tan\phi=\frac{\{a_{1}^{2}+b_{1}(\kappa+b_{1})\}\cosh 2(\theta_{1}+\delta_{1})+b_{1}sgna_{1}\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}}{\kappa a_{1}\sinh 2(\theta_{1}+\delta_{1})},$ $(5.10a)$

$\tan\phi^{(+)}=\frac{a_{1}^{2}+b_{1}(\kappa+b_{1})}{\kappa a_{1}}. (5.10b)$

Let us classify the one-soliton solutions in accordance with the $sign$ of $\kappa$ . We
consider the two cases, i.e., case 1 $(\kappa>0, a_{1}\lessgtr 0)$ and case 2 $(\kappa<0, a_{1}\lessgtr 0)$

separately. For each $sign$ of $\kappa$ , both dark and bright solitons arise, as we shall
show now.
5.1.1. Case 1: $\kappa>0$

In this case, the velocity $c_{1}(=\kappa\rho^{2}/(a_{1}^{2}+b_{1}^{2}))$ of the soliton is positive. We then
find from (5.5) and (5.9) that

$A_{d}=\rho-\sqrt{\rho^{2}-2c_{1}\{\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}-(\kappa+b_{1})\}}$

$= \rho-\frac{1}{\sqrt{\kappa}}|\kappa\sqrt{c}-\sqrt{1+\kappa\rho^{2}}|, a_{1}>0, c_{1}=c>0$ , (5.11)

$A_{b}=\sqrt{\rho^{2}+2c_{1}\{\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}+(\kappa+b_{1})\}}-\rho$

$= \frac{1}{\sqrt{\kappa}}(\kappa\sqrt{c}+\sqrt{1+\kappa\rho^{2}})-\rho a_{1}<0,c_{1}=c>0$, (5.12)
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$c$

Figure 1. Amplitude-velocity relation for the dark soliton $A_{d}$ (solid line) and
bright soliton $A_{b}$ (broken line) for $\rho=1$ and $\kappa=2.$

$-2 -1 0 1 2$$x$

Figure 2. Profile of the amplitude of the dark soliton $U=|u_{1}|$ at $t=O$ . a:
$c=c_{0}=0.75,$ $b:c=0.33,$ $c:c=0.098$ . The profile a is a black soliton.

where $c\equiv|c_{1}|$ lies in the interval $c_{\min}<c<c_{\max}$ with $c_{\max}$ and $c_{\min}$ being given
by (5.5b). Note from (5.5a) that $\kappa+b_{1}=(1+\kappa^{2}c_{1})/(2\kappa c_{1})>0$ for $\kappa>0$ and
$c_{1}>0.$

Figure 1 plots the dependence of the amplitudes $A=A_{d}$ and $A=A_{b}$ on the
velocity $c=|c_{1}|$ for $\rho=1$ and $\kappa=2.$

(i) Dark $\mathcal{S}oliton:a_{1}>0$

As seen from figure 1, the amplitude $A_{d}$ of the dark soliton becomes an increasing
function of the velocity $c$ in the interval $c_{\min}<c\leq c_{O}$ and a decreasing function in
the interval $c_{0}<c<c_{\max}$ , where $c_{\max}$ and $c_{\min}$ are given by (5.5b) and a critical
velocity $c_{0}$ by

$c_{0}= \frac{1+\kappa\rho^{2}}{\kappa^{2}}$ . (5.13)

In the present numerical example $(\rho=1, \kappa=2),$ $c_{\min}=0.025,$ $c_{0}=0.75,$ $c_{\max}=$

$2.47$ . Figure 2 depicts the profile of $U=|u_{1}|$ at $t=0$ for three different values
of $c$ , i.e., a: $c=c_{0}=0.75,$ $b:c=0.33,$ $c:c=0.098$ with the parameters
$\rho=1,$ $\kappa=2,$ $\theta_{10}=-\delta_{1}$ and $\chi_{10}=0$ . When $c=c_{0}$ , the amplitude of the dark

148



$-6$ $-4$ $-2$ $0$

$\cross$

2 4

Figure 3.Profile of a black soliton $u_{R}={\rm Re} u_{1}$ at $t=1.$

Figure 4. Profile of the amplitude of the bright soliton $U=|u_{1}|$ at $t=0.$ a:
$c=2.47,$ $b:c=0.73,$ $c:c=0.025$ . The profiles a and $c$ are algebraic solitons.

soliton attains the maximum value $A_{d}=\rho$ . See figure 2 $a$ . It then turns out that
the intensity of the soliton center falls to zero. Such a soliton is well-known in the
field of nonlinear optics. It is sometimes called a black soliton.

Figure 3 shows the profile of $u_{R}={\rm Re}[u_{1}]$ at $t=1$ for the black soliton. The
broken line indicates $\pm|u_{1}|$ (see figure 2 a).

