
SOME RESULTS IN THE EXTENSION WITH A
COHERENT SUSLIN TREE, PART II

TADATOSHI MIYAMOTO AND TERUYUKI YORIOKA

ABSTRACT. It is proved the following: (Theorem 1) PFA $(S)$ im-
plies MRP. (Theorem 2) For any coherent Suslin tree $S$ and
an $S$-name $\vec{C\sim}$ for a ladder system on $\omega_{1}$ , there exists an almost
strongly proper forcing notion (which will be defined in \S 3) which
generically adds an $S$-name for a club on $\omega_{1}$ which violates the
statement that $\vec{C\sim}$ is a weak club guessing ladder systems.

1. INTRODUCTION

At first, we introduce two problems. Both are introduced by Stevo
Todor\v{c}evi\v{C} in $1980s.$

$Todor\check{c}evi\acute{c}-Veli\check{c}kovi\acute{c}$ showed that Martin’sAxiom is equivalent to
some Ramsey theoretic statement [22, 20]. From the view point of
this type of Ramsey theory, Todor\v{c}evi\v{c} introduced several weak forms
of its Ramsey theoretic statement [20]. One of them is $\mathcal{K}_{2}$ : Every ccc
forcing has the Knaster property (every uncountable set has a pairwise-
compatible uncountable subset). It is well known that $MA_{\aleph_{1}}$ implies
$\mathcal{K}_{2}$ . It is still unknown whether $\mathcal{K}_{2}$ implies $MA\aleph_{1}.$

$Todor\check{c}evi$ introduced other Ramsey theoretic axiom, so called the
$P$-ideal Dichotomy $P|D[19,1,21].$ One of the motivations of introduc-
ing $P|D$ is the $S$-space problem: Is every regular hereditarily separable
space hereditarily Lindel\"of? (See e.g. [4, 13, 14].) An $S$-space means a
regular hereditarily separable space which has non-Lindel\"of subspace,
so the $S$-space problem sometimes is stated the following: Are there
no $S$-spaces? Todor\v{c}evi\v{c} proved that if PID holds and the pseudo-
intersection number $\mathfrak{p}$ is greater than $\aleph_{1}$ , then there are no $S$-spaces.
It is also unknown whether $\mathfrak{p}>\aleph_{1}$ holds whenever $P|D$ holds and there
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are no $S$-spaces (that is, under PID, whether $\mathfrak{p}>\aleph_{1}$ is equivalent that
there are no $S$-spaces).

Stevo Todor\v{c}evi\v{c} introduced the weak form of the Proper Forcing
Axiom, so called PFA $(S)$ , to attack two problems simultaneously [23].
PFA$(S)$ is the statement that there exists a coherent Suslin tree $S$ such
that the forcing axiom holds for every proper forcing which preserves $S$

to be Suslin, that is, for every proper forcing $\mathbb{P}$ which preserves $S$ to be
Suslin and $\aleph_{1}$ -many dense subsets $D_{\alpha},$ $\alpha\in\omega_{1}$ , of $\mathbb{P}$ , there exists a filter
on $\mathbb{P}$ which intersects all the $D_{\alpha}$ . Since the preservation of a Suslin tree
by the proper forcing is closed under countable support iteration (due
to the first author [9] $)$ , it is consistent relative to some large cardinal
assumption that PFA$(S)$ holds.

We note that a Suslin tree forces that $\mathfrak{p}=\aleph_{1}$ [ $3$ , Lemma 2], and
hence, a Suslin tree forces that $MA\aleph_{1}$ fails. Todor\v{c}evi\v{c} proved that a
coherent Suslin tree $S$ , which witnesses PFA $(S)$ , forces several conse-
quences from PFA, i.e. the Open Coloring Axiom (due to Todor\v{c}evic),
the failure of square axioms, and PID. Therefore, under PFA$(S)$ , if a
coherent Suslin tree $S$ , which witnesses PFA $(S)$ , forces $\mathcal{K}_{2}$ , then the
first problem above is answered negatively, and if such an $S$ forces that
there are no $S$-spaces, then the second problem above is answered neg-
atively. There are some partial results on above two problems [7, 24]
and [23, 26].

It is also interesting what happens in the extension with a coherent
Suslin tree which witnesses PFA $(S)$ , assuming PFA $(S)$ . There are some
researches on $PFA(S)$ , e.g. [23, 5, 6, 12, 16, 17, 18, 25, 26]. In this
note, we consider the following three consequences from PFA; MRP,
measuring (1), and weak club guessing ladder systems [10, 2, 11]. We
will mention the definition of MRP in \S 2 and weak club guessing ladder
system in \S 3. We note that MRP implies measuring, and measuring
implies that there are no weak club guessing ladder system.

