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1. INTRODUCTION AND MAIN RESULTS

This article is a survey of results related to the hot spots on a domain
and it contains an announcement of the paper [10]. Theorems A, $B$ , and
$C$ are proved in [10]. The Neumann eigenfunctions of the Laplacian on
a bounded planar domain $\Omega$ with Lipschitz boundary satisfy - $\triangle u=\mu u$

with the Neumann boundary condition $\partial_{\nu}u=0$ on $\partial\Omega$ . Let $\{\mu_{j}(\Omega)\}_{j=0}^{\infty}$

denote the eigenvalues (counting multiplicities). Then
$0=\mu_{0}(\Omega)<\mu_{1}(\Omega)\leq\mu_{2}(\Omega)\leq\cdots$

We are interested in the characterization of the shape of the second
Neumann eigenfunction on a convex domain with the number and 10-
cations of the critical points. As mentioned in Conjecture 2.1 below,
it is conjectured that if the domain is convex, then none of the second
Neumann eigenfunctions have an interior critical point and all critical
points are on the boundary. When the domain is a planar polygon,
the eigenfunction has a critical point at each corner. The number of
the critical points on the boundary can be arbitrary large even if the
domain is convex. Hence, we cannot characterize the shape with the
number of the critical points on the boundary. Then, in this paper we
study the maximum number of the isolated local maximum points on
the boundary of a convex domain. The first main result of this article
is

Theorem A. Let $\theta>0$ be small. Let $O$ be the origin of $\mathbb{R}^{2}$ , and let
$A_{k}^{(n)}=( \cos(\frac{n-2k}{2}\theta), \sin(\frac{n-2k}{2}\theta))$ . Let $\Omega_{n,\theta}$ denote the convex polygon
$OA_{0}^{(n)}A_{1}^{(n)}\cdots A_{n}^{(n)}$ For each integer $n\geq 1$ , there is a small $\theta>0$ such
that $\mu_{1}(\Omega_{n,\theta})$ is simple, the associated eigenfunction attains its local
and global maximum at $A_{0}^{(n)},$

$\ldots,$

$A_{n}^{(n)}$ , and it does not have an interior
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FIGURE 1. The shape of $\Omega_{4,\theta}$ given in Theorem A. The
second eigenfunction attains its maximum at five vertices
$A_{0}^{(4)}, \ldots, A_{4}^{(4)}$

critical point. In particular, the eigenfunction has exactly $n+1$ isolated
local and global maximum points on the boundary. See Figure 1 for the
case $n=4.$

This theorem says that a planar convex domain can have many iso-
lated hot spots on the boundary and that there is no upper bound of
the number of the hot spots. Therefore, it is impossible to character-
ize the shape of the second eigenfunction by the number of the local
maximum points.

When the domain is a thin sector (resp. rectangle), each point on the
arc (resp. one side) is a maximum point, hence there are infinitely many
maximum points on the boundary. However, they are not isolated.

Remark 1.1. It is known that the $fir\mathcal{S}t$ Dirichlet eigenfunction on a
planar domain has exactly one local and global interior maximum point
if the domain is strictly convex. See [12]. For a nonlinear version of
the Dirichlet problem, $\mathcal{S}ee[3].$

We study the eigenfunction on $\Omega_{n,\theta}$ , using that on a thin isosceles
triangle. The main part of this paper is to study the shape of the
eigenfunction on an isosceles triangle. In order to state the next main
result we need some notation. Let $a>0$ . Throughout the present
paper we define $O=(0,0),$ $P=(0, a),$ $Q=(0, -a),$ $R=(\sqrt{3},0)$ ,
$S=(-\sqrt{3},0)$ in the $xy$-plane and denote the open triangle $PQR$ by $T.$

Note that if $a=1$ , then $T$ is an equilateral triangle. Let $T_{+}=T\cap\{y>$
$0\}$ and $T_{-}=T\cap\{y<0\}$ . Following [6], we call $T$ a superequilateml
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triangle if $a>1$ and a subequilateml triangle if $0<a<1$ . Laugesen-
Siudeja [6] studied the shape of the second Neumann eigenfunction on
$T$ and’ obtained the following:

Proposition 1.2 ([6, Theorems 3.1 and 3.2]). (i) Every second Neu-
mann eigenfunction on a subequilateml triangle $T$ is even with respect
to the $x$ -axis.
(ii) Every second Neumann eigenfunction on a superequilateml triangle
$T$ is odd with respect to the $x$ -axis.

