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Abstract

We define the entropy $S(u)$ for an $n\cross n$ unitary mairix $u$ , and by
using the values of $S(u)$ we characterize the notion of mutual orthogo-
nality between two maximal abelian subalgebras of $M_{n}(\mathbb{C})$ . We apply
these method to unitaries in type $II_{1}$-factors $M$ and characterize the
notion of commuting square condition between two subfactors of $M$

with the Jones index 2.

1 Introduction
This is a continuation of my following two reports:

(講究 1) 数理解析研究所講究録 1819, Entropy via partitions of unity , PP
9-21;

(講究 2) 数理解析研究所講究録 1820, $A$ representation of unital completely
positive maps, pp 11-24.

There are several notions which describe some relative position between
two subalgebras of operator algebras. As one of such notions for relations be-
tween two subalgebras of finite von Neumann algebras, Popa introduced the
notion of mutually orthogonal subalgebras (definition below) in [15]. By the
terminology complementarity, the same notion is investigated in the theory
of quantum systems (see [12] for example).

We are interested in to give numerical characterizations for the notion
of mutually orthogonality between two isomorphic subalgebras. The most
primary interest would be the case where two subalgebras of some full matrix
algebra, both of which are either maximal abelian subalgebras or isomorphic
to also some full matrix algebra. In such the cases, two subalgebras are
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connected by some unitary, and we would like to know how such a unitary
plays a key role.

Our motivation for this work arises from the following fact: To give a
numerical characterizations for the notion of mutually orthogonality, in the
previous paper [1], as one of way, we defined a constant $h(A|B)$ for two
subalgebras $A$ and $B$ of a finite von Neumann algebra, and explained the
relative position between maximal abelian subalgebras $A$ and $B$ of the algebra
$M_{n}(\mathbb{C})$ of $n\cross n$ complex matrices by using the values of $h(A|B)$ . This $h(A|B)$

is a slight modification of Connes-St$\emptyset rmer$ relative entropy $H(A|B)$ in [4] (cf.
[10] $)$ .

If $A_{1}$ and $A_{2}$ are maximal abelian subalgebras of $M_{n}(\mathbb{C})$ , then there ex-
ists a unitary $u$ in $M_{n}(\mathbb{C})$ such that $A_{2}=uA_{1}u^{*}$ , (which we denote by
$u(A_{1}, A_{2}))$ , and we showed that $A_{1}$ and $A_{2}$ are mutually orthogonal if and
if $h(A_{1}|A_{2})=H(b(u(A_{1}, A_{2})))=\log n$ in [1, Corollary 3.2](cf. (講究 1)),
where $H(b(u(A_{1}, A_{2})))$ is the entropy defined in [16] for the unistochastic
matrix $b(u(A_{1}, A_{2}))$ induced by the unitary $u=u(A_{1}, A_{2})$ . This means that
$A_{1}$ and $A_{2}$ are mutually orthogonal if and if the value $h(A_{1}|A_{2})$ is maximal
and equals to the logarithm of the dimension of the subalgebras. Also we
had in [2] related results in the case of subfactors of the type $II_{1}$ factors. We
remark that it does not hold in general that $H(A_{1}|A_{2})=h(A_{1}|A_{2})$ (see, for
example [13, Appendix] $)$ .

Next when $A_{1}$ and $A_{2}$ are subalgebras of $M_{n}(\mathbb{C})$ , both of which are iso-
morphic to also some full matrix algebra $M_{k}(\mathbb{C})$ , our discussion in $($講究
1 $)$ (see, also [3, Section 3]) was as the followings: The algebra $M_{n}(\mathbb{C})$ is
decomposed into the tensor product: $M_{n}(\mathbb{C})=M_{m}(\mathbb{C})\otimes M_{k}(\mathbb{C})$ for some
integers $m$ with $n=mk$ , and also $A_{1}$ and $A_{2}$ are connected by some unitary
$u\in M_{n}(\mathbb{C})$ . By decomposing such a unitary $u$ into the tensor $product$ form,
we gave a finite set $U$ satisfiing the proPerty called finite opemtional partition
of unity so that a density matrix $\rho(U)$ thanks by the method of Lindblad
[9]. By using the von Neumann entropy for $\rho(U)$ in place of relative entropy
$h(A_{1}|A_{2})$ , we sowed that $A_{1}$ and $A_{2}$ are mutually orthogonal if and only if
the von Neumann entropy of the density matrix $\rho(U)$ takes the maximum
value $2\log n$ , which is the logarithm of the dimension of the subfactors.

