
A numerical approach to complex eigenvalues
with moduli close to a specified value

Takafumi Miyata* and Shao-Liang Zhang
Graduate School of Engineering, Nagoya University, Japan

Japan Science and Technology Agency, CREST
*Email: miyata@na.cse.nagoya-u.ac.jp

Abstract. In this paper, we consider computing all the complex eigenvalues
with moduli close to a specffied value. Such problems arise in the application
of photonic crystals. For solving the problems efficiently, we extend the
projection method based on the residue theorem. We also analyze the errors
of the eigenvalues computed by an extended method.

1 Introduction

We consider solving the generalized eigenvalue problem

$Ax=\lambda Bx (x\neq 0)$ , (1)

where $A$ and $B$ are $n\cross n$ matrices, $\lambda\in \mathbb{C}$ is an eigenvalue, and $x\in \mathbb{C}^{n}$ is
its corresponding eigenvector. The problem arises in many applications of
scientific computing, such as structural analysis and stability analysis of fluid
dynamics [1]. In these problems, it is often needed to find a few eigenvalues
near a specffied point in the complex plane, and iterative methods [2] are
available for the problem.

Here, we focus on the eigenvalue problems which arise in the application
of photonic crystals. In recent years, photonic crystals [3] have attracted
much attention due to their potential applications in future integrated cir-
cuits based on light, instead of electrons. In these practical problems, one
has to find all the complex eigenvalues on the unit circle in the complex
plane [4]. To be more precise, in numerical computations, the eigenvalues
of interest will not be strictly on the unit circle. The number of the needed
eigenvalues are small, though the needed eigenvalues are usually scattered,
not located near one point in the complex plane. Hence, the computational
task is to find all the eigenvalues with moduli close a specified value; the
value is 1 in this problem.

Since the needed eigenvalues are not located near one point in the com-
plex plane, we consider the following approach to the needed eigenvalues
without using iterative methods. We first consider a domain near the unit
circle. The domain is surrounded by two circles whose centers are the origin
and radii are $1\pm\epsilon$ , where $\epsilon$ is a small positive number. This finite and
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multiply connected domain includes all the eigenvalues of interest. Thus,
we can say that the computational task is to find all the eigenvalues within
the domain. To compute all the eigenvalues within the domain efficiently,
we focus on the projection method based on the residue theorem [6]. We
consider extending the method so that we can compute all the eigenvalues
within the domain without computing the other eigenvalues.

The rest of this paper is organized as follows. In section 2, we give
a brief exposition of the projection method based on the residue theorem.
In section 3, we extend the method to the need for the eigenvalues with
moduli close to a specffied value. To illustrate the availability of a new
extended method, we report numerical experiments in section 4. Finally, we
summarize this paper in section 5.

Throughout this paper, $i$ denotes the imaginary unit, $0$ and $O$ denote
the zero vector and the zero matrix with appropriate size in the context, and
$(\cdot)^{*}$ denotes the conjugate transpose. $A$ positively oriented closed Jordan
curve in the complex plane is simply called a closed curve.

2 The projection method based on the residue theorem

In this section, we briefly sketch the projection method based on the residue
theorem [6]. The method is recently used to find the eigenvalues within a
simply connected domain of the complex plane [5, 7].

$\circ$

Figure 1: Distribution of eigenvalues in the complex plane. The eigenvalues
within the domain enclosed by $\Gamma$ are shown by $\bullet$ , and the other eigenvalues
are shown by $0$ . The method can compute all the eigenvalues $\bullet$ without
computing the eigenvalues $\circ.$

We assume that the matrix pencil $A-\lambda B$ is regular and $A$ is diagonaliz-
able [6]. However, the symmetry and singularity of the matrices $A$ and $B$ in
(1) are not restricted. Let $\Gamma$ be a closed curve and $\gamma$ be a point within the do-
main enclosed by $\Gamma$ . Let $\lambda_{1},$

$\ldots,$
$\lambda_{n’}$ be finite and distinct eigenvalues of (1).