In this paper we study the shape of the second Neumann eigenfunc-
tion on an isosceles triangle, using this proposition. The second main
result of this article is the following two theorems:

Theorem B. Let $u$ be a second Neumann eigenfunction on T. Suppose
that $T$ is a subequilateml triangle. Then $\mu_{1}(T)$ is simple, $u$ is even with
respect to the $x$ -axis, and $u(O)\neq 0$ . Moreover, suppose without loss of
genemlity that $u(O)>0$ . Then the following holds:
(i) $u_{x}<0$ in $\overline{T}\backslash (\{x=0\}\cup\{R\}),$ $u_{y}>0in\overline{T_{+}}\backslash (\{y=0\}\cup\{P\})$ , and
$u_{y}<0$ in $\overline{T_{-}}\backslash (\{y=0\}\cup\{Q\}).$ Here $\overline{T}$ and $\overline{T_{+}}$ denote the closures of
$T$ and $T_{+}$ , respectively.
(ii) $u$ has exactly four critical points $O,$ $P,$ $Q$ , and $R$ in $T.$

(iii) $P$ and $Q$ are the local and global maximum points of $u$ and $u(P)=$

$u(Q)>0.$
(iv) $R$ is the local and global minimum point of $u$ and $u(R)<0.$
(v) $O$ is the saddle point of $u.$

See the left figure of Figure 2.

Theorem C. Let $u$ be a second Neumann eigenfunction on T. Suppose
that $T$ is a superequilateml triangle. Then $\mu_{1}(T)$ is simple, $u$ is odd
with respect to the $x$ -axis, and $u(P)\neq 0$ . Moreover, suppose without
loss of genemlity that $u(O)>0$ . Then the following holds:
(i) $u_{y}>0$ in $\overline{T}\backslash \{P, Q, R\},$ $u_{x}<0$ in $\overline{T_{+}}\backslash (\{y=0\}\cup\{x=0\})$ , and
$u_{x}>0$ in $\overline{T_{-}}\backslash (\{y=0\}\cup\{x=0\})$ .
(ii) $u$ has exactly three critical points $P,$ $Q$ , and $R$ in $T.$

$(i_{\mathfrak{l}}ii)P$ and $Q$ are the maximum and minimum points of $u$ , respectively.
(iv) $R$ is neither local maximum nor local minimum point.
See the right figure of Figure 2.

Banuelos-Burdzy [2] showed that if one of the angles of a triangle is
greater than $\pi/2$ , then the maximum and minimum points are located
at most distinct vertices. Theorem $C$ (iii) is partially included in [2].
However, they did not study the case where every angle is smaller than
or equal to $\pi/2.$
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$\theta<_{\overline{3}}$

FIGURE 2. Circles stand for the hot spots and dashed
circles stand for the cold spots. The second eigenvalue is
double in the case of the equilateral triage.

When the domain is a disk, sector, rectangle, or special triangle, the
second Neumann eigenfunctions can be written in terms of the Bessel,
sine, and cosine functions. Hence, the detailed analysis of the shape can
be done. In particular, when the domain is an equilateral triangle, the
second eigenvalue is double and there is an eigenfunction, which is $u_{2}$ in
(1.1) below, having two maximum points on the boundary. Theorem $B$

tells us that a subequilateral triangle also has the second eigenfunction
with two local maximum points on the boundary. It seems that a
subequilateral triangle is the first example having a second Neumann
eigenfunction with two maximum points on the boundary except for
an equilateral triangle.

