
SMALL $u_{\kappa}$ AND LARGE $2^{\kappa}$ FOR SUPERCOMPACT $\kappa$
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Abstract. Garti and Shelah [2] state that one can force $u_{\kappa}$ to be $\kappa^{+}$ for super-
compact $\kappa$ with $2^{\kappa}$ arbitrarily large, using the technique of $D\check{z}$ aIIlonja and Shelah [1].
Here we spell out how this can be done.

\S 1. Introduction. For any regular cardinal $\lambda$ , we let
$u_{\lambda}=\min$ { $|\mathcal{B}|$ : $\mathcal{B}$ is a filter base for a uniform ultrafilter on $\lambda$ }

(recall that an ultrafilter is uniform if every set in it has the same
cardinality). $A$ simple diagonalisation argument shows that $u_{\lambda}$ must
be at least $\lambda^{+}$ . In [2], Garti and Shelah state that for $\kappa$ a super-
compact cardinal, one can force $u_{\kappa}=\kappa^{+}$ with $2^{\kappa}$ arbitrarily large.
They provide a short proof sketch, appealing to the arguments of
[1]. We give here a detailed proof, based on the pair of talks the
author gave in the Kobe University set theory seminar on the topic,
closely following [1]. It should be noted that we have not discussed
this with Shelah or Garti, so what is presented might not exactly
match their original intention, but it seems (to the author) to be the
most natural way to proceed.

We base our notation on that of D\v{z}amonja and Shelah [1], but
do change much of it. $A$ particularly important change to note is
that we use $p\leq q$ to mean that $p$ is a stronger condition than $q$ , in
contrast with the usage in [1].

The intention is that this note should be readable with no prior
knowledge of [1] or [2].

\S 2. The partial order. Let $\kappa$ be a supercompact cardinal, and
take $\Upsilon\geq 2^{\kappa}$ such that $\Upsilon^{\kappa}=\Upsilon$ . We will exhibit a forcing that makes
$\iota\iota_{\kappa}=\kappa^{+}$ and $2^{\kappa}=\Upsilon$ . To this end, we shall actually describe a forcing
iteration of length $\Upsilon^{+}$ , which can be truncated at an appropriate
point to obtain the desired forcing (Garti and Shelah [2] mention an
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iteration of length $\kappa^{+}$ ; with D\v{z}amonja and Shelah’s loose use of the
word “iteration” in [1], this matches the cofinality $\kappa^{+}$ iteration we
present).

We use the natural generalisation of Mathias forcing at measurable
$\kappa$ rather than $\omega$ (or alternatively put, the natural generalisation of
Prikry forcing to obtain $\kappa$ sequences rather than those of length $\omega$ ;
we shall only ever be concerned with ultrafilters). That is, for $\mathcal{D}$ an
ultrafilter on $\kappa$ , conditions in $\mathbb{M}_{\mathcal{D}}^{\kappa}$ are pairs $(s, X)$ such that $s\in[\kappa]^{<\kappa}$

and $X\in \mathcal{D}$ , and $(t, Y)\leq(s, X)$ if and only if $t$ end-extends $s$ and
$(t\backslash s)\cup Y\subseteq X.$

We define an iteration $\langle P_{i},\dot{Q}_{i}$ : $i<\Upsilon^{+}\rangle$ as follows. Let $G_{i}$ be
$P_{i}$-generic; we describe $Q_{i}$ in $V[G_{i}]$ . Let NUF denote the set of
normal ultrafilters on $\kappa$ (in the measurable sense – we only need
supercompactness of $\kappa$ to give us a Laver diamond – see below).
The partial order $Q_{i}$ is then the sum over $\mathcal{D}\in$ NUF (interpreted
in $V[G_{i}])$ of the partial orders $\mathbb{M}_{\mathcal{D}}^{\kappa}$ . That is, we take a maximum
element 1 $Q_{i}$ (D\v{z}amonja and Shelah use $\emptyset$ ), and set

$Q_{i}=\{1_{Q_{i}}\}\cup\cup\{\{\mathcal{D}\}\cross \mathbb{M}_{\mathcal{D}}^{\kappa}$ : $\mathcal{D}\in$ NUF $\},$

with $p\leq q$ if and only if either
1. $q=1_{Q_{i}}$ , or
2, there are $\mathcal{D}\in$ NUF and $p_{1}\leq q_{1}\in \mathbb{M}_{\mathcal{D}}^{\kappa}$ such that $p=(\mathcal{D}, p_{1})$

and $q=(\mathcal{D}, q_{1})$ .
We shall write $1_{\mathcal{D}}$ for $(\mathcal{D}, (\emptyset, \kappa))$ , the maximum element of the $\mathcal{D}$

part of $Q_{i}.$

Now to the support of elements of $P_{i},$ $i\leq\Upsilon^{+}$ . We define the
essential support of $p$ , SDom $(p)$ , by

SDom$(p)=\{j\in$ dom$(p)$ :
$\neg (p\lceil j|\vdash_{P_{j}}p(j)\in\{1_{Q_{j}}\}\cup\{1_{\mathcal{D}} : \mathcal{D}\in NUF\})\}.$