We assume that any eigenvalues do not lie on $\Gamma$ . Let $\lambda_{1},$

$\ldots,$
$\lambda_{m}(m\leq n’)$ be

the distinct eigenvalues within the domain. We suppose that the eigenval-
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ues within the domain are of interest, see Figure 1. The needed eigenvalues
can be computed in the following two steps [6]. The first step is computing
complex moments which include the information of the needed eigenvalues
$\lambda_{1},$

$\ldots,$
$\lambda_{m}$ . It is important that the unneeded eigenvalues are not included

in the moments. The second step is extracting the needed eigenvalues from
the moments. This can be done by solving a generalized eigenvalue problem
with smaller scale matrices than $A$ and $B$ in (1).

At the first step, let us consider computing the following complex mo-
ments for $p=0,1,$ $\ldots,$ $2m-1$ :

$\mu_{p}=\frac{1}{2\pi i}\oint_{\Gamma}f(p, \gamma, z)dz$ , (2)

where $f$ is given with nonzero vectors $u$ and $v$ as follows:

$f(p, \gamma, z)=(z-\gamma)^{p}(u^{*}(zB-A)^{-1}v)$ . (3)

The function $f$ is expanded into two terms as follows [6]:

$f(p, \gamma, z)=\sum_{k=1}^{n’}\frac{(z-\gamma)^{p}v_{k}}{z-\lambda_{k}}+g(z)$ , (4)

where $\nu_{k}$ is a scalar which we assume nonzero, and $g(z)$ is a polynomial.
From (2), (4), and the residue theorem, it follows that

$\mu_{p}=\sum_{k=1}^{m}(\lambda_{k}-\gamma)^{p}\nu_{k}$ , (5)

where $(\lambda_{k}-\gamma)^{p}\nu_{k}$ is the residue of the function $f$ at $z=\lambda_{k}$ . From (5), the
moment $\mu_{p}$ includes the information of the needed eigenvalues $\lambda_{1},$

$\ldots,$
$\lambda_{m}.$

At the second step, let us consider extracting the eigenvalues in the
moments. Here, $m\cross m$ matrices $H_{m}$ and $H_{m}^{<}$ are given by

$H_{m}=\{\begin{array}{llll}\mu_{0} \mu_{1} \cdots \mu_{m-1}\mu_{1} \mu_{2} \cdots \mu_{m}| | \ddots |\mu_{m-1} \mu_{m} \cdots \mu_{2m-2}\end{array}\},$ $H_{m}^{<}=\{\begin{array}{llll}\mu_{1} \mu_{2} \cdots \mu_{m}\mu_{2} \mu_{3} \cdots \mu_{m+1}| | \ddots |\mu_{m} \mu_{m+1} \cdots \mu_{2m-1}\end{array}\}$ . (6)

Let us consider solving the eigenvalue problem

$H_{m}^{<}y=\tilde{\lambda}H_{m}y (y\neq 0)$ . (7)

In [6], it is shown that the eigenvalues of (7) are given by $\tilde{\lambda}=\lambda-\gamma(\lambda\in$

$\{\lambda_{1}, \ldots, \lambda_{m}\})$ . In this way, the eigenvalues of (1) within the domain, $\lambda=$

$\tilde{\lambda}+\gamma$ , can be computed by solving (7). This method can efficiently compute
the needed eigenvalues $\lambda$ when $m\ll n.$
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3 An approach to the practical needs for eigenvalues

The previous section has given the brief summary of the method for the
eigenvalues within a simply connected domain. In this section, we consider
extending the method so that we can compute all the complex eigenvalues
with moduli close to 1. To begin with, we give an extension of the method
in section 3.1. Then, we describe the details of an extended method in
section 3.2. In section 3.3, we analyze the error of the eigenvalues computed
by the extended method.

3.1 Extension to a finite and multiply connected domain

To solve the eigenvalue problems which arise in the applications of photonic
crystals, one has to compute the eigenvalues $\lambda_{1},$

$\ldots,$
$\lambda_{m}$ which are scattered

near the unit circle in the complex plane, $|\lambda_{i}|\simeq 1(i=1, \ldots, m)$ . To find
them, it is natural in the method to specify a closed curve $\Gamma_{1}$ by a circle
with the property that a center is the origin and a radius is $1+\epsilon$ , where $\epsilon$

is a small positive number, see Figure 2. Then, the domain enclosed by $\Gamma_{1}$

includes both the needed eigenvalues near the unit circle and the unneeded
eigenvalues within the unit circle. Let $m’$ be the number of eigenvalues
within the domain. Let us consider a moment