The first author proved the following.

Theorem 1. PFA$(S)$ implies MRP.

Thus measuring holds under PFA $(S)$ . Justin Tatch Moore pointed
out that a Suslin tree forcing preserves measuring, so as the corollary
of the theorem, assuming PFA $(S)$ , in the extension with a coherent
Suslin tree which witnesses PFA $(S)$ , measuring holds and so there are
no weak club guessing ladder systems. Moore also pointed out that in
the extension with a Suslin tree, MRP fails (because $v_{AC}$ (in e.g. [10])

(1)The axiom “measuring” is defined in the introduction of [2].
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fails there). So a Suslin tree forcing can separate MRP and measuring.
In \S 2, we will give a proof of Theorem 1.

By the previous observation, it has already been known that assum-
ing PFA $(S)$ , in the extension with a coherent Suslin tree which witnesses
PFA $(S)$ , there are no weak club guessing ladder systems. In \S 3, we will
prove it by introducing variation of Mitchell’s strong properness.

In [15, Chapter IX, 2.6 Definition], Shelah introduced the strong
properness as follows: $A$ forcing notion $\mathbb{P}$ is called (Shelah’s) strongly
proper if for some (any) sufficiently large $\theta$ , a countable elementary
submodel $M$ of $H(\theta)$ with $\mathbb{P}\in M$ , a countable sequence $\langle D_{n};n\in\omega\rangle$

with $D_{n}\subseteq \mathbb{P}\cap M$ dense in $\mathbb{P}\cap M$ and $p\in \mathbb{P}\cap M$ , there exists $q\leq_{\mathbb{P}}p$

such that for all $n\in\omega,$ $D_{n}$ is predense below $q$ . In [8, Definition 2.3],
Mitchell introduced a slightly different and stronger concept of the
strong properness as follows: $A$ forcing notion $\mathbb{P}$ is called (Mitchell’s)
strongly proper if for some (any) sufficiently large $\theta$ , a countable ele-
mentary submodel $M$ of $H(\theta)$ with $\mathbb{P}\in M$ and $p\in \mathbb{P}\cap M$ , there exists
$q\leq_{\mathbb{P}}p$ such that every dense subset of $\mathbb{P}\cap M$ is predense below $q.$

The first author proved that a strongly proper forcing notion preserves
a Suslin tree [9, (1.5) Proposition]. In \S 3, we introduce a weak varia-
tion of Mitchell’s strong properness, which is called the almost strong
properness (Definition 3.2), and prove that an almost strongly proper
forcing notion still preserves a Suslin tree (Lemma 3.3). Moreover,
we will prove the following.

Theorem 2. For any coherent Suslin tree $S$ and an $S$ -name $\vec{C}$ for
a ladder system on $\omega_{1}$ , there exists an almost strongly proper forcing
notion which generically adds an $S$ -name for a club on $\omega_{1}$ which violates
the statement that $\vec{C\sim}$ is a weak club guessing ladder systems.

The second author would like to thank Justin Tatch Moore for useful
information on this topic, and thank Dilip Raghavan and Hiroshi Sakai
for useful discussions.

2. A PROOF OF Theorem 1

Definition 2.1 (Moore). $\Sigma$ is called an open stationary set mapping
when there are an uncountable set $X$ and a regular cardinal $\theta$ with
$X\in H(\theta)$ such that

$\bullet$ $dom(\Sigma)$ is a club subset of the set of countable elementary sub-
models of $H(\theta)$ ,

$\bullet$ for every $M\in$ dom $(\Sigma)$ ,
$-\Sigma(M)$ is an open subset of the space $[X]^{\aleph_{0}}$ equipped with

the Ellentuck topology, and
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$-\Sigma(M)$ is $M$ -stationary, $i.e$ . for any club subset $E$ of $[X]^{\aleph_{0}},$

if $E\in M$ , then $E\cap\Sigma(M)\cap M\neq\emptyset.$

MRP is the statement that for any open stationary set mapping $\Sigma$

about $X$ and $\theta$ , there exists a continuos $\in$ -chain $\langle N_{\nu};v\in\omega_{1}\rangle$ in dom $(\Sigma)$

such that for all limit ordinals $v\in\omega_{1}$ , there exists $\nu_{0}<v$ such that for
any $\xi\in(v_{0}, \nu),$ $N_{\xi}\cap X\in\Sigma(N_{\nu})$ .