Thus, SDom$(p)$ is the set of coordinates at which $p$ does something
more than just choosing the ultrafilter for forcing at that stage. We
require that conditions in $P_{\Upsilon+}$ have support bounded below $\Upsilon^{+}$ and
essential support of cardinality strictly less than $\kappa$ . We freely identify
$P_{\Upsilon+}$ with $\bigcup_{i<\Upsilon+}P_{i}.$

We call a condition $p\in P_{i}$ purely full in $P_{i}$ or purely full in its
domain if for all $j<i$ we have

$prj|\vdash_{P_{j}p(j)}\in\{1_{\mathcal{D}}:\mathcal{D}\in$ NUF $\}.$
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For $p\in P_{i}$ we write $P_{i}\downarrow p$ for $\{q\in P_{i} : q\leq p\}$ ; we will particularly
be interested in the case when $p$ is purely full in $P_{i}.$

LEMMA 1 (Claim 1.13 of [1]). $P_{\Upsilon+}$ is $\kappa$ -directed-closed.

PROOF. Each $\mathbb{M}_{\mathcal{D}}^{\kappa}$ is $\kappa$-directed-closed, so this is standard. $\dashv$

LEMMA 2 (Claim 1.16 of [1]). Let $\tau$ be a $P_{\Upsilon+}$ -name and suppose
that $p$ purely full in $P_{i}$ forces that $\tau$ names a set in the ground model
V. Then there is a $q\leq p$ purely full in its domain and $a(P_{dom(q)}\downarrow q)-$

name $\sigma$ such that $q|\vdash\tau=\sigma.$

PROOF. This is essentially just the $\kappa^{+}$ chain condition. Suppose
the Lemma fails for $p$ purely full in its domain and $\tau$ a $P_{T+}$ -name.
By recursion on $\zeta<\Upsilon^{+}$ we define $i_{\zeta}\in\Upsilon^{+},$ $\sigma_{\zeta}\in V^{P_{i_{\zeta}}},$

$p_{\zeta}$ purely full
in $P_{i_{\zeta}},$ $r_{\zeta}\in P_{i_{\zeta+1}}\downarrow p_{\zeta+1}$ , and $x_{\zeta}\in V$ , such that:

1. $\langle i_{\zeta}|\zeta<\Upsilon^{+}\rangle$ is strictly increasing continuous,
2. $\langle p_{\zeta}|\zeta<\Upsilon^{+}\rangle$ is decreasing, with dom$(p_{\zeta})=i_{\zeta}$ and $p_{0}=p,$

3. $r_{\zeta}|\vdash\tau=\check{x}_{\zeta}$ , and $r_{\zeta}\perp r_{\xi}$ for all $\xi<\zeta,$

4. $\sigma_{\zeta}=\{\langle\check{w},$ $r_{\xi}\rangle$ : $\xi<\zeta$ and $w\in x_{\xi}\}.$

Suppose we have $p_{\xi},$
$i_{\xi}$ and $\sigma_{\xi}$ for all $\xi\leq\zeta$ , and $r_{\xi}$ and $x_{\xi}$ for $\xi<\zeta,$

satisfying 1-4. From our assumption that the Lemma fails we have
that $p_{\zeta}\downarrow\kappa_{\mathcal{T}}=\sigma_{\zeta}$ . Using (3) and (4), this means that $\{r_{\xi} : \xi<\zeta\}$ is
not predense below $p_{\zeta}$ . So there is some $r_{\zeta}\leq p_{\zeta}$ in $P_{T}+$ incompatible
with each $r_{\xi},$ $\xi<\zeta$ . By extending if necessary, we may arrange
that there is some specific $x_{\zeta}\in V$ such that $r_{\zeta}|\vdash\tau=\check{x}_{\zeta}$ , and that
dom $(r_{\zeta})= \sup(dom(r_{\zeta}))$ . We may then define $p_{\zeta+1},$ $i_{\zeta+1}$ and $\sigma_{\zeta+1}$

from $r_{\zeta}$ . Since continuity determines the values of $i_{\zeta},$
$p_{\zeta}$ and $\sigma_{\zeta}$ for

$\zeta$ a limit ordinal, this completes the recursive definition.
But now $\{r_{\zeta} : \zeta<\Upsilon^{+}\}$ is an antichain lying in $\bigcup_{\zeta<T+}P_{i_{\zeta}}\downarrow p_{\zeta}.$

This suborder of $P_{\Upsilon}+$ is essentially the same as the $<$ $\kappa$-support
iteration with $\alpha$-th iterand $\mathbb{M}_{p^{*}(\alpha)}^{\kappa}$ for every $\alpha<\Upsilon^{+}$ , where $p^{*}=$

$\bigcup_{\zeta<\Upsilon\dagger}p_{\zeta}$ . D\v{z}amonja and Shelah formalise this, and observe that
this latter iteration is $\kappa^{+}-cc$ , but perhaps it is easiest here to simply
observe that the same proof (a $\triangle$-system argument on essential sup-
ports) shows that $\bigcup_{\zeta<\Upsilon+}P_{i_{\zeta}}\downarrow p_{\zeta}$ is also $\kappa^{+}-cc$ . In any case, we have
a contradiction. $\dashv$

LEMMA 3. For $\Upsilon\leq j<\Upsilon^{+}$ and $p$ purely full in $P_{j},$ $P_{j}\downarrow p$ has a
dense suborder of cardinality $\Upsilon.$