$\mu_{p}^{(1)}=\frac{1}{2\pi i}\oint_{\Gamma_{1}}f(p, 0, z)dz.$

By (2) and (5), the moment is shown by

$\mu_{p}^{(1)}=\sum_{k=1}^{m}\lambda_{k}^{p}\nu_{k}+\sum_{k=m+1}^{m’}\lambda_{k}^{p}\nu_{k}.$

Thus, the cluster of the needed eigenvalues can be decomposed into two
terms as follows:

$\sum_{k=1}^{m}\lambda_{k}^{p}\nu_{k}=\mu_{p}^{(1)}-\sum_{k=m+1}^{m’}\lambda_{k}^{p}\nu_{k}$ . (8)

The second term in (8) includes the cluster of the unneeded eigenvalues
inside the unit circle. To vanish them, we consider another moment. Let $\Gamma_{2}$

be a circle with the property that a center is the origin and a radius is $1-\epsilon,$

see Figure 3. Let us consider a moment

$\mu_{p}^{(2)}=\frac{1}{2\pi i}\oint_{\Gamma_{2}}f(p, 0, z)dz.$

By (2) and (5), the moment is shown by

$\mu_{p}^{(2)}=\sum_{k=m+1}^{m’}\lambda_{k}^{p}\nu_{k}$. (9)
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Figure 2: The eigenvalues of interest near the unit circle (dot line) are shown
by $0$ , and the other eigenvalues are shown by $0$ . All the needed eigenvalues
$\bullet$ are included within the domain enclosed by $\Gamma_{1}.$

From (8) and (9), it follows that

$\sum_{k=1}^{m}\lambda_{k}^{p}\nu_{k}=\mu_{p}^{(1)}-\mu_{p}^{(2)}$ . (10)

Let $\pm\tilde{\Gamma}_{2}$ be lines which connect $\Gamma_{1}$ to $\Gamma_{2}$ , as shown in Figure 3, and $C$ be a
closed curve

$C=\Gamma_{1}+\tilde{\Gamma}_{2}-\Gamma_{2}-\tilde{\Gamma}_{2}$ . (11)

Then, (10) can be expressed as follows:

$\sum_{k=1}^{m}\lambda_{k}^{p}v_{k}=\frac{1}{2\pi i}\oint_{C}f(p, 0, z)dz$ . (12)

As shown in (12), the needed eigenvalues are included in the moment spec-
ified by $C$ in (11), whereas the other eigenvalues are not included in the
moment. $Rom$ the above remark, let us consider using the following mo-
ments for $p=0,1,$ $\ldots,$ $2m-1$ to give the elements of the matrices in (6):

$\mu_{p}=\frac{1}{2\pi i}\oint_{C}f(p, 0, z)dz.$

Then, by solving (7), we can get all the needed eigenvalues with moduli close
to 1.

The above approach can be extended to general case: we can get the
eigenvalues within a finite and multiply connected domain, see Figure 4.
For $t=1,$ $\ldots,$

$d$ , let $\Gamma_{t}$ be a closed curve. We assume that any closed curves
do not overlap with each other. Let $D_{t}$ be a simply connected domain
enclosed by $\Gamma_{t}$ , and $\gamma_{t}$ be a point within $D_{t}$ . The outside of $D_{t}$ is denoted
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Figure 3: The needed eigenvalues shown by $\bullet$ can be treated as the eigen-
values within the multiply connected domain between $\Gamma_{1}$ and $\Gamma_{2}.$

by $\overline{D}_{t}$ . We assume that $D_{2},$
$\ldots,$

$D_{d}\subset D_{1}$ and define a finite and multiply
connected domain $\Omega$ as follows:

$\Omega=D_{1}\cap\overline{D}_{2}\cap\cdots\cap\overline{D}_{d}$ . (13)

The domain $\Omega$ is enclosed by a closed curve

$C= \Gamma_{1}+\sum_{t=2}^{d}(\tilde{\Gamma}_{t}-\Gamma_{t}-\tilde{\Gamma}_{t})$ , (14)

where $\pm\tilde{\Gamma}_{t}$ are lines connecting $\Gamma_{1}$ to $\Gamma_{t}$ . Let us consider a moment

$\mu_{p}^{(t)}=\frac{1}{2\pi i}\oint_{\Gamma_{t}}f(p, \gamma_{1}, z)dz$ . (15)