Proof ofTheorem 1. Let $X$ be an uncountable set, $\theta$ a regular cardinal
such that $2^{X}\in H(\theta)$ , and $\Sigma$ an open stationary set mapping such that
for any $K\in$ dom $(\Sigma),$ $\Sigma(K)\subseteq[X]^{\aleph_{0}}$ . We always consider that the
structure $H(\theta)$ equips its well-ordering as a predicate. For a subset $Y$

of $H(\theta)$ , we write the Skolem hull of $Y$ on $H(\theta)$ as $sk_{H(\theta)}(Y)$ (by the
well-ordering which is equipped with $H(\theta))$ . We write $\mathbb{P}_{\Sigma}$ as the set
of all continuous $\in$-increasing sequence $p:\alpha+1arrow$ dom $(\Sigma)$ , for some
$\alpha\in\omega_{1}$ , such that for every $\nu\in$ Lim $\cap(\alpha+1)$ , there exists $\nu_{0}<\nu$

such that for every $\xi\in(\nu_{0}, v)$ , if $v_{0}\in p(\xi)$ , then $p(\xi)\cap X\in\Sigma(p(\nu))$ ,
ordered by end-extension. This is defined in [10], and it is proved that
$\mathbb{P}_{\Sigma}$ is proper. So for a proof of Theorem 1, it suffices to show that $\mathbb{P}_{\Sigma}$

preserves any Suslin tree to be still Suslin.

Suppose that $S$ is a Suslin tree, $A$ is a $\mathbb{P}_{\Sigma}$ -name for a maximal an-
tichain through $S$ , and $p\in \mathbb{P}_{\Sigma}$ . We will show that there exists $q\leq_{\mathbb{P}_{\Sigma}}p$

such that
$q|\vdash_{\mathbb{P}_{\Sigma}}$

“ $A$ is countable “

To show this, we take a regular cardinal $\lambda$ such that $H(\lambda)$ contains
the set

$\{x, \Sigma, H(\theta), s, A_{p,H(|\mathbb{P}_{\Sigma}|^{+})\}}$

as a member, and take a countable elementary substructure $M$ of $H(\lambda)$

which contains the above set as a member. We enumerate all dense
subsets of $\mathbb{P}_{\Sigma}$ which belong to $M$ by $\{D_{i};i\in\omega\}$ and the set of all nodes
in $S$ of height $\omega_{1}\cap M$ by $\{s_{i};i\in\omega\}$ . Let $\langle\delta_{i};i\in\omega\rangle$ be an increasing
sequence of ordinals converging to $\omega_{1}\cap M$ . By induction on $i\in\omega$ , we
will build $p_{i}\in \mathbb{P}_{\Sigma}$ , such that

$\bullet p_{i+1}\leq_{\mathbb{P}_{\Sigma}}p_{i}$ $($ and $p_{0}:=p)$ ,
$\bullet p_{i+1}\in D_{i}\cap M,$

$\bullet$ for every $K\in$ ran $(p_{i+1}\backslash p_{0}),$ $X\cap K\in\Sigma(H(\theta)\cap M)$ ,
$\bullet$ $dom(p_{i+1})\geq\delta_{i}$ , and
$\bullet$ there exists $t<ss_{i}$ such that $p_{i+1}|\vdash_{\mathbb{P}_{\Sigma}}$

“ $t\in A,,$

After the construction, we let

$q:= \bigcup_{i\in\omega}p_{i}\cup\{\langle\omega_{1}\cap M, H(\theta)\cap M\rangle\}.$
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Then by the above properties of $p_{i}’ s$ , we note that $q$ is $a(\mathbb{P}_{\Sigma}, M)$ -generic
condition and

$q|\vdash_{\mathbb{P}_{\Sigma}}$ $A\subseteq S_{<\omega_{1}\cap M}$ ”,
which finishes the proof.

In the rest of this section, we mention how to build $p_{i+1}$ when $p_{i}$ has
been built.