PROOF. This is again a use of the $\kappa^{+}-cc$ , along with the fact that
$\Upsilon^{\kappa}=\Upsilon$ . We argue by induction. For any $i<j$ , a condition in $Q_{i}$
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below $p(i)$ consists of a sequence from $\kappa$ of length less than $\kappa$ and a
subset of $\kappa$ , all of which may be determined by $\kappa$ many antichains
from $P_{i}$ . At limit stages, the result follows from the fact that we are
using $<\kappa$ (essential) support. $\dashv$

\S 3. Isolating an appropriate suborder. Having defined $P_{\Upsilon+}$

and observed some basic properties, we now move to the key task of
isolating a suborder that will be what we actually force with to get
$\iota\iota_{\kappa}<2^{\kappa}$ . This suborder will be of the form $P_{\alpha}\downarrow p$ for some condition
$p$ purely full in $P_{\alpha)}$

. the task thus boils down to constructing an
appropriate $p.$

Since $P_{\Upsilon+}$ is $\kappa$-directed-closed(Lemmal), it is natural to first
apply a Laver preparation [3] to ensure that $\kappa$ remains supercompact
after our forcing. For our argument, we will actually use it to obtain
much more. So let $h$ : $\kappaarrow V_{\kappa}$ be a Laver diamond, and let $\langle S_{\alpha},\dot{R}_{\beta}$ :
$\alpha\leq\kappa,$ $\beta<\kappa\rangle$ denote the Laver preparation defined using $h[3]$ . That
is, $S_{\kappa}$ is a reverse Easton iteration, and the sequence $\langle\dot{R}_{\beta}$ : $\beta<\kappa\rangle$ and
an auxiliary sequence of ordinals $\langle\lambda_{\beta}$ : $\beta<\kappa\rangle$ are defined recursively
according the the Laver diamond: if $\beta>\lambda_{\gamma}$ for all $\gamma<\beta$ , and $h(\beta)$

is an ordered pair with first term a $P_{\beta}$-name for a $\beta$-directed-closed
partial order and second term an ordinal, then we set $(\dot{R}_{\beta}, \lambda_{\beta})=$

$h(\beta)$ ; otherwise, we take $R_{\beta}$ to be the trivial forcing and $\lambda_{\beta}$ to be $0.$

Take $\lambda\geq|S_{\kappa}*\dot{P}_{\Upsilon+}|$ (this is probably overkill, but it makes no dif-
ference), and let $j$ : $Varrow M$ with $\lambda M\subseteq M$ be a $\lambda$-supercompactness
embedding with critical point $\kappa$ sent to $j(\kappa)>\lambda$ , such that $j(h)(\kappa)=$

$(P_{\Upsilon}+, \lambda)$ . In particular, applying $j$ to the Laver preparation $S_{\kappa}$ we
get $j(S_{\kappa})=S_{j(\kappa)}^{M}=S_{\kappa}*\dot{P}_{\Upsilon+}*\dot{S}^{*}M$ for the appropriate tail iteration
$S^{*}$ (in $M$). Let us denote $j(P_{\Upsilon+})$ by $P_{j(\Upsilon^{+})}’$ . Thus, applying $j$ to
$S_{\kappa}*\dot{P}_{\Upsilon+}$ yields

$j(S_{\kappa}*\dot{P}_{\Upsilon+})=S_{\kappa}*\dot{P}_{\Upsilon+}*\dot{S}^{*}*\dot{P}_{j(\Upsilon^{+})^{M}}’$

In the definition of the Laver preparation, if we have a non-trivial
iterand $\dot{R}_{\alpha}$ coming from $h(\alpha)=(R_{\alpha}, \lambda_{\alpha})$ , then the subsequent iterands
used are trivial until at least stage $\lambda_{\alpha}+1$ , and thereafter must be
at least $|\lambda_{\alpha}$ $|$ -directed-closed. Since direct limits are only taken at
inaccessible stages, it follows that the tail of the iteration from stage
$\alpha+10$nward is at least $|\lambda_{\alpha}|$ -directed closed. In particular, we have in
$M$ that $\dot{S}^{*}$ is forced to be at least $\lambda$-directed-closed. By elementarity,
we also have that $P_{j(\Upsilon^{+})}’$ is $j(\kappa)>$ $\lambda$-directed-closed.

17
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MAIN CLAIM (1.18 of [1]). In $V^{S_{\kappa_{J}}}$ there exist sequences
$\overline{\alpha}=\langle\alpha_{i}:i<\Upsilon^{+}\rangle,$

$\overline{p}^{*}=\langle p_{i}^{*}:$ $i<\Upsilon^{+}\rangle$ , and
$\overline{q}^{*}=\langle q_{i}^{*}=(^{1}q_{i}^{2}q_{i}):i<\Upsilon^{+}\rangle,$

such that the following hold.
$a.\overline{\alpha}$ is a strictly increasing continuous sequence of ordinals less

than $\Upsilon^{+}.$

$b$ . Each $p_{i}^{*}$ is purely full in $P_{\alpha+1}i.$

$c.\overline{p}^{*}$ is a decreasing sequence of conditions in $P_{T+}.$

$d.\overline{q}^{*}\in M^{s_{\kappa}}$ , and in $M^{S_{\kappa}}$ we have for each $i<\Upsilon^{+}$ that
$(p_{i}^{*1}q_{i})\in P_{T+}*\dot{S}^{*}$

and
$(P_{i}^{*1_{q_{i}}2_{q_{i})}}\in P_{\Upsilon+}*\dot{S}^{*}*\dot{P}_{j(\alpha i+1)}’.$