(ii) Bright soliton; $a_{1}<0$

Figure 4 depicts the profile of the bright soliton $U=|u_{1}|$ at $t=0$ for three different
values of $c$ , i.e., a: $c=2.47,$ $b:c=0.73,$ $c:c=0.025$ with $\rho=1$ and $\kappa=2.$

The feature of the bright soliton differs substantially from that of the dark soliton.
To be specific, the amplitude of the bright soliton always becomes an increasing
function of the velocity (see figure 1). It takes the maximum value at $c=c_{\max}$

and the minimum value at $c=c_{\min}$ . At these limiting values of the velocity, the
algebraic soliton is produced from the soliton of hyperbolic type.

Indeed, if we put $\theta_{10}=a_{1}x_{0}-\delta_{1}$ in (5.7) and (5.9) with $x_{0}$ being a real constant
and then take the limit $a_{1}arrow-0$ , we find

$x+ct+x_{0}- i\frac{2\kappa+b_{1}}{2b_{1}(\kappa+b_{1})}$

$u_{1}=\rho e^{i(\kappa x-\omega t)} (5.14a)$
$x+ct+x_{0}- i\frac{1}{2(\kappa+b_{1})},$
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Figure 5. Profile of an algebraic bright soliton $u_{R}={\rm Re} u_{1}$ at $t=1.$

$|u_{1}|^{2}= \rho^{2}+\frac{2\kappa c^{2}}{1+\kappa^{2_{\mathcal{C}}}}\frac{1}{(x+ct+x_{0})^{2}+(\frac{\kappa c}{1+\kappa^{2_{\mathcal{C}}}})^{2}}, (5.14b)$

where $b_{1}=(1-\kappa^{2}c)/2\kappa c$ by (4.5a) and $c=c_{\max}$ or $c_{\min}$ . Note from (5.9b) that
$b_{1}^{2}=\kappa\rho^{2}/c$ when $a_{1}arrow-0.$

A representative profile of the algebraic bright soliton $U=|u_{1}|$ at $t=0$ and the
corresponding profile of $u_{R}={\rm Re} u_{1}$ at $t=1$ are shown in figure 4 a and figure 5,
respectively.

5.1.2. Case $2:\kappa<0$

For negative $\kappa$ , the expressions of the amplitude for the dark and bright solitons
are given respectively by

$A_{d}=\rho-\sqrt{\rho^{2}+2c_{1}\{\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}}+(\kappa+b_{1})\}$

$= \rho-\frac{1}{\sqrt{K}}|K\sqrt{c}-\sqrt{K\prime-1}|, a_{1}<0, c_{1}=-c<0$ , (5.15)

$A_{b}=\sqrt{\rho^{2}-2c_{1}\{\sqrt{a_{1}^{2}+(\kappa+b_{1})^{2}}-(\kappa+b_{1})}\}-\rho$

$= \frac{1}{\sqrt{K}}(K\sqrt{c}+\sqrt{K\rho^{2}-1})-\rho, a_{1}>0, c_{1}=-c<0$, (5.16)

where $K=-\kappa$ is a positive wavenumber and the velocity $c$ lies in the interval
$d_{\min}<c<c_{\max}’$ with

$c$徳 $= \frac{1}{K^{2}}\{2K\rho^{2}-1+2\sqrt{K\rho^{2}(K\rho^{2}-1)}\},$

$c_{\min}’= \frac{1}{K^{2}}\{2K\rho^{2}-1-2\sqrt{K\rho^{2}(K\rho^{2}-1)}\}$ . (5.17)
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Figure 6. Amplitude-velocity relation for the dark soliton $A_{d}$ (solid line) and
bright soliton $A_{b}$ (broken line) for $\rho=1$ and $\kappa=-2.$

Recall that the condition $K\rho^{2}-1>0$ must be imposed to assure the existence of
the soliton solutions.

Figure 6 plots the dependence of the amplitudes $A=A_{d}$ and $A=A_{b}$ on the
velocity $c=|c_{1}|$ for $\rho=1$ and $\kappa=-2$ . When compared with figure 1 for $\kappa>0,$

there appear several different features for $\kappa<0$ . In particular, the algebraic dark
soliton would arise in the limit $carrow c_{\min}’$ since in this limit, the amplitude $A_{d}$ tends
to a finite value. In addition, the algebraic bright soliton exists only in the limit
$carrow c_{\max}’$ . We now proceed to the detailed description of the soliton solutions.

