
A NOTE ON AN OVERDETERMINED PROBLEM WITH
NON-CONSTANT NEUMANN BOUNDARY CONDITION

CHIARA BIANCHINI, PAOLO SALANI

ABSTRACT. We review some results about a variant of the Saint-Venant problem and
about a related overdetermined problem. The latter is a generalization of the Serrin
problem where the overdetermination reads $\nabla u(x)=g(x)$ on the boundary of the
unknown domain, and $g$ : $\mathbb{R}^{N}arrow[0, \infty)$ is a given function. We analyze some geometric
properties of the solution $\Omega$ in relation with $g$ and we prove some new results about
the continuity of $\Omega$ with respect to $g$ , assuming $g$ is an homogeneous function.

1. INTRODUCTION
An overdetermined problem usually consists in a Dirichlet problem given in an un-

known domain, whose solution satisfies some extra condition (classically a Neumann
boundary condition) which determines univocally the shape of the domain itself. Then
the solution of the problem is given by a couple domain-function, where the former is
the real object of research. The most famous overdetermined problem is probably the
following:

(1) $\{\begin{array}{ll}-\triangle u=1 in \Omega,u=0 on \partial\Omega,|\nabla u|=c on \partial\Omega,\end{array}$

where $c>0$ is a given constant. In a famous paper Serrin [28] proved that, under
suitable regularity assumptions, if a solution to this problem exists, then $\Omega$ must be a
ball $B(O, R)$ and $u(x)=(R^{2}-|x|^{2})/(2n)$ . After Serrin, a large amount of literature
has been produced about variants of (1), often dealing with similar problems where the
Laplacian is substituted by some other operator $and,Jhe$ overdetermination writes again
as $u=0$ and $|\nabla u|=$ constant on $\partial\Omega$ ; but also other kinds of overdetermined conditions
have been considered in hterature, see for instance [4, 6, 14, 15, 17, 20, 27, 29, 30]
and references therein. Moreover, related stability issues have been investigated, see for
instance [3, 8, 16].

Here we consider the following generalization of (1): given a function $g$ : $\mathbb{R}^{N}arrow$

$[0, +\infty)$ , positive outside the origin, we investigate the problem

(2) $\{\begin{array}{ll}-\Delta u=1 in \Omega,u=0 on \partial\Omega,|\nabla u(x)|=g(x) on \partial\Omega.\end{array}$
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More precisely: for any bounded open set $\Omega$ , we denote by $u\Omega$ the stress function of $\Omega,$

that is the solution of the torsion problem:

(3) $\{\begin{array}{ll}-\triangle u\Omega=1 in \Omega u\Omega=0 on \partial\Omega,\end{array}$

or its weak form

(4) $u\Omega\in H_{0}^{1}(\Omega)$ : $\int_{\Omega}\nabla u\Omega\nabla v=\int_{\Omega}u\Omega v$ $\forall v\in H_{0}^{1}(\Omega)$ .

Then we ask whether a domain $\Omega$ exists such that the solution of (3) satisfies

(5) $|\nabla u\Omega(x)|=g(x) x\in\partial\Omega,$

and we investigate some geometric properties of $\Omega$ in connection with the properties of
the assigned function $g.$

Let us quote that the same overdetermined conditions (5) have been already considered
for differential problems of the torsion and of the Bernoulli types in [1, 2, 5, 19, 22].

The overdetermined problem (2) is naturally linked to the shape optimization problem
we describe here below. Let $J$ be the functional defined as the opposite of the torsional
rigidity:

(6) $J( \Omega)=\frac{1}{2}\int_{\Omega}|\nabla u_{\Omega}|^{2}dx-\int_{\Omega}u\Omega dx=-\frac{1}{2}\int_{\Omega}u\Omega dx=-\frac{1}{2}\int_{\Omega}|\nabla u\Omega|^{2}dx.$

and let

(7) $\phi(\Omega):=\int_{\Omega}g^{2}(x)dx.$

The shape optimization problem consists in minimizing $J$ with the constraint $\phi(\Omega)\leq 1,$

i.e.