Let $E_{i}$ be the set of all subsets of $X$ of the form $X\cap N^{*}$ where $N^{*}$

is a countable elementary substructure of $H(|\mathbb{P}_{\Sigma}|^{+})$ which contains the
set

$\{X, \Sigma, H(\theta), S, D_{i}, A, \delta_{i},p_{i}\}$

as a member. We note that $E_{i}$ contains a club on $[X]^{\aleph_{0}}$ and $E_{i}$ belongs
to $M$ . Since $2^{X}\in H(\theta),$ $E_{i}$ also belongs to $H(\theta)$ , so does to $H(\theta)\cap M.$

Therefore, since $\Sigma(H(\theta)\cap M)$ is $(H(\theta)\cap M)$ -stationary, there exists
a countable elementary submodel $N_{i}^{*}$ of $H(|\mathbb{P}_{\Sigma}|^{+})$ and a finite subset
$x_{i}$ of $X\cap N_{i}^{*}$ such that $X\cap N_{i}^{*}$ is in the set $E_{i}\cap\Sigma(H(\theta)\cap M)\cap$

$M,$ $[x_{i}, X\cap N_{i}^{*}]\subseteq\Sigma(H(\theta)\cap M)$ . By the elementarity of $M$ , there
exists $N_{i}^{**}\in M$ such that $N_{i}^{**}$ is a countable elementary substructure
$H(|\mathbb{P}_{\Sigma}|^{+})$ which contains the set

$\{X, \Sigma, H(\theta), S, D_{i}, A, \delta_{i},p_{i}\}$

as a member such that

$X\cap N_{i}^{**}=X\cap N_{i}^{*}.$

We define
$p_{i}’$ $:=p_{i}\cup\{\langle$dom $(p_{i}),$ $sk_{H(\theta)}(\{p_{i}\}\cup x_{i})\rangle\}.$

We note that $p_{i}’\in \mathbb{P}_{\Sigma}\cap N_{i}^{**}$ and $p_{i}’\leq_{\mathbb{P}_{\Sigma}}p_{i}$ . We note that $\mathbb{P}_{\Sigma}$ is in
$N_{i}^{**}$ Next, we take a condition $p_{i}"\in D_{i}\cap N_{i}^{**}$ such that $p_{i}"\leq \mathbb{P}_{\Sigma}p_{i}’$ and
dom $(p_{i}")\geq\delta_{i}$ . We note that $p_{i}"\in M$ , because $N_{i}^{**}\subseteq M$ . At last, since
the set

$\{u\in S$ ; there are $t<su$ and $r\leq_{\mathbb{P}_{\Sigma}}p_{i}"$ such that $r|\vdash_{\mathbb{P}_{\Sigma}}$

“ $t\in A,,$ $\}$

is a dense open subset of $S$ in the model $N_{i}^{**}$ and the set

$\{u\in S\cap N_{i}^{**};u<ss_{i}r(\omega_{1}\cap N_{i}^{**})\}$

is $a(S, N_{i}^{**})$-generic filter, by the elementarity of $N_{i}^{**}$ , we can take
$t<ss_{i}r(\omega_{1}\cap N_{i}^{**})$ and $p_{i+1}\in \mathbb{P}_{\Sigma}\cap N_{i}^{**}$ such that $p_{i+1}\leq_{\mathbb{P}_{\Sigma}}p_{i}"$ and

$p_{i+1}|\vdash_{\mathbb{P}_{\Sigma}} t\in A,,$
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Then $p_{i+1}$ belongs to $M$ , and by the property of $N_{i}^{*}$ and $N_{i}^{**}$ , we note
that for every $K\in$ ran $(p_{i+1}\backslash p_{i})$ , since

$x_{i}\subseteq X\cap sk_{H(\theta)}(\{p_{i}\}\cup x_{i})=X\cap p_{i+1}$ (dom$(p_{i})$ )
$\subseteq X\cap K\subseteq X\cap N_{i}^{**}=X\cap N_{i}^{*},$

$X\cap K\in\Sigma(H(\theta)\cap M)$ holds. This finishes the construction, and the
proof. $\square$

3. A PROOF OF Theorem 2

Definition 3.1 (Shelah). $A$ sequence $\vec{C}=\langle C_{\xi};\xi\in\omega_{1}\cap$ Lim $\rangle$ is called
a ladder system if for any $\xi\in\omega_{1}\cap$ Lim, $C_{\xi}$ is a cofinal subset of $\xi$ and
is of order type $\omega.$

A ladder system $\langle C_{\xi};\xi\in\omega_{1}\cap$ Lim $\rangle$ is called weak club guessing if for
any club $E$ on $\omega_{1}$ , there exists $\xi\in\omega_{1}\cap$ Lim such that $C_{\xi}\cap E$ is cofinal
($i.e$ infinite) in $\xi.$