(i) Dark soliton: $a_{1}<0$

It follows from (5.5) with $\kappa=-K,$ $c_{1}=-c$ that $\kappa+b_{1}=1/2Kc-K/2$ . Since
$c_{\min}’<c<c_{\max}’$ , the possible value of $\kappa+b_{1}$ is restricted by the inequality

$K[K\rho^{2}-1-\sqrt{K\rho^{2}(K\rho^{2}-1)}]<\kappa+b_{1}<K[K\rho^{2}-1+\sqrt{K\rho^{2}(K\rho^{2}-1)}]$

(5.18)
One can see that the upper limit of $\kappa+b_{1}$ is attained when $c=c_{\min}’$ and its limiting
value is positive by the condition $K\rho^{2}>1$ whereas the lower limit is attained when
$c=c_{\max}’$ and is negative. In view of this fact, the algebraic dark soliton would be
produced in the limit $carrow c_{\min}’$ for which sgn$(\kappa+b_{1})>0$ . Actually, taking the
limit $a_{1}arrow-0$ for the solutions (5.7) and (5.9), we find that the hyperbolic soliton
reduces to the limiting form

$x-ct+X_{0}- i\frac{-2K+b_{1}}{2b_{1}(-K+b_{1})}$

$u_{1}=\rho e^{i(-Kx-\omega t)} , (5.19a)$
$x-ct+x_{0}- i\frac{1}{2(-K+b_{1})}$

$|u_{1}|^{2}= \rho^{2}-\frac{2Kc^{2}}{1-K^{2}c}\frac{1}{(x-ct+x_{0})^{2}+(\frac{Kc}{1-K^{2}c})^{2}}, (5.19b)$

where $b_{1}=(1+K^{2}c)/2Kc$ and $c=c_{\min}’$ . Since $1-Kd_{\min}>0$ by virtue of the
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Figure 7. Profile of the amplitude of the dark soliton $U=|u_{1}|$ at $t=0.$ a:
$c=c_{0}=0.25,$ $b:c=0.16,$ $c:c=0.043$. The profile a is a black soliton and the
profile $c$ is an algebraic soliton.

Figure 8. Profile of an algebraic dark soliton $u_{R}={\rm Re} u_{1}$ at $t=1.$

condition $K\rho^{2}>1$ , the expression $(5.19b)$ actually represents an algebraic dark
soliton.

The black soliton appears when the velocity $c$ takes a specific value $c=d_{0}$ , where

$c_{0}’=(K\rho^{2}-1)/K^{2}$ . (5.20)

Its profile is represented by

$|u_{1}|^{2}= \rho^{2}[1-\frac{3K\rho^{2}-4}{2(K\rho^{2}-1)}\frac{1}{\cosh 2(\theta_{1}+\delta_{1})+_{2(K\rho-1)}^{K-2}\ovalbox{\tt\small REJECT}_{2}^{2}}]$ (5.21)

It is important to notice that the inequality $d_{\min}<d_{0}<d_{\max}$ requires the condition
$K\rho^{2}>4/3$ for the wavenumber $K$ . It then turns out that expression (5.21) takes
the form of a black soliton.

Figure 7 depicts the profile of $U=|u_{1}|$ at $t=0$ for three different values
of $c$ , i.e., a: $c=c_{0}’=0.25,$ $b:c=0.16,$ $c:c=0.043$ with the parameters
$\rho=1,$ $\kappa=-2,$ $\theta_{10}=-\delta_{1}$ and $\chi_{10}=0$ . In this example, $d_{\min}=0.043,4=0.25$

and $d_{\max}=1.46$ (see figure 6). An algebraic soliton appears at the lower limit of
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Figure 9. Profile of the amplitude of the bright soliton $U=|u_{1}|$ at $t=0.$ a:
$c=1.46,$ $b:c=0.81,$ $c:c=0.19$ . The profiles a is an algebraic soliton.

$-6 -4 -2 0 2 4 6$
$\cross$

Figure 10. Profile of an algebraic bright soliton $u_{R}={\rm Re} u_{1}$ at $t=1.$

the velocity, i.e., $c=c_{\min}’$ whereas a black soliton arises at $c=c_{0}’$ . Figure 8 shows
the profile of $u_{R}={\rm Re} u_{1}$ at $t=1$ for an algebraic dark soliton.

(ii) Bright soliton: $a_{1}>0$

Figure 9 depicts the profile of $U=|u_{1}|$ at $t=0$ for three different values of $c$ , i.e.,
a: $c=1.46,$ $b:c=0.73,$ $c:c=0.025$ with $\rho=1$ and $\kappa=-2$ . Figure 10 shows
the profile $u_{R}={\rm Re} u_{1}$ of an algebraic bright soliton at $t=1$ which corresponds to
the profile a in figure 9.
$\bullet$ Summary

i$)$ $\kappa>0,$ $a_{1}>0$ : dark soliton (no algebraic soliton)

ii) $\kappa>0,$ $a_{1}<0$ : bright soliton (algebraic soliton)

iii) $\kappa<0,$ $a_{1}>0$ : bright soliton (algebraic soliton)

iv) $\kappa<0,$ $a_{1}<0$ : dark soliton (algebraic soliton)
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Figure 11. The interaction of two dark solitons.