$e$ . In $M^{s_{\kappa}},$ $\langle(p_{i}^{*1_{q_{i}}2_{q_{i)}}}$ : $i<\Upsilon^{+}\rangle$ is a decreasing sequence of
conditions in $P_{\Upsilon+}*S^{*}*\dot{P}_{\sup_{i<T+(j(\alpha+1))}i}’.$

$f$. In $M^{S_{\kappa}},$ $(p_{i+1}^{*1}q_{i+1})$ forces that $2_{q_{i+1}}$ is a common extension of
$\{j(r):r\in G_{P_{\alpha_{i}+1}}\}$

$g$ . If $\dot{B}$ is an $S_{\kappa}$-name for a $P_{\alpha_{i}+1}$ -name for a subset of $\kappa$ then there
is an $S_{\kappa}*\dot{P}_{\Upsilon}+$-name $\tau_{\dot{B}}$ for an element of $\{0,1\}$ such that:
(1) in $V,$ $(1_{S_{\kappa}},\dot{p}_{i+1}^{*})$ forces $\tau_{\dot{B}}$ to be a $P_{\alpha_{i+1}+1}\downarrow p_{i+1}^{*}$-name, and
(2) $M\models[(1_{S_{\kappa}},\dot{p}_{i+1}^{*}, q_{i+1}^{*})|\vdash\check{\kappa}\in j(\dot{B})rightarrow\tau_{\dot{B}}=\check{1}].$

$i$ . If cf(i) $>\kappa$ , then in $V^{s_{\kappa}*\dot{P}_{\alpha}}i$ we have that

$p_{i}^{*}(\alpha_{i})=\{\dot{B}[G_{P_{\alpha_{i}}}]:of\kappa and\tau_{\dot{B}}[G_{P_{\alpha_{i}}}]=1\dot{B}i_{S}aP_{\alpha_{i}}\downarrow(p_{i}^{*r\alpha_{i})-name}$

for a subset
$\}.$

In particular, this is a normal ultrafilter on $\kappa.$

(We have omitted (h) from our labelling so that it corresponds to
that in [1]. $)$

The crucial idea here is buried in item (g.2) We have an elemen-
tary embedding with critical point $\kappa$ , and we want a nice normal
ultrafilter on $\kappa$ , so as ever we define it by saying that $B\subseteq\kappa$ is in
the ultrafilter if and only if $\kappa$ is in $j(B)$ . In this context $\kappa$ is in
$j(B)$ ” must be reinterpreted as $\kappa$ is forced to be in $j(\dot{B})$ ”, but these
statements can be decided by boundedly much of the forcing $P_{T+}$ , as
demonstrated by appeal to the technical device of the names $\tau_{\dot{B}}$ . In
typical fashion, a long enough iteration with bookkeeping to ensure
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that every name for a subset of $\kappa$ is dealt with “catches up with
itself” At such closure stages we have that the resulting ultrafilter
is defined purely in terms of the construction that came before, and
in particular does not require a generic for the forcing $S^{*}*P_{j(T^{+})}’$

for its definition. Moreover, these particular ultrafilters cohere with
(indeed, extend) one another, allowing us to describe an ultrafilter in
the final extension in terms of those that came before, and to arrange
that $u_{\kappa}=\kappa^{+}<2^{\kappa}$ (see Theorem 1 below).

PROOF OF MAIN CLAIM. Whilst the statement of the Main Claim
might at first seem onerous, the sequences $\overline{\alpha},\overline{p}^{*}$ and $\overline{q}^{*}$ can actually
be obtained by a relatively natural recursive construction, making
used of the $\lambda$-directed-closure of $S^{*}$ and $P_{j(\Upsilon)}’+$ noted above. Indeed
$(a)-(e)$ merely set out the form of the sequences, and whilst there is
something to check, (i) is actually giving part of the definition for us.
Thus, the key to the recursive construction is ensuring that (f) and
(g) hold. We could begin with $\alpha_{0}=0,$ $p_{0}^{*}$ an arbitrary purely full el-
ement of $P_{1}$ $(that is, p_{0}^{*}=1_{\mathcal{D}} for some$ arbitrary $\mathcal{D} in NUF^{V^{S_{\kappa}}})$ , and
$q_{0}^{*}=(1_{S}*, i_{P_{j(T)}’+})$ . But it will be notationally convenient if every $\alpha_{i}$

has cardinality $\Upsilon$ , so let us take $\alpha_{0}=\Upsilon,$ $p_{0}^{*}$ an arbitrary purely full
element of $P_{\Upsilon+1}$ , and $q_{0}^{*}=(1_{S}*, i_{P_{j(T)}’+})$ .
Choice of $\alpha_{i+1},$ $p_{i+1}^{*}$ and $q_{i+1}^{*}$ , given $\alpha_{i}$ and $p_{i}^{*}$ in $V^{S_{\kappa}}$ First, towards
the satisfaction of (f), note that since $M$ is closed under taking $\lambda-$

tuples, we have

$\dot{X}_{i}=\{\langle j(\check{r}), r\rangle:r\in P_{\alpha_{i}+1}\downarrow p_{i}^{*}\}^{V^{S_{\kappa}}}\in M^{S_{\kappa}}$