Definition 3.2. $A$ forcing notion $\mathbb{P}$ is almost strongly proper if for
any sufficiently large regular cardinal $\theta$ with $\mathbb{P}\in H(\theta)$ , any sufficiently
large regular cardinal $\lambda$ with $H(\lambda)\in H(\theta)$ , any countable elementary
substructure $N$ of $H(\lambda)$ with $\mathbb{P},$ $H(\theta)\in N$ , and any $p\in \mathbb{P}\cap N$ , there
exists an extension $q$ of $p$ in $\mathbb{P}$ such that for any subset $E$ of $\mathbb{P}$ , if the
set

$\{M\in N;\mathbb{P}\in M\prec H(\theta)$ countable

& $E\cap M$ is a dense subset of $\mathbb{P}\cap M\}$

is cofinal with respect to $N\cap H(\theta)(i.e$ . for every $a\in N\cap H(\theta)$ , there
exists $M$ in the above set), $E$ is predense below $q.$

Such a $q$ is called almost strongly $(N, \mathbb{P})$ -generic.

We note that Mitchell’s strongly proper forcing notion is almost
strongly proper, and an almost strongly proper forcing notion is proper.

Lemma 3.3. An almost strongly proper forcing notion preserves a
Suslin tree.

Proof. Let $\mathbb{P}$ be an almost strongly proper forcing notion, and $T$ a
Suslin tree. Suppose that $p\in \mathbb{P}$ and $A$ be an $S$-name for a maximal
antichain in $S.$

We take sufficiently large regular cardinals $\theta$ and $\lambda$ as in Definition
3.2 and a countable elementary substructure $N$ of $H(\lambda)$ which contains
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$\mathbb{P},$ $H(\theta),$ $S,$ $p$ and $A$ as members. Let $q$ be an almost strongly $(N, \mathbb{P})-$

generic condition of $\mathbb{P}$ which extends $p$ in $\mathbb{P}$ . We will show that
$q|\vdash_{\mathbb{P}}$ $\forall t\in T_{\omega_{1}\cap N}\exists s\in A$ such that $s<\tau^{t}$

“

Then it follows that
$q|\vdash_{\mathbb{P}}$

$A$ is countable “,

which finishes the proof.
Let $t\in T_{\omega_{1}\cap N},$ $z\leq_{\mathbb{P}}q$ , and define the set

$E_{t}:=\{x\in \mathbb{P};\exists s<\tau t$ such that $x|\vdash_{\mathbb{P}}$ $s\in A,,$ $\}.$

At first, we show that the set

$\{M\in N;\mathbb{P}\in M\prec H(\theta)$ countable

& $E_{t}\cap M$ is a dense subset of $\mathbb{P}\cap M$

is cofinal with respect to $N\cap H(\theta)$ . To show this, let $a\in N\cap H(\theta)$ .
We take a countable elementary substructure $M\in N$ of $H(\theta)$ which
contains $\mathbb{P},$ $T,$ $A$ and $a$ as members. We show that $E_{t}\cap M$ is a dense
subset of $\mathbb{P}\cap M$ . Let $x\in \mathbb{P}\cap M$ . Since $\{r\in T\cap M;r<\tau t\}$ is an
$(M, T)$ -generic filter and the set

$\{r\in T;\exists y\leq_{\mathbb{P}}x\exists s<\tau r$ such that $y|\vdash_{\mathbb{P}}$ $s\in A,,$ $\}$

is dense in $T$ and is a member of $M$ , there exists $r$ in this set such that
$r\in M$ and $r<\tau t$ . Then there exists $y\in \mathbb{P}\cap M$ and $s<\tau r$ such that
$y\leq_{\mathbb{P}}x$ and

$y|\vdash_{\mathbb{P}} s\in A,,$

Then $y\in E_{t}\cap M.$

Therefore, since $q$ is almost strongly $(N, \mathbb{P})$ -generic and $z\leq_{\mathbb{P}}q,$ $E_{t}$ is
predense below $q$ , hence there exists $Z’\in E_{t}$ which extends $z$ (this can
be done because $E_{t}$ is an open subset of $\mathbb{P}$). This finishes the proof. $\square$

Let $\mathcal{F}$ be the set of all functions $f$ such that
$\bullet$ dom$(f)$ is a club subset of $\omega_{1},$

$\bullet$ $f$ is strictly increasing and continuous, and
$\bullet$ for any $\xi\in dom(f)\cap L\dot{\ovalbox{\tt\small REJECT}}m,$ $f(\xi)$ is a limit of limit ordinals

and let $\mathcal{P}\mathcal{F}$ be the set of all finite partial subfunctions of members of
$\mathcal{F}.$