5.2. Two-soliton solution
5.2. 1. Dark-dark solitons
The tau functions $f_{2}$ and $g_{2}$ representing the dark two-soliton solution are given
by $(3.1)-(3.3)$ with $N=2$ subjected to the conditions $\kappa>0,$ $a_{1}>0,$ $a_{2}>0$ . They
read

$f_{2}=1+ \frac{\kappa-ip_{1}}{p_{1}+p_{1}^{*}}z_{1}z_{1}^{*}+\frac{\kappa-ip_{2}}{p_{2}+p_{2}^{*}}z_{2^{Z_{2}^{*}}}$

$+ \frac{(\kappa-ip_{1})(\kappa-ip_{2})(p_{1}-p_{2})(p_{1}^{*}-p_{2}^{*})}{(p_{1}+p_{1}^{*})(p_{1}+p_{2}^{*})(p_{2}+p_{1}^{*})(p_{2}+p_{2}^{*})}z_{1}z_{2^{Z_{1}^{*}Z_{2}^{*}}}, (5.22a)$

$g_{2}=1- \frac{\kappa+ip_{1}^{*}p_{1}}{p_{1}+p_{i}^{*}p_{1}^{*}}z_{1}z_{i}^{*}-\frac{\kappa+ip_{2}^{*}}{p_{2}+p_{2}^{*}}\frac{p_{2}}{p_{2}^{*}}z_{2}z_{2}^{*}$

$+^{(\kappa+ip_{1}^{*})(\kappa+ip_{2}^{*})(p_{1}-p_{2})(p_{1}^{*}-p_{2}^{*})} \frac{p_{1}p_{2}}{**}z_{1}z_{2^{Z_{1}^{*}Z_{2}^{*}}}. (5.22b)$

$(p_{1}+p_{1}^{*})(p_{1}+p_{2}^{*})(p_{2}+p:)(p_{2}+p_{2}^{*})p_{1}p_{2}$

Figure 11 shows the intercaction of two dark solitons with the parameters $\rho=$

$1,$ $\kappa=2,$ $c_{1}=0.75,$ $c_{2}=0.24$ and $\zeta_{10}=\zeta_{20}=0$ so that from (4.14), $A_{d1}=1.0$ and
$A_{d2}=0.47.$

5. 2.2. Dark-bright solitons
Figure 12 depicts the interaction between a dark soliton and a bright soliton with
the parameters $\rho=1,$ $\kappa=2,$ $c_{1}=0.75,$ $c_{2}=0.24$ and $\zeta_{10}=\zeta_{20}=0$ , showing
that the dark soliton propagates faster than the bright soliton. The asymptotic
amplitudes of the dark and bright solitons are given respectively by $A_{d1}=1.0$ and
$A_{b2}=0.92$ and hence the former is a black soliton.
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Figure 12. The interaction between a dark soliton and a bright soliton.

$\bullet$ Phase shift
Dark-dark solitons:

$\Delta x_{1}=\frac{1}{a_{1}}\ln|\frac{p_{1}+p_{2}^{*}}{p_{1}-p_{2}}|,$ $\Delta x_{2}=-\frac{1}{a_{2}}\ln|\frac{p_{2}+p_{1}^{*}}{p_{2}-p_{1}}|,$ $a_{1}>0,$ $a_{2}>0$ . (5.23)

Dark-bright solitons:

$\Delta x_{1}=-\frac{1}{a_{1}}\ln|\frac{p_{1}+p_{2}^{*}}{p_{1}-p_{2}}|,$ $\Delta x_{2}=-\frac{1}{a_{2}}\ln|\frac{p_{2}+p_{1}^{*}}{p_{2}-p_{1}}|,$ $a_{1}>0,$ $a_{2}<0$ . (5.24)

$\Delta x_{1}>0, \Delta x_{2}<0.$

$\bullet$ Summary

i$)$ $\kappa>0,$ $a_{1}>0,$ $a_{2}>0$ : dark-dark solitons

ii) $\kappa>0,$ $a_{1}>0,$ $a_{2}<0$ : dark-bright solitons

iii) $\kappa>0,$ $a_{1}<0,$ $a_{2}<0$ : bright-bright solitons

6. Conclusion

$\bullet$ The dark soliton solutions of the $FL$ equation have been obtained by means of
a direct method.
$\bullet$ The linear stability analysis of the plane wave has been performed to assure the
existence of soliton solutions.
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$\bullet$ The classification of the one-soliton solutons has been done, showing that both
the dark and bright solitons exist on a constant background which reduce to alge-
braic solitons under certain conditions.
$\bullet$ The two-soliton solutions can be classified into three types, i.e., dark-dark soli-
tons, dark-bright solitons and bright-bright solitons.
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