Of course, for generics containing $p_{i}^{*}$ , this $\dot{X}_{i}$ names $jG_{P_{\alpha_{i}+1}}$ , and

$(p_{i}^{*}, i_{S^{*}})|\vdash_{P_{\alpha_{i}+1}}\dot{X}_{i}\subseteq\dot{P}_{j(\alpha_{i})+1}’\downarrow j(\check{p}_{i}^{*})\wedge$

$\dot{X}_{i}$ is directed $\wedge|\dot{X}_{i}|\leq\check{\Upsilon}.$

Thus, the $\lambda$-directed-closure of $P_{j(\alpha i)+1}’$ allows us to find a master
condition extending every condition in $X_{i}$ , giving us the means to
satisfy (f). We postpone the use of this, as we will need to interleave
it with our construction towards the satisfaction of (g).

In $V^{S_{\kappa}}$ , we have that $P_{\alpha_{i}+1}\downarrow p_{i}^{*}$ is a $\kappa^{+}-cc$ partial order of size $\Upsilon$

$(see$ Lemma $3, so$ there $are (\Upsilon^{\kappa})^{\kappa}=\Upsilon$ nice $P_{\alpha+1}i\downarrow p_{i}^{*}$ names for
subsets of $\kappa$ . Enumerate them in order type $\Upsilon$ as $\langle\dot{B}_{\zeta}^{i+1}$ : $\zeta<\Upsilon\rangle.$

To choose $p_{i+1}^{*}$ and $q_{i+1}^{*}$ , we perform a further recursive construction,

19



SMALL $u_{\kappa}$ AND LARGE $2^{\kappa}$ FOR SUPERCOMPACT $\kappa$

defining

$\langle\alpha_{\zeta}^{i+1}$ : $\zeta<\Upsilon\rangle$ increasing continuous,
$\langle p_{\zeta}^{i+1}$ : $\zeta<\Upsilon\rangle$ decreasing continuous

with each $p_{\zeta}^{i+1}$ purely full in $P_{\alpha_{\zeta}^{i+1}},$

$\langle q_{\zeta}^{i+1}=(^{1}q_{\zeta}^{i+12}q_{\zeta}^{i+1}):\zeta<\Upsilon\rangle$ (forced to be) decreasing, and

$\langle\tau_{\dot{B}_{\zeta}^{i+1}}$ : $\zeta<\Upsilon\rangle$ a sequence of $S_{\kappa}*\dot{P}_{\Upsilon+}$-names

for elements of $\{0,1\}.$

Notice in particular that, whilst dom$(p_{i}^{*})=\alpha_{i}+1,$ $dom(p_{\zeta}^{i+1})=\alpha_{\zeta}^{i+1}$

Naturally enough, we start this recursion with $p_{0}^{i+1}=p_{i}^{*}$ and $q_{0}^{i+1}=$

$q_{i}^{*}.$

Given $p_{\zeta}^{i+1}$ and $q_{\zeta}^{i+1}$ , we want to extend to $p_{\zeta+1}^{i+1}$ and $q_{\zeta+1}^{i+1}$ in a way
that “deals with” $\dot{B}_{\zeta}^{i+1}$ We ask whether there exists a $q$ that forces $\kappa$

into $j(\dot{B}_{\zeta}^{i+1})$ and which acts as a master condition for what has come
before (perhaps confusingly, the negation of this query is referred to
as “the $\zeta$ question” in [1] $)$ . Let us make this precise.

We work in
$M[G_{s_{\kappa}*\dot{P}_{\alpha_{\zeta}^{i+1}}}]$

, for some generic $G_{S_{\kappa}*\dot{P}_{\alpha_{\zeta}^{i+1}}}\ni(1_{\mathcal{S}},\dot{p}_{\zeta}^{i+1})$
.

The values of $q$ and $\tau_{\dot{B}_{\zeta}^{i+1}}’$ that we describe there can then be combined
below corresponding conditions in $P_{T+}$ to get single $P_{T+}$ -names in
the usual way.

We let

$X_{\zeta}^{i+1}=\{j(r):r\in G_{S_{\kappa}*\dot{P}_{\alpha_{\zeta}^{i+1}}}\}$ ;

as for $X_{i}$ , this will be in
$M[G_{s_{\kappa_{\alpha_{\zeta}^{i+1}}^{*\dot{P}}}}].$

In
$M[G_{s_{\kappa_{\alpha_{\zeta}^{i+1}}^{*\dot{P}}}}]$

, we ask whether there is a condition $q=(^{1}q^{2}q)$

in $S^{*}*\dot{P}_{j(T^{+})}’$ such that

$(\alpha)q\leq q_{\zeta}^{i+1}$ (and hence by induction $q\leq q_{\xi}^{i+1}$ for all $\xi\leq\zeta$ ), and
$(\beta)$

$1_{q^{1}\vdash s*\forall r\in\dot{X}_{\zeta}^{i+1}(^{2}q\leq r)\wedge}$

$2_{q\in\dot{P}_{j(\alpha_{\zeta}^{i+1})}’\downarrow j(p_{\zeta}^{i+1})\wedge}$

$2_{q^{1}\vdash\check{\kappa}\in j(\dot{B}_{\zeta}^{i+1})}.$
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Of course, the first conjunct in $(\beta)$ is towards making (f) hold, and
the second conjunct is also to this end, ensuring that $2_{q}$ does not
interfere with parts of $jG$ that arise later. The final conjunct is,
obviously, towards the satisfaction of (g).