By (2) and (5), the information of all the eigenvalues within $\Omega$ are included
in the following moment specffied by $C$ in (14):

$\mu_{p}=\frac{1}{2\pi i}\oint_{C}f(p, \gamma_{1}, z)dz=\mu_{p}^{(1)}-\sum_{t=2}^{d}\mu_{p}^{(t)}$ , (16)

where $\mu_{p}^{(t)}$ is given by (15). Note that (16) with $d=2$ and $\gamma_{1}=0$ corresponds
to (12). Let us consider using the moment in (16) to give the elements of
the matrices in (6). Then, we can get all the eigenvalues within $\Omega$ in (13)
by solving (7).

3.2 Algorithm

We present an algorithm for computing all the eigenvalues within a finite and
multiply connected domain. We consider the case in which $\Gamma_{t}(t=1, \ldots, d)$
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Figure 4: The eigenvalues within the multiply connected domain $\Omega(d=3)$

are shown by $\bullet.$

is given by a circle with a center $\gamma_{t}$ and a radius $\rho_{t}$ . From (3) and (15),

$\mu_{p}^{(t)}=\frac{1}{2\pi}\int_{0}^{2\pi}(\gamma_{t}+\rho_{t}.e^{i\theta}-\gamma_{1})^{p}\rho_{t}e^{i\theta}(u^{*}((\gamma_{t}+\rho_{t}e^{i\theta})B-A)^{-1}v)d\theta$ . (17)

Let $N$ be a natural number, $\omega_{N}=\exp(2\pi i/N)$ , and $z_{j}^{(t)}=\gamma_{t}+\rho_{t}\omega_{N}^{j}$ . Then,
an approximation $\tilde{\mu}_{p}^{(t)}$ of (17) by the $N$-point trapezoidal rule is given by

$\tilde{\mu}_{p}^{(t)}=\frac{1}{N}\sum_{j=0}^{N-1}(z_{j}^{(t)}-\gamma_{1})^{p}(z_{j}^{(t)}-\gamma_{t})(u^{*}(z_{j}^{(t)}B-A)^{-1}v)$ . (18)

By (18), an approximation $\tilde{\mu}_{p}$ of (16) is given by

$\tilde{\mu}_{p}=\tilde{\mu}_{p}^{(1)}-\sum_{t=2}^{d}\tilde{\mu}_{p}^{(t)}$ . (19)

The matrices $H_{m}$ and $H_{m}^{<}$ in (6) are generated by using $\tilde{\mu}_{p}$ in (19) instead
of $\mu_{p}$ , and then (7) is solved. The above procedure is summarized in Algo-
rithm 1.

3.3 Error analysis of computed eigenvalues

We analyze the error of the eigenvalues computed by Algorithm 1. Let
$m_{t}(2\leq t\leq d)$ be the number of finite and distinct eigenvalues within $D_{t}.$

Let $m_{1}$ be the number within $\Omega:m_{1}=m$ , and $m_{d+1}$ be the number in $\overline{D}_{1}.$

Let $M( \ell)=\sum_{t=1}^{p}m_{t}(1\leq\ell\leq d+1)$ with $M(O)=0$. Then, $M(\ell)$ shows
the number of finite and distinct eigenvalues: within $\Omega$ when $\ell=1$ ; within
$\Omega\cup D_{2}\cup\cdots\cup D_{\ell}$ when $2\leq\ell\leq d$ ; of (1) when $\ell=d+1$ . The finite and
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Algorithm 1 Algorithm for all the eigenvalues within a finite and multiply

$\frac{connecteddomain}{Inputparameters:m,N,d,\gamma_{1},\ldots,\gamma_{d},\rho_{1},\ldots,\rho_{d}}$

Set nonzero vectors $u,$ $v\in \mathbb{C}^{n}.$

for $t=1,2,$ $\ldots,$
$d$ do

Compute $z_{j}^{(t)}arrow\gamma_{t}+\rho_{t}\exp(2\pi ij/N)(j=0, \ldots, N-1)$. $\triangleright i=\sqrt{-1}$

Solve linear systems $(z_{j}^{(t)}B-A)q_{j}=v(j=0, \ldots, N-1)$ .
Compute $\tilde{\mu}_{p}^{(t)}arrow\frac{1}{N}\sum_{j=0}^{N-1}(z_{j}^{(t)}-\gamma_{1})^{p}(z_{j}^{(t)}-\gamma_{t})(u^{*}q_{j})$.
if $t=1$ then