(8) lnin $\{J(\Omega):\phi(\Omega)\leq 1\}.$

Notice that (8) is a variant of the famous Saint-Venant problem. This consists in
looking for the domain with given area which has maximal torsional rigidity; the answer
is the ball, as proved by G. Poly\‘a [25]. Here we consider the same problem in the class
of non-uniformly dense sets, whose density is driven by the function $g.$

We also recall that problem (8) is close to the one considered by B. Gustafsson and
H. Shahgholian in [19]. Indeed they study the partial differential equation $-\triangle u=f,$

where $f$ is a function (or a measure) whose positive part $(f)^{+}= \max\{0, f\}$ has compact
support, which is not our case.

In [7], the authors proved that problem (11) admits a solution (in the class of quasi-
open sets) under the assumptions

(9) $g(x)>0$ for $x\neq 0,$ $\lim$ $g(x)=+\infty.$
$|x|arrow+\infty$

The existence proof is based on the concentration-compactness argument by Bucur [11].
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On the other hand, the simple existence of a solution to the shape optimization
problem (8) does not guarantee the existence of a solution of the overdetermined problem
(2). To encounter this problem, in [7] the following assumption on $g$ is considered:

(10) $\{\begin{array}{l}g : \mathbb{R}^{N}arrow \mathbb{R} positively homogeneous of degree \alpha(i.e. g(tx)=t^{\alpha}g(x)\forall t>0, \forall x\in \mathbb{R}^{N}) ,g H\"{o} lder continuous, g>0 outside 0.\end{array}$

Thanks to (10), it is possible to find a solution $\Omega$ to problem (2) and to prove a series
of properties of such a solution.

In Section 2 we recall some basic properties and results about the shape optimization
problem (8) and its connection with the overdetermined problem (2). In Section 3 we
review some basic properties of the solution of (2) and its geometric properties, like
starshape, convexity, Steiner symmetry. In Section 4 we give some new results about
the continuity of $\Omega$ with respect to 9. Notice that most of the results recalled in this
paper are taken from [7]. Precisely only Lemma 4.2, Corollary 4.3) and Theorem 4.4
contain original results, while Theorem 3.2 is a slight improvement of the corresponding
result of [7].

2. THE SHAPE OPTIMIZATION PROBLEM

Let us consider the energy functional $J$ defined in (6). It is easily seen by the maximum
principle that $J$ is decreasing with respect to set inclusion, that is

$J(\Omega_{1})\geq J(\Omega_{2})$ if $\Omega_{1}\subset\Omega_{2}.$

Problem (8) consists in minimizing $J(\Omega)$ among open sets satisfying

(11) $\phi(\Omega)=\int_{\Omega}g^{2}dx\leq 1.$

Notice that the measure of a set $\Omega$ satisfying (11) must be bounded if $g(x)arrow+\infty$ as
$|x|arrow\infty$ . Thanks to this, it is possible to prove the following.

Theorem 2.1. Under assumption (9), there exists a quasi-open set $\Omega$ solving the shape
optimization problem (8).

The proof in [7] follows the lines of [18] (see also [21]) and uses a concentration-
compactness argument as in [11] to prove the existence of a minimizer which is quasi-
open and may be unbounded. We refer to [21] for a precise definition and discussion of
the concept of quasi-open sets; here we just say that, roughly speaking, quay-open sets
are super level sets of functions in $H^{1}(\mathbb{R}^{N})$ .

Apart from the proof of existence, in the rest of the paper [7] the function $g$ is assumed
to be homogeneous, precisely to satisfy assumption (10). This makes problem (8) easier
and with a nice behavior with respect to homotheties. More precisely, for every $t>0,$
$\Omega\subset \mathbb{R}^{N}$ , it holds

$J(t \Omega) = -\frac{1}{2}\int_{t\Omega}t^{2}u_{\Omega}(x/t)dx=t^{2+N}J(\Omega)$ ,

$\phi(t\Omega) = \int_{t\Omega}g^{2}(x)dx=t^{2\alpha+N}\phi(\Omega)$ ,

81



CHIARA BIANCHINI, PAOLO SALANI

where the first equality follows from the fact that the stress function of $t\Omega$ is

(12) $u_{t\Omega}(x)=t^{2}u\Omega(x/t)$ .