Here, we pick up another kind of decomposition for the algebra $M_{n}(\mathbb{C})$ .
That is the crossed product decomposition $M_{n}(\mathbb{C})=D_{n}(\mathbb{C})\cross_{\alpha}\mathbb{Z}_{n}$ of the
diagonal matrices $D_{n}(\mathbb{C})$ by the integer group $\mathbb{Z}_{n}$ with respect to the action
$\alpha$ with $\alpha(e_{i})=e_{i+1}(mod n)$ , where $\{e_{1}, e_{2}, \cdots, e_{n}\}$ are mutually orthogonal
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minimal projections of the maximal abelian subalgebra $D_{n}(\mathbb{C})$ of $M_{n}(\mathbb{C})$ .
More generally, we consider the crossed product $M$ of a finite von Neu-

mann algebra $N$ by a finite group $G$ . We decompose a given unitary $u$ in
$M$ into the crossed product form. Then a famile of positive operators in $N$

appears as the coefficients of $u$ in the crossed product decomposition, and
the family is a finite partition of unity in the sense of $Connes-St\emptyset rmer[4]$

(see [10, 1.3]). By considering the von Neumann entropy for these positive
operators, we introduce the entropy $S(u)$ for the unitary $u$ . We characterize
the mutual orthogonality for a pair $\{A, B\}$ of maximal abelian subalgebras
of $M_{n}(\mathbb{C})$ by the value $S(u)$ for a unitary $u$ with $B=uAu^{*}$ We also apply
these method to unitaries in type $II_{1}$ -factors $M$ and characterize the notion
of commuting square condition between two subfactors of $M$ with the Jones
index 2.

2 Preliminaries

2.1 Entropy function $\eta.$

The entropy function $\eta$ is defined on the interval $[0,1]$ by

$\eta(t)=-t\log t$ $(0<t\leq 1)$ and $\eta(0)=0$ . (2.1)

Let $\lambda=\{\lambda_{1}, \cdots, \lambda_{n}\}$ be a finite family of real numbers. We call the $\lambda$ a
finite partition of 1 if $\lambda_{i}\geq 0$ and $\sum_{i}\lambda_{i}=1$ . The entropy $H(\lambda)$ for $\lambda$ is given
by

$H(\lambda)=\eta(\lambda_{1})+\cdots+\eta(\lambda_{n})$ .
The function $\eta$ is strictly concave, that is,

$\sum_{i=1}^{n}t_{i}\eta(s_{i})\leq\eta(\sum_{i=1}^{n}t_{i}s_{i})$ (2.2)

holds whenevr $s_{i}\in[0,1]$ and for real numbers $t_{i}\geq 0$ with $\sum_{i=1}^{n}t_{i}=1$ , and
equality holds if and only if $s_{i}=s_{j}$ for all $i=1,$ $\cdots,$ $n$ . This implies that

$H(\lambda)\leq\log n$ (2.3)

and $H(\lambda)=\log n$ if and only if $\lambda_{i}=1/n$ for all $i=1,$ $\cdots,$ $n.$
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2.2 Finite partition of unity
Let $A$ be a unital $C^{*}$-algebra. There are two kind of notions for a finite
system, which are named by a finite partition of unity, as the followings:
The first one was given by Connes-St $\emptyset$rmer and the second one was given by
Lindblad (See [10] or [11]).

A finite subset $\{x_{1}, \ldots, x_{k}\}$ of $A$ is called a finite partition of unity if they
are nonnegative operators in $A$ which satisfy that

$\sum_{i=1}^{n}x_{i}=1_{A}.$

A finite subset $X=\{x_{1}, \ldots, x_{k}\}$ of $A$ is called a finite operational partition
in $A$ of unity of size $k$ if

$\sum_{i}^{k}x_{i}^{*}x_{i}=1_{A}.$

If $\phi$ is a state of $A$ , then the density matrix $\rho_{\phi}[X]$ for a finite operational
partition $X$ associated with $\phi$ is the matrix such that the each $(i,j)-co$efficient
$\rho_{\phi}[X](i, j)$ is given by $\rho_{\phi}[X](i, j)=\phi(x_{j}^{*}x_{i})$ . When $L$ is a finite von Neumann
algebra and that $\tau_{L}$ is a fixed faithful normal tracial state of $L$ , to a finite
operational partition $X$ in $L$ of unity of size $k$ , we associate a $k\cross k$ density
matrix $\rho_{\tau_{L}}[X]$ . We denote this matrix simply by $\rho[X]$ , that is, the $(i, j)-$

coefficient $\rho[X](i, j)$ of $\rho[X]$ is given by

$\rho[X](i, j)=\tau_{L}(x_{j}^{*}x_{i}) , i,j=1, \cdots, k.$

We gave sevaral examples about this entropy in (講究 1 )and (講究 2).