$\tilde{\mu}_{p}arrow\tilde{\mu}_{p}^{(t)}(p=0, \ldots, 2m-1)$ .
else

$\tilde{\mu}_{p}arrow\tilde{\mu}_{p}-\tilde{\mu}_{p}^{(t)}(p=0, \ldots, 2m-1)$ .
end if

end for

Set $H_{m}arrow[_{\sim}\tilde{\mu_{1}m}-1\tilde{\mu}_{0}$ $\tilde{\mu}_{m}\tilde{\mu}_{2}\tilde{\mu}_{1}$ $.\cdot.\cdot$ $\tilde{\mu}_{2m-2}\tilde{\mu}_{m,.-1}\tilde{\mu}_{m}],$ $H_{m}^{<}arrow 1_{m}^{\tilde{\mu}_{1}}\tilde{\sim}\mu_{2}$ $\tilde{\mu}_{m+1}\tilde{\mu}_{3}\tilde{\mu}_{2}$ $.\cdot.\cdot$ $\tilde{\mu}_{2m-1}\tilde{\mu}_{m}\tilde{\mu}_{m_{1}}+].$

Compute the eigenvalues $\tilde{\lambda}_{1},$ $\ldots,\tilde{\lambda}_{m}$ of the pencil $H_{m}^{<}-\tilde{\lambda}H_{m}.$

Output the eigenvalues $\lambda_{j}arrow\tilde{\lambda}_{j}+\gamma_{1}$ $(j=1, \ldots, m)$ .

distinct eigenvalues of (1) are indexed as follows:

$\lambda_{M(\ell-1)+1},$ $\ldots,$
$\lambda_{M(l)}\{\begin{array}{ll}\in\Omega (\ell=1) ,\in D_{l} (2\leq\ell\leq d) ,\in\overline{D}_{1} (\ell=d+1) .\end{array}$

The eigenvalues computed by Algorithm 1 are denoted by $\tilde{\lambda}_{1},$

$\ldots,$

$\tilde{\lambda}_{m}$ . Then,
we show the errors of the computed eigenvalues as follows.

Theorem 1 If the matrix $H_{m}$ is nonsingular, then
$|\lambda_{j}-\tilde{\lambda}_{j}|=O(\epsilon^{N}) (j=1, \ldots, m)$ ,

$\epsilon=\max(\epsilon_{1}, \epsilon_{2})$ ,

$\epsilon_{1}=$ $\max$$2 \leq\ell\leq dM(\ell-1)+1\leq k\leq M(\ell)\max(\frac{|\lambda_{k}-\gamma_{1}|}{\rho_{1}}, \frac{|\lambda_{k}-\gamma_{\ell}|}{\rho_{\ell}}, 2\leq t\leq d,t\neq\ell\max\frac{\rho_{t}}{|\lambda_{k}-\gamma_{t}|})$ ,

$\epsilon_{2}=M(d)+1\leq k\leq M(d+1)\max 1\leq t\leq d\max\frac{\rho_{t}}{|\lambda_{k}-\gamma_{t}|}$

From Theorem 1, we can say that the absolute errors of the computed
eigenvalues linearly decrease as $N$ increases. The convergence ratio $\epsilon$ de-
pends on the eigenvalues which are located outside $\Omega$ and are closest to $\Omega.$

If there are eigenvalues outside and very near $\Omega,$ $\epsilon$ becomes large. In this
case, $N$ is needed to be large to get the accurate eigenvalues.
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4 Numerical experiments

In this section, we report some numerical experiments to show the availabil-
ity of Algorithm 1 in section 3.2 and the validity of Theorem 1 in section 3.3.
The following experiments were carried out with Matlab in double precision
arithmetic.

4.1 Example 1

First, we compute all the eigenvalues on the unit circle. For this example,
the order of the matrices $A$ and $B$ is $n=20$, and the matrices are given by

$A=Q^{*}\{0.7D_{1}O D_{2} O1.3D_{1}\}Q, B=Q^{*}Q,$

where $D_{1}=$ diag $(d_{0}, \ldots, d_{7}),$ $d_{j}=\exp(2\pi ij/8),$ $D_{2}=$ diag$(1, -1, i, -i)$ , and
$Q$ is a $20\cross 20$ matrix whose elements are given by random numbers. The
distribution of the eigenvalues of (1) for the matrices is shown in Figure 5.