Then using the notion of local shape subsolution introduced in [12], it is proved that
the minimizer is in fact bounded and it is possible to obtain its regularity as in [9]
(see also [10]). The main difficulty is to prove that the solution $\Omega$ is actually an open
set. Once proved this, one can get higher regularity by classical techmiques from free
boundary problems like in [5] and [19].

Theorem 2.2. Under assumption (10) the shape optimization problem (8) admits a
solution $\Omega$ . If $\alpha\neq 1,$ $\Omega$ is connected. Moreover, in dimension $N=2$ the solution is $C^{1,\beta}$

for some $\beta>0$ ; in dimension $N\geq 3$ , the reduced boundary $\partial_{red}\Omega$ is $C^{1,\beta}$ and $\partial\Omega\backslash \partial_{red}\Omega$

has zero $(N-1)$ -Hausdorff measure$\cdot.$

Thanks to (12) the existence of a solution to the overdetermined problem (2) follows
by choosing a suitable dilation of a solution of (8).

Corollary 2.3. Let $g$ satisfy (10) for some $\alpha>0,$ $\alpha\neq 1$ . Then there exists a solution
to the overdetemined Free Boundary Problem (2).

Remark 2.4. Notice that the case $\alpha=1$ is special, as it can be seen by considering the
mdially symmetric situation, where it is possible to have either no solution or an infinite
number of solutions.

3. THE OVERDETERMINED PROBLEM AND THE GEOMETRY OF $\Omega$

Under assumption (10) with
$\alpha>1$

several geometric properties of the solutions of the overdetermined problem (2) are
proved in [7]. The first one is the fact that the origin $O$ must be inside the domain.
This property may look rather technical, but it is fundamental to obtain many other
properties of the solution.

Proposition 3.1. Assume that $g$ satisfied (10) with $\alpha>1$ . Let $\Omega$ be a solution of the
minimization problem (8). Then the $ori$gin $O$ is inside $\Omega.$

Then the monotonicity of $\Omega$ with respect to $g$ is proved. Here we present a shght
improvement of the corresponding result in [7].

Theorem 3.2. Let $\Omega_{1},$ $\Omega_{2}$ be (regular enough) bounded solutions to Problem (2) related
to $g_{1}$ and 92, respectively, with $O\in\Omega_{i}$ for $i=1,2$ . Assume that for some $\alpha>1$ at least
one between the following two assumptions hold.$\cdot$

(13) $g_{1}(tx)\geq t^{\alpha}g_{1}(x)$ for $t>0,$ $x\in \mathbb{R}^{N},$

$or$

(14) $g_{2}(tx)\leq t^{\alpha}g_{2}(x)$ for $t>0,$ $x\in \mathbb{R}^{N},$

If $g_{1}(x)\geq g_{2}(x)$ for every $x\in \mathbb{R}^{N}$ , then $\Omega_{1}\subseteq\Omega_{2}.$
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Proof. The proof is very similar to the proof of [7, Theorem 3.2], but we give it for
completeness.

Assume that (13) holds and assume by contradiction $\Omega_{1}\not\subset\Omega_{2}$ . Then
$t= \sup\{s>0:s\Omega_{1}\subseteq\Omega_{2}\}<1.$

Furthermore $t>0$ for $O\in\Omega_{2}$ and $\Omega_{1}$ is bounded.
Consider the set $t\Omega_{1}:t\Omega_{1}\subseteq\Omega_{2}$ ; there exists $\overline{x}\in\partial(t\Omega_{1})\cap\partial\Omega_{2}$, with $\nu_{t\Omega_{1}}(\overline{x})=$

$\nu\Omega_{2}(\overline{x})=\nu$ , where $\nu_{\Omega}(x)$ denotes the outer unit normal to $\partial\Omega$ at $x.$

FIGURE 1. $t\Omega_{1}\subseteq\Omega_{2}$ with $\overline{x}\in\partial(t\Omega_{1})\cap\partial\Omega_{2}$