Case 1. Suppose there is no $q$ that satisfies both $(\alpha)$ and $(\beta)$ .
Then we define $\tau_{\dot{B}_{\zeta}^{i+1}}’$ to be $0$ (in

$M[G_{s_{\kappa_{\alpha_{\zeta}^{i+1}}^{*\dot{P}}}}]$
; in $M$ this of course

contributes to the definition of a $S_{\kappa}*\dot{P}_{\alpha_{\zeta}^{i+1}}$ -name).
We claim that it is possible to find $q$ satisfying all of $(\alpha)$ and $(\beta)$

except for the final conjunct of $(\beta)$ , and take $q_{\zeta+1}^{i+1}=(^{1}q_{\zeta+1}^{i+12}q_{\zeta+1}^{i+1})$ to
be such a condition. That is, we take $q_{\zeta+1}^{i+1}\leq q_{\zeta}^{i+1}$ such that

$(\beta’)$
$1_{q_{\zeta+1}^{i+1}}|\vdash\forall r\in\dot{X}_{\zeta}^{i+1}(^{2}q_{\zeta+1}^{i+1}\leq r)\wedge^{2}q_{\zeta+1}^{i+1}\in\dot{P}_{j(\alpha_{\zeta}^{i+1})}’\downarrow j(p_{\zeta}^{i+1})$ .

An appropriate condition can be found since, as in the case of $X_{i}$

above, $(p_{0}^{i+1}, i_{s*})$ forces $\dot{X}_{\zeta}^{i+1}$ to be small and directed, and by in-
duction, the constraint on the support of $2_{q}$ in $(\beta)$ and $(\beta’)$ en-
sures that all previous $2_{q_{\xi}^{i+1}}$ are compatible with everything in $X_{\zeta}^{i+1}$

(D\v{z}amonja and Shelah mention that $\dot{X}_{i}$ is in fact forced to be $\kappa-$

directed – indeed, it is a simple exercise to show that this is true
for the generic of any $<\kappa$-strategically closed forcing. But of course
the $\kappa$ in $\kappa$-directed-closed” refers to an upper bound on the size of
the set, not the level of directedness, and so directedness suffices for
our purposes.)

$Ca\mathcal{S}e2$ . If there is a $q$ satisfying $(\alpha)$ and $(\beta)$ , then we take $q_{\zeta+1}^{i+1}$ to
be such a $q$ , and take $\tau_{\dot{B}_{\zeta}^{i+1}}’=1.$

Stepping back to $M^{S_{\kappa}}$ now, we may reconstruct $P_{\Upsilon+}\downarrow p$

$1$ -names
$q_{\zeta+1}^{i+1}$ and $\tau_{\dot{B}_{\zeta}^{i+1}}’$ . Since $\tau_{\dot{B}_{\zeta}^{i+1}}’$ is a $P_{\Upsilon+}$ -name for an element of the
ground model, by Lemma 2 there is a purely full in its domain
$p_{\zeta+1}^{x+1}\leq p_{\zeta}^{\iota+1}$ with domain some $\alpha_{\zeta+1}^{i+1}$ such that $p_{\zeta+1}^{i+1}$ forces $\tau_{\dot{B}_{\zeta}^{i+1}}’$ to
be equivalent to a $P_{\alpha_{\zeta+1}^{i+1}}\downarrow p_{\zeta+1}^{i+1}$ -name; let us take

$\tau_{\dot{B}_{\zeta}^{i+1}}$
to be such

a name. This concludes the description of the choice of $p_{\zeta+1}^{i+1},$ $\alpha_{\zeta+1}^{i+1},$

$q_{\zeta+1}^{i+1}$ , and
$\tau_{\dot{B}_{\zeta}^{i+1}}.$

For limit ordinals $\zeta<\Upsilon$ , we take $\alpha_{\zeta}^{i+1}=\sup_{\xi<\zeta}(\alpha_{\xi}^{i+1})$ and $p_{\zeta}^{i+1}=$

$\bigcup_{\xi<\zeta}p_{\xi}^{i+1}$ Once again using the fact that $S^{*}*\dot{P}_{j(\Upsilon)}’+$ is $\Upsilon^{+}$-directed-
closed, we may take $q_{\zeta}^{i+1}$ to be a lower bound for $\{q_{\xi}^{i+1} : \xi<\zeta\}.$

This concludes the recursion defining the sequences $\langle\alpha_{\zeta}^{i+1}\rangle,$ $\langle p_{\zeta}^{i+1}\rangle,$
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$\langle q_{\zeta}^{i+1}\rangle$ , and $\langle\tau_{\dot{B}_{\zeta}^{i+1}}\rangle$ . We now define $\alpha_{i+1}=\sup_{\zeta<\Upsilon}(\alpha_{\zeta}^{i+1})$ , take $p_{i+1}^{*}$ to
be any purely full condition in $P_{\alpha+1}i+1$ extending $\bigcup_{\zeta<T}p_{\zeta}^{i+1}$ (so it is
only $p_{i+1}^{*}(\alpha_{i+1})$ that is arbitrary), and take $q_{i+1}^{*}\in S^{*}*P_{j(\alpha i+1)}’$ such
that

$(1_{S_{\kappa}},p_{i+1}^{*})|\vdash\forall\zeta<\Upsilon(q_{i+1}^{*}\leq q_{\zeta}^{i+1})$ .