Proof of Theorem 2. $S$ denotes a coherent Suslin tree. Suppose that
$\vec{C\sim}=\langle\dot{C}_{\xi};\xi\in\omega_{1}\cap L\dot{\ovalbox{\tt\small REJECT}}m\rangle$ is an $S$-name for a ladder system on $\omega_{1}$ . We
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will define an almost strongly proper forcing which generically adds an
$S$-name for a club on $\omega_{1}$ which witnesses that $\langle\dot{C}_{\xi};\xi\in\omega_{1}\cap$ Lim $\rangle$ is not
a weak club guessing sequence in the extension with $S.$

To define our forcing notion, we take a club $E$ on $\omega_{1}$ such that for
each $\delta\in E$ , any node of $S_{\delta}$ decides the value of $\dot{C}_{\xi}$ for every $\xi<\delta$ . (This
can be done because $S$ is ccc.) For each $s\in S$ and $\xi\in\sup(E\cap Iv (s))$ ,
the value of $\dot{C}_{\xi}$ in the extension by $s$ is denoted by val $(\dot{C}_{\xi}, s)$ , i.e.

$s|\vdash {}_{S}\dot{C}_{\xi}=va1(\dot{C}_{\xi}, s)$
”

We define $\mathbb{Q}$ which consists of a finite function $p$ such that
$\bullet$ dom$(p)$ is a finite subset of $S,$

$\bullet$ for each $s\in$ dom$(p),$ $p(s)$ is the triple $\langle p_{0}^{s},p_{1}^{s},p_{2}^{s}\rangle$ such that
$-p_{0}^{s}$ is in $\mathcal{P}\mathcal{F}$ such that both dom $(p_{0}^{s})$ and ran $(p_{0}^{s})$ are subsets

of $\sup(E\cap Iv (s))$ ,
$-p_{1}^{s}$ is a finite partial regressive (2) function from $\omega_{1}\cap$ Lim

into $\omega_{1}$ such that dom$(p_{1}^{s})$ is a subset of $\sup(E\cap Iv (s))$ ,
$-p_{2}^{s}$ is a finite subset of lv $(()s)$ ,

$\cup$ $p_{0}^{t}$ is still in $\mathcal{P}\mathcal{F}$ and
$t\in dom(p)$

$t \in dom(p)\bigcup_{t\leq ss}^{t\leq s^{s}}p_{1}^{t}$

is still a function,

$\bullet$ $dom(p)$ is closed under $\wedge,$

$\bullet$ for any $s$ and $t$ in $dom(p)$ , if $s$ and $t$ are incomparable in $S,$

then
$-p_{0}^{s\wedge t}\supseteq$ $(p_{0}^{s}$ rsup($E\cap$ Iv $(s\wedge t)$ ) $)\cup(p_{0}^{t}$ rsup$(E\cap$ Iv $(s\wedge t)))$ ,

and
$-p_{1}^{s\wedge t}\supseteq$ $(p_{1}^{s}$ rsup( $E\cap$ Iv $(s\wedge t)$ ) $) \cup(p_{1}^{t}r\sup(E\cap Iv (s\wedge t)))$ ,

$\bullet$ for each $s\in dom(p)$ ,

$($ ran $(\begin{array}{ll}\bigcup_{t\in dom(p)} p_{0}^{t}t\leq ss \end{array}))\cap(\begin{array}{ll}\bigcup_{t\in dom(p)} p_{2}^{t}t\leq ss \end{array})=\emptyset,$

and

(2) $A$ function $f$ on ordinals is called regressive if for every $\xi\in$ dom$(f),$ $f(\xi)<\xi.$
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$\bullet$ for each $s\in dom(p)$ and $\xi\in$ dom $(\begin{array}{ll}\bigcup_{t\in dom(p)} p_{1}^{t}t\leq s^{s} \end{array}),$

$s|\vdash s$
“ ran $(\begin{array}{ll}\bigcup_{t\in dom(p)} p_{0}^{t}t\leq s^{s} \end{array})\cap\dot{C}_{\xi}\subseteq(\begin{array}{ll}\bigcup_{t\in dom(p)} p_{1}^{t}t\leq s^{s} \end{array})(\xi)$ “,

and for each $p$ and $q$ in $\mathbb{Q}$ , we define $q\leq_{\mathbb{Q}}p$ iff $dom(q)\supseteq dom(p)$ and
for every $s\in$ dom $(p),$ $q_{0}^{S}\supseteq p_{0}^{s}$ and $q_{1}^{s}\supseteq p_{1}^{s}.$