We want to compare $u_{t\Omega_{1}}$ and $u\Omega_{2}$ , the stress functions of $t\Omega_{1}$ and $\Omega_{2}$ , respectively.
Notice that $u_{t\Omega_{1}}(x)=t^{2}u \Omega_{1}(\frac{x}{t})$ . Define $w=u\Omega_{2}-u_{t\Omega_{1}}$ ; it satisfies

$\{\begin{array}{ll}\triangle w=0 in t\Omega_{1},w\geq 0 on \partial t\Omega_{1},w(\overline{x})=0. \end{array}$

Hence by Hopf Lemma, it holds $\frac{\partial w}{\partial\nu}(\overline{x})>0$. On the other hand

$0< \frac{\partial w}{\partial\nu}(\overline{x})=|\nabla u\Omega_{2}(\overline{x})|-|\nabla u_{t\Omega_{1}}(\overline{x})|=g_{2}(\overline{x})-tg_{1}(\frac{\overline{x}}{t})$,

since $\nu$ is parallel to $\nabla u\Omega_{2}(\overline{x}),$ $\nabla u_{t\Omega_{1}}(\overline{x})$ and $| \nabla u_{t\Omega_{1}}(\overline{x})|=t|\nabla u_{\Omega_{1}}(\frac{\overline{x}}{t})|$ , with $\frac{\overline{x}}{t}\in\partial\Omega_{1}.$

Hence, by assumption (13) and since $t<1$ and $\alpha>1$ , we get

$g_{2}( \overline{x})>tg_{1}(\frac{\overline{x}}{t})\geq t^{1-\alpha}g_{1}(\overline{x})>g_{1}(\overline{x})$ ,

which contradicts the assumption $g_{1}\geq 92.$

Now assume that (14) holds and, by contradiction, assume $\Omega_{1}\not\subset\Omega_{2}$ . Set
$\tau=\inf\{s>0:\Omega_{1}\subseteq \mathcal{S}\Omega_{2}\}$

and notice that $\tau>1$ (and $\tau<\infty$ since $O\in\Omega_{2}$ and $\Omega_{1}$ is bounded).
Consider the set $\tau\Omega_{2}$ . Then $\Omega_{1}\subseteq\tau\Omega_{2}$ and there exists $\overline{x}\in\partial\Omega_{1}\cap\partial\tau\Omega_{2}$ , with

$\nu_{\Omega_{1}}(\overline{x})=\nu_{\tau\Omega_{2}}(\overline{x})=\nu$ . Now we compare $u\Omega_{1}$ and $u_{\tau\Omega_{2}}$ , the stress functions of $\Omega_{1}$ and
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$\tau\Omega_{2}$ respectively, and we set $w=u_{\tau\Omega_{2^{-u}}\Omega_{1}}$ in $\Omega_{1}$ . Arguing as before we get $w\geq 0$ in
$\overline{\Omega}_{1}$ and $w(\overline{x})=0$ and the Hopf Lemma yields

$tg_{2}( \frac{\overline{x}}{\tau})>g_{1}(\overline{x})$ .

On the other hand by (14)

$tg_{2}( \frac{\overline{x}}{\tau})\leq\tau^{1-\alpha}g_{2}(\overline{x})\leq g_{2}(\overline{x})$ ,

since $\tau>1$ and $\alpha>1$ . Combining the latter with the former contradicts again the
assumption $g_{1}\geq g_{2}.$ $\square$

As a natural straightforward corollary of the previous theorem, the uniqueness of the
solution follows.

Corollary 3.3. If $g$ satisfies assumptions (10) for $\alpha>1$ , then the solution of (2) is
unique.

From now on, $\Omega$ will denote the solution of the overdetermined problem (2), unless
otherwise explicitly specfied.

In [7] it is also investigated the geometry of $\Omega$ in connection with the properties of $g.$

In particular, the following results about starshape and convexity hold.

Theorem 3.4. If $g$ satisfies assumption (10) for $\alpha>1$ , then $\Omega$ is starshaped (with
respect to $O$).