$Re.$

Figure 5: The eigenvalues on the unit circle are shown by $\bullet$ , and the other
eigenvalues are shown by $0.$

To find all the eigenvalues on the unit circle, $\lambda_{1}=1,$ $\lambda_{2}=-1,$ $\lambda_{3}=$

$i,$ $\lambda_{4}=-i$ , we set the parameters in Algorithm 1 as follows:

$m=4, N=128, d=2,$
$\gamma_{1}=0.00, \rho_{1}=1.02,$

$\gamma_{2}=0.00, \rho_{2}=0.98.$
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By using the parameters, we computed all the eigenvalues within a multiply
connected domain, see Figure 5. The computed eigenvalues are

$\lambda_{1}=$ 1.$000000000000035+0.000000000000037i,$

$\lambda_{2}=-1.000000000000061-0.000000000000007i,$

$\lambda_{3}=-0.000000000000003+1.000000000000085i,$

$\lambda_{4}=-0.000000000000038-1.000000000000031i.$

From this result, we observe that Algorithm 1 can compute all the eigenval-
ues on the unit circle.

4.2 Example 2

For the second example, the order of the matrices $A$ and $B$ is $n=100$ , and
the matrices are given by

$A=\{\begin{array}{lllll} \end{array}\}, B=\{\begin{array}{ll}O OO I_{20}\end{array}\},$

where $I_{20}$ is the $20\cross 20$ identity matrix. For the matrices, the finite eigen-
values of (1) are given by

$\lambda_{j}=\frac{j-1}{100} (j=1, \ldots, 20)$ .

We set the parameters in Algorithm 1 as follows:

$m=4, d=4,$
$\gamma_{1}=0.040, \rho_{1}=0.051,$

$\gamma_{2}=0.021, \rho_{2}=0.015,$

$\gamma_{3}=0.058, \rho_{3}=0.009,$

$\gamma_{4}=0.080, \rho_{4}=0.005.$

By the parameters, a multiply connected domain is specified, see Figure 6.
We computed the eigenvalues within the domain, $\lambda_{1}=0.00,$ $\lambda_{2}=0.04,.\lambda_{3}=$

$0.07,$ $\lambda_{4}=0.09$ , see Figure 6. In this case, $\lambda=0.05$ is the eigenvalue which
is located outside the domain and is closet to the domain. Rom Theorem 1,
the convergence ratio is estimated to be $\epsilon=|\lambda-\gamma_{3}|/\rho_{3}\simeq 0.89.$

We show the errors of the computed eigenvalues in Figure 7. From
Figure 7, we observe that the errors linearly decrease. The gradient shows
the convergence ratio as $\epsilon\simeq 10^{-0.05}\simeq 0.89$ . From these results, we observe
that the error analysis in Theorem 1 is valid.
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$\underline{\dot{\in}}$

$Re.$

Figure 6: The eigenvalues within the multiply connected domain are shown
by $\bullet$ , and the other eigenvalues are shown by $0.$
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$0$ 32 64 96 128 160 192
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$-6$ $\blacksquare 0.04$
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$\bullet 0.09$

$-10$

$-12$

$-14$

Figure 7: As $N$ increases, the error $|\lambda-\tilde{\lambda}|$ linearly decreases, where $\lambda$ is the
exact eigenvalue and $\tilde{\lambda}$ is the computed eigenvalue. The gradient shows the
convergence ratio as $\epsilon\simeq 10^{-0.05}\simeq 0.89.$
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5 Concluding remarks

In this paper, we have considered computing the eigenvalues whose absolute
values are close to a specified value. Such problems arise in the application of
photonic crystals. For solving the problems efficiently, we have extended the
projection method based on the residue theorem. From our experiments, we
have learned that an extended method can compute the eigenvalues within
a finite and multiply connected domain. Since the needed eigenvalues in the
application of photonic crystals are within a multiply connected domain, the
extended method is promising for computing the needed eigenvalues. We
have also analyzed the errors of the eigenvalues computed by the extended
method. The analysis has been verified by numerical experiments.
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