By the definition and the genericity argument, if $\mathbb{Q}$ is proper and
preserves $S$ to be Suslin, we note that

$|\vdash_{\mathbb{Q}}$ $|\vdash s$ ran $(\begin{array}{ll}\cup p_{0}^{s}p\in G_{\mathbb{Q}} s\in dom(p)\cap\dot{G}_{S} \end{array})$ witnesses that

$\langle\dot{C}_{\xi};\xi\in\omega_{1}\cap$ Lim $\rangle$ is not a weak club guesseing sequence, “ “

where $\dot{G}_{\mathbb{Q}}$ means the canonical $\mathbb{Q}$-name for its generic, and $\dot{G}_{S}$ means
the canonical $S$-name for its generic.

In the rest of this section, we show that $\mathbb{Q}$ is almost strongly proper.
Let $\theta$ be a regular cardinal which is large enough for $\mathbb{Q}$ , and $\lambda$ a

regular cardinal such that $H(\theta)$ and its Skolem function are in $H(\lambda)$ .
We will show that for any countable elementary substructure $N$ of
$H(\lambda)$ which contains the set

$\{S,$ $\langle\dot{C}_{\xi};\xi\in\omega_{1}\cap Lim\rangle,$ $E,$ $H(\theta)$ , a fixed Skolem function of $H(\theta)\}$

as a member, and any $p\in \mathbb{Q}\cap N$ , there exists an extension $p’$ of $p$ in
$\mathbb{Q}$ which is almost strongly $(\mathbb{Q}, N)$generic.

Suppose that $N$ and $p$ are as above. We take an extension $p’$ of $p$ in
$\mathbb{Q}$ such that

$\bullet$ for each $s\in$ dom$(p)$ , there exists $t\in$ dom$(p’)$ such that $I\vee(t)\geq$

$\omega_{1}\cap N$ and $(p’)_{0}^{t}=p_{0}^{S}\cup\{\langle\omega_{1}\cap N, \omega_{1}\cap N\rangle\}$ , and
$\bullet$ for each $t\in$ dom $(p’)\backslash$ dom$(p),$ $\{\langle\omega_{1}\cap N, \omega_{1}\cap N\rangle\}\subseteq(p’)_{0}^{t}.$

We will show that $p’$ is almost strongly $(\mathbb{Q}, N)$-generic.
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Let $q$ be an extension of $p’$ in $\mathbb{Q}$ , and $E$ a subset of $\mathbb{Q}$ such that the
set

$\{M\in N;\mathbb{Q}\in M\prec H(\theta)$ countable

& $E\cap M$ is a dense subset of $\mathbb{Q}\cap M\}$

is cofinal with respect to $N\cap H(\theta)$ . By extending $q$ if necessary, we
may assume that

$\bullet$ let $X_{q}$ be the set of maximal nodes of $dom(q)$ , and then $X_{q}$

satisfies that
$-X_{q}\cap N=\emptyset,$

-every member of $X_{q}$ decides the value of $\dot{C}_{\omega_{1}\cap N}$ , and
-for any $s\in dom(q)$ and $t\in X_{q}$ , if $s<s^{t}$ , then $q_{0}^{s}\subseteq q_{0}^{t}$ and

$q_{1}^{s}\subseteq q_{1}^{t}.$

We note that for every $t\in X_{q},$ $q_{0}^{t}rN=q_{0}^{t}\cap N$ and $q_{1}^{t}rN=q_{1}^{t}\cap N$

(because of the definition of $\mathbb{Q}$ and the fact that $E\in N$), and so
$q\cap N\in \mathbb{Q}\cap N$ . By the coherency of $S$ , we can take $\gamma\in\omega_{1}\cap N$ such
that

$\bullet$ for every $t,$ $t’\in X_{q}$ , if $t\neq t’$ , then

$\{\xi\in\omega_{1}\cap N;t(\xi)\neq t’(\xi)\}\subseteq\gamma,$

and
$\bullet$ for every $\xi\in dom(q_{1}^{t_{i}^{q}})\backslash (N\cup\{\omega_{1}\cap N\})$ with $q_{1}^{t_{i}^{q}}(\xi)\in N,$

$t_{i}^{q}r\gamma$

decides the value of $\dot{C}_{\xi}\cap N^{(3)}.$

Let $\{t_{i}^{q};i\in n\}$ be the $<$ lex-increasing enumeration of $X_{q}$ . Let