For possible reader’s convenience, we recall that a set $\Omega$ is said starshaped with respect
to a point $x_{0}\in\Omega$ if

$t(x-x_{0})+x_{0}\in\Omega$ for every $x\in\Omega$ and every $t\in[0,1].$

When $x_{0}=O$ we simply say that $\Omega$ is starshaped.
We also recall that a lower semicontinuous function $u$ : $\mathbb{R}^{N}arrow \mathbb{R}\cup\{\pm\infty\}$ is said

quasi-convex if it has convex sublevel sets, or, equivalently, if

$u((1- \lambda)x_{0}+\lambda x_{1})\leq\max\{u(x_{0}), u(x_{1})\},$

for every $\lambda\in[0,1]$ , and every $x_{0},$
$x_{1}\in \mathbb{R}^{N}$ . If $u$ is defined only in a proper subset $\Omega$ of

$\mathbb{R}^{N}$ , we extend $u$ as $+\infty$ in $\mathbb{R}^{N}\backslash \Omega$ and we say that $u$ is quasi-convex in $\Omega$ if such an
extension is quasi-convex in $\mathbb{R}^{N}.$

Theorem 3.5. Let $g$ be a quasi-convex and homogeneous function of degree $\alpha\geq 2$ , with
$g(x)>0$ for $x\neq 0$ . Then $\Omega$ is convex.

Notice that, due to the $\alpha$-homogeneity, the quasi-convexity of $g$ is equivalent (for
$\alpha>0)$ to the following apparently stronger $prope^{I}r$ty:

$g^{1/\alpha}$ is convex.

Finally, it is noticed in [7] that also Steiner symmetry is preserved by the solution of
the shape optimization problem (8) (and then by the solution of (2) given by Corollary
2.3). Precisely, the following holds.

84



OVERDETERMINED PROBLEM

Theorem 3.6. Consider a function $g$ satisfying assumptions (10) and assume $g$ to be
Steiner symmetric with respect to the hyperp lane $\{x_{N}=0\}$ , that is

$g(x’, x_{N})\geq g(x’, y_{N})$ , whenever $|x_{N}|\geq|y_{N}|,$ $x’\in \mathbb{R}^{N-1}$

Then the solution $\Omega$ to Problem (8) is symmetric with respect to $\{x_{N}=0\}.$

4. CONTINUITY WITH RESPECT TO $g$

Always thanks to homogeneity, it is easily understood that $g$ is completely determined
by $\alpha$ and by the shape of one of it level sets. For this reason it is convenient to set

$G_{1}=\{x\in \mathbb{R}^{N}:g(x)<1\}.$

More generally,for $t\in(0, \infty)$ we denote by $G_{t}$ the (open) $t$-sublevel set of $g$ , that is
$G_{t}=\{x\in \mathbb{R}^{N}:g(x)<t\}.$

Then $G_{1}$ and $\alpha$ fully characterize $g$ and it is easily seen that all the level sets are dilations
of $G_{1}$ , precisely

(15) $G_{t}=t^{\frac{1}{\alpha}}G_{1}.$

Notice that, as level set of a homogeneous (not identically zero) function, $G_{1}$ must be
starshaped.

If $G_{1}$ is a ball then $g$ is radial and $\Omega$ is a ball. This may suggest some strong relation
between the shape of $G_{1}$ and the shape of $\Omega$ , but in fact this is the only one case where
$\Omega$ is a level set of $g$ (i.e. it has the same shape as $G_{1}$ ), as the famous Serrin’s result [28]
implies. On the other hand, some estimate of $\Omega$ in term of $G_{1}$ is possible and we recall
the following result from [7].