By construction, the requirements of the Main Claim (most notably
items (f) and $(g))$ are satisfied by these choices.

It remains to consider the choice of $\alpha_{i},$ $p_{i}^{*}$ , and $q_{i}^{*}$ for $i<\Upsilon^{+}$ a limit
ordinal. Clearly we must take $\alpha_{i}=\sup_{j<i}\alpha_{j}$ . Likewise we must take

$p_{i}^{*}$ purely full extending $\bigcup_{j<i}p*j$ , only leaving open the question of
$p_{i}^{*}(\alpha_{i})$ : if cf(i) $\geq\kappa$ , we take $p_{i}^{*}(\alpha_{i})$ as given by item (i) of the Main
Claim, and otherwise we take $p_{i}^{*}$ arbitrary. We similarly take $q_{i}^{*}$ to
be (forced to be) an arbitrary common extension・in $S^{*}*\dot{P}_{j(\alpha i)}’$ of
$q_{j}^{*}$ for every $j<i$ , as well as of every element of $X_{i}$ ; yet again this
is possible by the level of (directed) closure of $S^{*}*\dot{P}_{j(\alpha_{i})}’$ . The key
items (f) and (g) of the Main Claim only deal with successor stages,
so all that remains to check is that item (i) indeed yields a normal
ultrafilter on $\kappa$ when cf(i) $>\kappa$ . As D\v{z}amonja and Shelah note, this
is a fairly straightforward incorporation of master conditions into
the usual normal-ultrafilter-from-an-embedding argument. We shall
nevertheless spell it out further.

First note that the definition of $p_{i}^{*}(\alpha_{i})$ makes sense: if $\dot{B}$ is a
$P_{\alpha}i\downarrow(p_{i}^{*}r\alpha_{i})$ -name for a subset of $\kappa$ , it is (equivalent to) a $P_{\alpha}-j$

name for some $j<i$ . This follows from the $\kappa^{+}-$cc of $P_{\alpha_{i}}\downarrow(p_{i}^{*}r\alpha_{i})$

(noted in the proof of Lemma 2) and the fact that cf $(i)>\kappa.$

Suppose $G_{S_{\kappa}*\dot{P}_{\alpha_{i}}}$ is an $S_{\kappa}*\dot{P}_{\alpha i}\downarrow(1_{S_{\kappa}},p_{i}^{*r\alpha_{i})}$ generic, and that in
$V[G_{S*\dot{P}_{\alpha}i}],$ $A\in p_{i}^{*}(\alpha_{i})$ and $B\supseteq A$ ; we wish to show that $B$ is also
in $p_{i}^{*}(\alpha_{i})$ . Choose names $A$ and $\dot{B}$ for $A$ and $B$ respectively, and let
$j<i$ be such that both $A$ and $\dot{B}$ are $P_{\alpha+1}j\downarrow p_{j}^{*}$ -names. Suppose
$p\in G_{S*\dot{P}_{\alpha}i}$ forces $A\in p_{i}^{*}(\alpha_{i})$ and $B\supseteq A$ , that is,

$(\dagger)$ $p^{1\vdash}\tau_{\dot{4},}=1\wedge\dot{B}\supseteq A.$

By extending if necessary we may assume that $p\leq(1_{S_{\kappa}},p_{j+1}^{*})$ . Thus
by item (g.2) of the Main Claim, in $M$ we have that
$(\ddagger)$ $(p, q_{j+1}^{*})|\vdash(\check{\kappa}\in j(A)rightarrow\tau_{\dot{4}}\wedge=1)\wedge(\check{\kappa}\in j(\dot{B})rightarrow\tau_{\dot{B}}=1)$ .
It should be clear how we proceed from here, but note in partic-
ular the following point: to deduce from $(p, q_{j+1}^{*})|\vdash\check{\kappa}\in j(A)$ and
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$p|\vdash\dot{B}\supseteq A$ that $(p, q_{j+1}^{*})|\vdash\check{\kappa}\in j(\dot{B})$ , we need that $j$ lifts to an ele-
mentary embedding between the relevant forcing extensions. This is
precisely why we needed to extend to master conditions at every step
of the iteration. To be explicit, $p|\vdash\dot{B}\supseteq A$ implies by elementarity
only that $j(p)|\vdash j(\dot{B})\supseteq j(A)$ . However, item (f) of the Main Claim
ensures that $(p, q_{j+1}^{*})\leq j(p)$ , so combining this with $(\dagger$ $)$ and $(\ddagger$ $)$ we
can indeed conclude that

$(p, q_{j+1}^{*})|\vdash\tau_{\dot{B}}=1.$

But now $\tau_{\dot{B}}$ is a $P_{\Upsilon}+$ -name, so it must be that $p|\vdash\tau_{\dot{B}}=1$ , and so
$B\in p_{i}^{*}(\alpha_{i})$ .