$I$ $:=\{i\in n;\omega_{1}\cap N\in$ dom $(q_{1}^{t_{i}^{q}})\}.$

By our assumption, we can take a countable elementary substructure
$M$ of $H(\theta)$ such that $M\in N,$ $M$ contains the objects $S,$ $E,$ $q\cap N,$ $\gamma,$

(3)To do this, we use the following general remark: For any countable elementary
submodel $M$ of $H(\kappa)$ ( $\kappa$ is a regular cardinal greater than $\aleph_{1}$ ), $Z\in \mathcal{P}(S)\cap M$ and
$v\in Z\backslash M$ , there exists $w\in Z\cap M$ such that $w<sv$ . Because the set

$\{x\in S$ ; either $x\in Z$ or $\{y\in S;x\leq sy\}\cap Z=\emptyset\}$

belongs to $M$ , is dense in $S$ , and hence, it contains $v$ as a member (because the set
$\{w\in S\cap M;w<sv\}$ is $a(S, M)$-generic filter).

We note that $\dot{C}_{\xi}\cap N$ can be considered as an $S$-name for a finite subset of $\xi$ if
$\xi\in\omega_{1}\backslash N.$
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$\langle\dot{C}_{\xi};\xi\in\omega_{1}\cap$ Lim $\rangle$ , the tuples

$\langle\langle\langle q_{1}^{t_{i}^{q}}(\xi)$ , val $(\dot{C}_{\xi}, t_{i}^{q})\cap N\rangle$ ;

$\xi\in$ dom $(q_{1}^{t_{i}^{q}})\backslash (N\cup\{\omega_{1}\cap N\})$ & $q_{1}^{t_{i}^{q}}(\xi)\in N\rangle,$

$q_{1}^{t_{i}^{q}}(\omega_{1}\cap N), t_{i}^{q}r\gamma\rangle,$

for each $i\in I$ , and the tuples

$\langle\langle\langle q_{1}^{t_{i}^{q}}(\xi),$ $va1(\dot{C}_{\xi}, t_{i}^{q})\cap N\rangle$ ;

$\xi\in dom(q_{1}^{t_{i}^{q}})\backslash (N\cup\{\omega_{1}\cap N\})$ & $q_{1}^{t_{i}^{q}}(\xi)\in N\rangle,$

$t_{i}^{q}r\gamma\rangle,$

for each $i\in n\backslash I$ as members, and $E\cap M$ is a dense subset of $\mathbb{Q}\cap M.$

We take an extension $q’$ of $q$ in $\mathbb{Q}$ such that

$\bullet q’\backslash M=q\backslash M,$

$\bullet$ for each $i\in I$ , there exists $\delta_{i}\in\omega_{1}\cap M$ such that $t_{i}^{q’}r\delta_{i}\in$

dom$(q’)$ and $(q’)_{2}^{t_{i}^{q’}r\delta_{i}}$ includes the set

$\cup\{(va1(\dot{C}_{\xi}, t_{i}^{q})\cap N)\backslash q_{1}^{t_{i}^{q}}(\xi)$ ;

$\xi\in$ dom $(q_{1}^{t_{i}^{q}})\backslash (N\cup\{\omega_{1}\cap N\})$ & $q_{1}^{t_{i}^{q}}(\xi)\in N\}$

$\cup\{(val(\dot{C}_{\omega_{1}\cap N}, t_{i}^{q})\cap M)\backslash q_{1}^{t_{i}^{q}}(\omega_{1}\cap N)\}$

as a subset, and
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$\bullet$ for each $i\in n\backslash I$ , there exists $\delta_{i}\in\omega_{1}\cap M$ such that $t_{i}^{q’}|\delta_{i}\in$

dom$(q’)$ and $(q’)_{2}^{t_{i}^{q’}r\delta_{i}}$ includes

$\cup\{(val(\dot{C}_{\xi}, t_{i}^{q})\cap N)\backslash q_{1}^{t_{i}^{q}}(\xi)$ ;

$\xi\in$ dom$(q_{1}^{t_{i}^{q}})\backslash (N\cup\{\omega_{1}\cap N\})$ & $q_{1}^{t_{i}^{q}}(\xi)\in N\}.$

We note that $q’\cap M\in \mathbb{Q}\cap M$ . Since $E\cap M$ is dense in $\mathbb{Q}\cap M$ , there
exists $r\in E\cap M$ which extends $q’\cap M$ in $\mathbb{Q}$ . Then by the choice of $q’,$

$r$ is compatible with $q$ in $\mathbb{Q}.$
$\square$
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