When the domain is an equilateral triangle, the second eigenvalue
is double and Lam\’e derived an exact expression of the eigenfunctions.
Let us consider the equilateral triangle with vertices at $(0,0),$ $(1,0)$ ,
and $(1/2, \sqrt{3}/2)$ . Then the two second eigenfunctions are

(1.1)

$u_{1}(x, y)=2 \{\cos(\frac{\pi}{3}(2x-1))+\cos(\frac{2\pi y}{\sqrt{3}})\}\sin(\frac{\pi}{3}(2x-1))$ ,

$u_{2}(x, y)= \cos(\frac{2\pi}{3}(2x-1))-2\cos(\frac{\pi}{3}(2x-1))\cos(\frac{2\pi y}{\sqrt{3}})$

We see by direct calculation that for $(\alpha, \beta)\in \mathbb{R}\cross \mathbb{R}\backslash \{(0,0)\},$ $\alpha u_{1}+$

$\beta u_{2}$ does not have an interior critical point. Combining this fact and
Theorems $B$ and $C$ , we have

Corollary 1.3. None of the $\mathcal{S}$ econd Neumann eigenfunctions on an
arbitmry isosceles triangle have an interior critical point.
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2. BACKGROUND

Let us explain background of studying the number of the maximum
points on the boundary. One of the motivations is the following “hot
spots” conjecture of Rauch:

Conjecture 2.1. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$ Then every sec-
$ond$ Neumann eigenfunction on $\Omega$ attains its maximum only on the
boundary.

This conjecture does not hold in this level of generality. There
are counter-examples which are$\cdot$ planar domains with hole(s). Ka-
wohl added the convexity assumption of the domain, and the “hot
spots” conjecture now means Conjecture 2.1 with the convex domains.
Banuelos-Burdzy [2] and Jerison-Nadirashivili [5] proved the conjecture
for planar convex domains with two axes of symmetry. (An additional
technical assumption is imposed in [2]. $)$ Pascu [11] proved the conjec-
ture if the domain is a planar convex one with one axis of symmetry
and if the second Neumann eigenfunction is odd with respect to the
axis. For positive answers for certain classes of planar domains without
symmetry, see [1, 9]. Conjecture 2.1 is believed to be true for a general
convex domain. However, it remains open even for a general triangle.
Corollary 1.3 is the positive answer for the isosceles triangles.

Yanagida posed the following nonlinear “hot $sp\cdot ots$
” conjecture and

pointed out that Conjecture 2.1 is a special case of Conjecture 2.2
below:

Conjecture 2.2 ([13]). Let $\Omega$ be a bounded convex domain, and let
$f$ be a smooth function. If a non-constant solution $u$ of the Neumann
pmblem

(2.1) $\triangle u+f(u)=0$ $in$ $\Omega,$ $\partial_{\nu}u=0$ $on$ $\partial\Omega$

has an interior critical point, then the second eigenvalue of the eigen-
value problem

$\triangle\phi+f’(u)\phi=-\mu\phi$ in $\Omega,$ $\partial_{\nu}\phi=0$ on $\partial\Omega$

is negative.

When $f(u)=\mu_{1}(\Omega)u$ , Conjecture 2.2 indicates that the second Neu-
mann eigenfunction does not have an interior critical point, hence Con-
jecture 2.1 immediately follows. Conjecture 2.2 holds for a disk [7] and
a rectangle [8]. $A$ slightly weak statement of Conjecture 2.2 was proved
in [4] for the domain $I\cross D\subset \mathbb{R}\cross \mathbb{R}^{N}$ , where $I$ is an interval and $D$

is an arbitrary domain. Conjecture 2.2 remains also open for a general
convex domain.
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Even if Conjecture 2.1 were proved, the information of the shape
of the eigenfunction on the boundary cannot be obtained, hence our
problem is different from Conjecture 2.1.

3. NONLINEAR HOT SPOTS CONJECTURE FOR THE INTERVAL

In general Conjecture 2.2 is difficult to prove. However, In the case
of the interval it is not difficult to prove the conjecture. In this section
we prove Conjecture 2.2 for the interval.

Theorem 3.1. Let $I(\subset \mathbb{R})$ be $a$ (connected) interval, and let $f$ be
a smooth function. If the non-constant solution $u$ of the Neumann
pmblem

(3.1) $u_{xx}+f(u)=0$ $in$ $I,$ $u_{x}=0$ at $\partial I$

has an interior critical point, then the second eigenfunction of the
eigenvalue pmblem

(3.2) $\phi_{xx}+f’(u)\phi=-\mu\phi$ $in$ $I,$ $u_{x}=0$ at $\partial I$

is negative.