The rest of the process of checking that $p_{i}^{*}(\alpha_{i})$ is a normal ultra-
filter on $\kappa$ is very similar, using the fact that we have taken master
conditions to get

from $p|\vdash\dot{B}=\check{\kappa}\backslash A$ to $(p, q_{j+1}^{*})|\vdash\check{\kappa}\not\in j(A)rightarrow\check{\kappa}\in j(\dot{B})$ ,

from
$p| \vdash\dot{B}=\bigcap_{\gamma<\delta}A_{\gamma}$

to $(p, q_{j+1}^{*})|\vdash\forall\gamma<\delta(\check{\kappa}\in j(A_{\gamma}))arrow\check{\kappa}\in j(\dot{B})$ ,

& from $p|\vdash\dot{B}=\gamma<\kappa\triangle A_{\gamma}$ to $(p, q_{j+1}^{*})|\vdash\forall\gamma<\kappa(\check{\kappa}\in j(A_{\gamma}))arrow\check{\kappa}\in j(\dot{B})$ .

So we indeed have a normal ultrafilter, and hence a valid definition
for $p_{i}^{*}(\alpha_{i})$ for $i$ a limit ordinal of cofinality greater than $\kappa$ . This
completes the proof of the Main Claim. $\dashv$

With the Main Claim in hand we can finally prove the following.

THEOREM 1. Let $\kappa$ be a supercompact cardinal, and let $\Upsilon\geq 2^{\kappa}$ be
a cardinal satisfying $\Upsilon^{\kappa}=\Upsilon$ . Then there is a forcing extension in
which $\kappa$ remains supercompact, $u_{\kappa}=\kappa^{+}$ , and $2^{\kappa}=\Upsilon.$

PROOF. With $\langle\alpha_{i}:i<\Upsilon^{+}\rangle$ as in the Main Claim, we take the
forcing $S_{\kappa}*\dot{P}_{\alpha_{i}}.$ $\downarrow(p_{i}^{*}[\alpha_{i})$ for $i=\kappa^{+}\cdot\kappa^{+}$ (the ordinal square of $\kappa^{+}$ ).
Let $G$ be $S_{\kappa}*P_{\alpha_{i}}\downarrow(p_{i}^{*r\alpha_{i})}$ -generic over $V$ . Since we begin with the
Laver preparation, $\kappa$ certainly remains supercompact in $V[G]$ , and
since $|\alpha_{\kappa^{+}\cdot\kappa+}|=\Upsilon,$ $2^{\kappa}=T$ in $V[G].$

To show that $u_{\kappa}=\kappa^{+}$ in the generic extension, we consider the
normal ultrafilter given by item (i) of the Main Claim, which would
be $p_{\kappa^{+}\cdot\kappa^{+}}^{*}(\alpha_{\kappa^{+}\cdot\kappa^{+}})$ if we continued the iteration. That is, in $V[G]$ we
consider

$\mathcal{D}=\{B\subset\kappa:\tau_{\dot{B}}[G]=1\}$
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(of course, whether $B$ is in $\mathcal{D}$ is independent of the choice of $\dot{B}$ by
the construction of the names $\tau_{\dot{B}}$ ). Since conditions in $P_{\alpha}i\downarrow(p_{i}^{*}[\alpha_{i})$

have essential support bounded below $\alpha_{\kappa^{+}\cdot\kappa^{+}}$ , each subset $B$ of $\kappa$

in the extension is named by some stage of the iteration prior to
$\alpha_{\kappa^{+}\cdot\kappa^{+}}$ . In particular, either $B$ or $\kappa\backslash B$ will appear in the ultrafilter

$p_{\kappa^{+}\cdot\delta}^{*}(\alpha_{\kappa^{+}\cdot\delta})[G]$ for $\delta<\kappa^{+}$ sufficiently large, and this ultrafilter is
determined by item (i) of the Main Claim. Hence, we have that
$B\in p_{\kappa^{+}\cdot\delta}^{*}(\alpha_{\kappa^{+}\cdot\delta})[G]$ if and only if $\tau_{\dot{B}}[G]=1$ , if and only if $B\in \mathcal{D}.$

We thus have that
$\mathcal{D}=\cup p_{\kappa^{+}\cdot\delta}^{*}(\alpha_{\kappa^{+}\cdot\delta})[G].$

$\delta<\kappa^{+}$

Now at stage $\alpha_{\kappa+.\delta}$ of the iteration, we are forcing with $\mathbb{M}_{p_{\kappa+\delta}^{*}}^{\kappa}$ , and
so the generic subset of $\kappa$ at this stage, $X_{\alpha_{\kappa}+\delta}$ , is almost below every
element of $p_{\kappa^{+}\cdot\delta}^{*}(\alpha_{\kappa^{+}\cdot\delta})[G]$ . Hence, $\mathcal{D}$ is generated by the set

$\{Y\subseteq\kappa:\exists\delta<\kappa^{+}(|Y\triangle X_{\alpha_{\kappa}+\delta}|<\kappa)\},$

which has cardinality $\kappa^{+}.$ $\dashv$
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