Theorem 4.1. If $G_{1}$ is regular enough, there exist two positive constants $A$ and $B,$

depending only on $G_{1}$ , such that if $\alpha>1$ it holds
$A^{1/(\alpha-1)}G_{1}\subseteq\Omega\subseteq B^{1/(\alpha-1)}G_{1}.$

The constants $A$ and $B$ can be explicitly computed as follows: let $u_{1}$ be the solution
of

(16) $\{\begin{array}{ll}-\Delta u_{1}=1 in G_{1}u_{1}=0 on \partial G_{1};\end{array}$

then

(17) $A= \min_{\partial G_{1}}|\nabla u_{1}|, B=\max|\nabla u_{1}|\partial G_{1}^{\cdot}$

Notice that $A\leq B$ and $A<B$ unless $G_{1}$ is a ball (see $[28]$ ), that is $g$ is radial. In
such a case, the solution $\Omega$ is a ball. An interesting question which naturally rises is the
following: if $g$ is close, in some sense, to be a radial function, is $\Omega$ close (in a suitable
sense) to be a ball? And how does the distance of $\Omega$ from the round shape depend on
the distance of $g$ from the radial shape?

In fact it is possible to use Theorem 4.1 to estimate the stability of the radial symmetry,
but in [7] better results are obtained in this sense by using Theorem 3.2. Here we prove
that it is possible to improve the argument of Section 7 of [7] based on Theorem 3.2 to

85



CHIARA BIANCHINI, PAOLO SALANI

get the continuity of $\Omega$ with respect to $g$ or, in other words, to get the stability of the
solution of (8) or (2), even when radial symmetry is not involved, for $\alpha>1.$

Precisely we consider two $\alpha$-homogeneous functions $g$ and $h$ and we show that we
can control the Hausdorff distance betw\‘een the associated solutions $\Omega_{g}$ and $\Omega_{h}$ of the
corresponding overdetermined problem (2) problem in terms of some distance between
$g$ and $h$ , precisely in terms of the Hausdorff distance between $G_{1}$ and $H_{1}$ , where

$G_{1}=\{x:g(x)\leq 1\}, H_{1}=\{x:h(x)\leq 1\}.$

We recall that the Hausdorff distance between two sets $E$ and $F$ is defined as

$d_{H}(E, F)= \max\{\sup_{x\in F}d(x, E),\sup_{x\in E}d(x, F)\}=\min\{r\geq 0 : E\subseteq F+rB_{1}, F\subseteq E+rB_{1}\}.$

First we give this easy lemma.

Lemma 4.2. Let $g$ and $h$ satisfy (10) with the same $\alpha>1$ and denote by $\Omega_{g}$ and $\Omega_{h}$

the solutions of problem (2) related to $g$ and $h$ respectively. Assume there exists $\epsilon>0$

such that

(18) $(1-\epsilon)g(x)\leq h(x)\leq(1+\epsilon)g(x) x\in \mathbb{R}^{N}$

Then
$(1+\epsilon)^{-1/(\alpha-1)}\Omega_{g}\subseteq\Omega_{h}\subseteq(1-\epsilon)^{-1/(\alpha-1)}\Omega_{9}.$

Proof. First observe that, given $\lambda>0$ and $E$ solution of (2) associated to a given function
$k$ , satisfying (10), the solution of

$\{\begin{array}{ll}-\triangle u=1 in Eu=0 on \partial E,|\nabla u(x)|=\lambda k(x) on \partial E.\end{array}$

is $\lambda^{-1}/(\alpha-1)_{E}.$

Then the conclusion follows from (18) thanks to Theorem 3.2. $\square$

Corollary 4.3. Let $g$ and $h$ satisfy (10) with the same $\alpha>1$ and denote by $\Omega_{g}$ and $\Omega_{h}$

the solutions of problem (2) related to $g$ and $h$ respectively. Assume there exists $\epsilon>0$

such that

(19) $(1-\epsilon)G_{1}\subseteq H_{1}\subseteq(1+\epsilon)G_{1}.$

Then
$(1-\epsilon)^{\alpha/(\alpha-1)}\Omega_{g}\subseteq\Omega_{h}\subseteq(1+\epsilon)^{\alpha/(\alpha-1)}\Omega_{g}.$