Pmof. We assume that $u$ has a critical point. Since $u$ is not a constant
solution, $u_{x}$ has at least one simple zero inside $I$ . Moreover, $\{u_{x}>$

$0\}\neq\emptyset$ and $\{u_{x}<0\}\neq\emptyset$ . We define $v_{1}(x)$ and $v_{2}(x)$ by

$v_{1}(x):=\{\begin{array}{ll}u_{x}(x) on \{u_{x}(x)>0\},0 on \{u_{x}(x)\leq 0\},\end{array}$

and

$v_{2}(x):=\{\begin{array}{ll}-u_{x}(x) on \{u_{x}(x)<0\},0 on \{u_{x}(x)\geq 0\},\end{array}$

respectively. We define $z(x)$ by

$z(x):=v_{1}(x)-cv_{2}(x)$ .

Let $\phi_{1}(x)(>0)$ be the first eigenfunction of (3.2). Then there is $c>0$
such that

$l\phi_{1}(x)z(x)dx=0,$

since $\int_{I}\phi_{1}(x)v_{2}(x)dx\neq 0$ . We define

$\mathcal{H}[\psi]:=l(\psi_{x}^{2}-f’(u)\psi^{2})dx.$
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We have

$\mathcal{H}[z]=l(z^{2}-f’(u)z^{2})dx$

$=l((v_{1})_{x}^{2}-f’(u)v_{1}^{2})dx+c^{2}l((v_{2})_{x}^{2}-f’(u)v_{2}^{2})dx$

$=[(v_{1})_{z}v_{1}]_{\partial I}-l((v_{1})_{xx}+f’(u)v_{1})v_{1}dx$

$+[(v_{2})_{z}v_{2}]_{\partial I}-l((v_{2})_{xx}+f’(u)v_{2})v_{2}dx$

$=0,$

where we use $(v_{1})_{x}=(v_{2})_{x}=0$ at $\partial I$ and $(v_{j})_{xx}+f’(u)v_{j}=0$ for
$j=1,2$ . By a variational characterization of the second eigenvalue $\mu_{1}$

we have

$\mu_{1}=\inf_{\psi\in H^{1}(I)\backslash \{0\},\int_{I}\phi_{1}\psi dx=0}\frac{\mathcal{H}[\psi]}{\Vert\psi\Vert_{2}^{2}}$

$\leq\frac{\mathcal{H}[z]}{\Vert z||_{2}^{2}}=0,$

where $\Vert$ $\Vert_{2}$ denotes the $L^{2}$-norm. We prove that $\mu_{1}\neq 0$ . Suppose the
contrary, i.e., $\mu_{1}=0$ . Then, $z$ is the second eigenfunction. Therefore, $z$

satisfies the Neumann boundary conditions, i.e., $z_{x}=0$ at $\partial I$ . Hence,
$z_{x}=0$ at $\partial I$ . On the other hand, $z=0$ at $\partial I$ . Since $z$ satisfies the
$ODEz_{xx}+f’(u)z=0$ , we see by the uniqueness of the solution of the
$ODE$ that $z\equiv 0$ in $I$ . We obtain a contradiction, because $z$ should be
$a$ (non-zero) eigenfunction. Hence $\mu_{1}<0.$ $\square$

The proof of Conjecture 2.2 for the domain $I\cross D$ is similar to that of
Theorem 3.1. Let $\Omega=IxD$ . Let $u(x, y_{1}, y_{2}, \cdots, y_{N})$ be a non-constant
solution of (2.1). Then $v:=u_{x}$ satisfies

$\partial_{\nu}v=0$ or $v=0$

at each point on $\partial\Omega$ . Therefore,

$\mathcal{H}[v]=\int_{\Omega}(|\nabla v|^{2}-f’(u)v^{2})dxdy_{1}\cdots dy_{N}$

$= \int_{\partial\Omega}v\partial_{\nu}vd\sigma-\int_{\Omega}(\triangle v+f’(u)v)vdxdy_{1}\cdots dy_{N}$

$=0.$

Using this equality, we can similarly prove Conjecture 2.2 for this case.
In the case of a general domain $v\partial_{\nu}v$ is not necessarily zero. Hence,

we cannot determine the $sign$ of the term $\int_{\partial\Omega}v\partial_{\nu}vd\sigma$ . This is a point.
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The following corollary immediately follows from Theorem 3.1:
Corollary 3.2. Let $u$ be a non-constant solution of (3.1). If the second
eigenvalue is negative, then the maximum and minimum points are on
the boundary $\partial I$ and $u$ has no interior critical point.
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