Proof. Assumption (19) can be rewritten as
$(1-\epsilon)x\in H_{1}$ for every $x\in G_{1}$

and
$\frac{y}{1+\epsilon}\in G_{1}$ for every $y\in H_{1},$

or equivalently
$h((1-\epsilon)x)\leq 1=g(x)$ for every $x\in\partial G_{1}$

and
$g((1+\epsilon)^{-1}y)\leq 1=h(y)$ for every $y\in\partial H_{1}.$
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Thanks to the homogeneity of $g$ and $h$ , these yield
$(1+\epsilon)^{-\alpha}g(x)\leq h(x)\leq(1-\epsilon)^{-\alpha}g(x) x\in \mathbb{R}^{N}$

and the conclusion follows from Lemma 4.2. $\square$

Let us denote by $\rho_{1}$ and $\rho_{2}$ the radial functions of the starshaped sets $G_{1}$ and $G_{2}$

respectively, that is
$\rho_{i}(\theta)=\sup\{\rho\geq 0:\rho\theta\in F_{i}\}, \theta\in S^{N-1}i=1,2$

where $F_{1}=G_{1}$ and $F_{2}=H_{1}$ and set

$r_{i}=\underline{\min_{S^{N1}}}\rho_{i},$ $R_{\iota}= \max\rho_{i}s^{N_{1}}$ ’ $i=1,2,$

$r= \min\{r_{1}, r_{2}\} R=\max\{R_{1}, R_{2}\}.$

Now we are ready to state the following.

Theorem 4.4. Let $g$ and $h$ satisfy (10) with the same $\alpha>1$ and let $G_{1},$ $H_{1},$ $r$ and $R$ as
above. Denote by $\Omega_{g}$ and $\Omega_{h}$ the solutions of problem (2) related to $g$ and $h$ respectively.
Then there exists a constant $C>0$ depending only on $r$ and $R$ such that
(20) $d_{H}(\Omega_{g}, \Omega_{h})\leq Cd_{H}(G_{1}, H_{1})$ ,

for $d_{H}(G_{1}, H_{1})$ small enough.

Proof. Set $d_{H}(G_{1}, H_{1})=d$. Then
$G_{1}\subseteq H_{1}+dB_{1}$ and $H_{1}\subseteq G_{1}+dB_{1},$

whence
$G_{1} \subseteq(1+\frac{d}{r})H_{1}$ and $H_{1} \subseteq(1+\frac{d}{r})G_{1}.$

Then Corollary 4.3 entails

$\Omega_{g}\subseteq(1+\frac{d}{r})^{\alpha/(\alpha-1)}\Omega_{h}$

and

$\Omega_{h}\subseteq(1+\frac{d}{r})^{\alpha/(\alpha-1)}\Omega_{g}.$

Since
$(1+ \frac{d}{r})^{\alpha/(\alpha-1)}\leq 1+\frac{2\alpha d}{(\alpha-1)r}$

for $d$ small enough, we can write

(21) $\Omega_{g}\subseteq\Omega_{h}+\frac{2\alpha d}{(\alpha-1)r}\Omega_{h}$ and $\Omega_{h}\subseteq\Omega_{g}+\frac{2\alpha d}{(\alpha-1)r}\Omega_{9}.$

Notice now that, by the very definition of $R$ , we have $G_{1},$ $H_{1}\subseteq RB_{1}$ , whence

$g(x) \geq(\frac{|x|}{R})^{\alpha}$ and $h(x) \geq(\frac{|x|}{R})^{\alpha}$

Since the solution of problem (2) for $g(x)=|x|^{\alpha}/R^{\alpha}$ is the ball centered at $O$ with radius

$\rho=\frac{R^{\alpha/(\alpha-1)}}{n^{1/(\alpha-1)}},$
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Theorem 3.2 implies $\Omega_{g},$ $\Omega_{h}\subseteq\rho B_{1}$ . Then (21) entails

$\Omega_{g}\subseteq\Omega_{h}+\frac{2\alpha\rho}{(\alpha-1)r}dB_{1}$ and $\Omega_{h}\subseteq\Omega_{9}+\frac{2\alpha\rho}{(\alpha-1)r}dB_{1}.$

that are equivalent to (20) with
$C= \frac{2\alpha\rho}{(\alpha-1)r}.$

$\square$
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