2.3 The von Neumann entropy.
Let $\rho\in M_{n}(\mathbb{C})$ be a positive semidefinite matrix with $\rho\leq 1$ , where 1 is the
identity matrix. The von Neumann entropy $S(\rho)$ is given by

$S(\rho)=Tr(\eta(\rho))$ , (2.4)

that is $S( \rho)=\sum_{i=1}^{n}\eta(\lambda_{i})$ , where $\lambda=\{\lambda_{i}\}_{1=1}^{n}$ is the eigenvalues of $\rho$ . By a
density matrix, we mean a positive semidefinite matrix $\rho$ such that Tr $(\rho)=1.$

If $\rho$ is a density matrix, then the eigenvalues of $\rho$ is a finite partition of 1.
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2.4 Representation that $M_{n}(\mathbb{C})=D_{n}(\mathbb{C})\cross_{\alpha}\mathbb{Z}_{n}$

Let $x$ be a $n\cross n$ complex marix. We denote by $x_{ij}$ the $\{i,j\}$-component of
$x$ . Let $v\in M_{n}(\mathbb{C})$ be the unitay marix such that $v_{ij}=\delta_{i,j-1}1(mod n)$ , for
all $i,j=1,$ $\cdots,$ $n$ . The conditional expectation $E_{D}$ of $M_{n}(\mathbb{C})$ on the algebra
of the diagonal matrices $D_{n}(\mathbb{C})$ is given by the following form:

$E(x)= \sum_{i=1}^{n}\epsilon_{i}x\epsilon_{i}, (x\in M_{n}(\mathbb{C})$ ,

where $\epsilon_{i}$ is the diagonal matrix whose $\{j,j\}$-component is $\delta_{i,j}1.$

For a given $u\in M_{n}(\mathbb{C})$ , we denote by $u_{j}$ the diagonal matrix such that
each $\{i, i\}$-component is $u_{ij+i}(mod n)$ for all $j=0,1,$ $\cdots,$ $n-1$ and $i=$

$1,$ $\cdots,$ $n$ . Then $u$ is represented as

$u=u_{0}+u_{1}v+u_{2}v^{2}+u_{3}v^{3}+\cdots+u_{n-1}v^{n-1}$

This means that the algebra $M_{n}(\mathbb{C})$ is decomposed into the crossed product
$D_{n}(\mathbb{C})\cross_{\alpha}\mathbb{Z}_{n}$ of $D_{n}(\mathbb{C})$ by the cyclic group $\mathbb{Z}_{n}$ with respect to the action $\alpha$ with
$\alpha(\epsilon_{i})=\epsilon_{i+1}$ . Each $u_{j}$ is also determined by the form that $u_{j}=E_{D}(uv^{-j})$ for
all $j=0,1,$ $\cdots,$ $n-1.$

2.4.1 Example.

As an example, we can see the above fact as the followings:

$v=\{\begin{array}{llll}0 0 11 0 00 1 0\end{array}\}$

104



and

$u=\{\begin{array}{lll}u_{l1} u_{12} u_{1n}u_{21} u_{22} u_{2n}u_{n1} u_{n2} u_{nn}\end{array}\}$

$= \{\begin{array}{lll}u_{11} 0 00 u_{22} 00 0 u_{nn}\end{array}\}+\{\begin{array}{lll}u_{l2} 0 00 u_{23} 00 0 u_{n1}\end{array}\}v+$

$+ \cdots+\{\begin{array}{llll}u_{1n} 0 00 u_{21} 00 0 u_{n} n-1\end{array}\}v^{n-1}$

$= u_{0}+u_{1}v+u_{2}v^{2}+\cdots+u_{n-1}v^{n-1}$

Here

$u_{j}=\{\begin{array}{lllll}u_{1} j+1 0 0 0 u_{2} j+2 0 0 0 u_{nj}\end{array}\}, (j=0,1, \cdots, n-1)$ .

3 Entropy for unitary operators via crossed
product decomposition

In this section, we assume that $M$ is given as the the crossed product $M=$
$N\cross_{\alpha}G$ of a finite von Neumann algebra $N$ by a finite group $G$ with respect
to a freely acting $\tau_{N}$-preserving $(i.e., \tau_{N}0\alpha_{g}=\tau_{N}, for all g\in G)$ action $\alpha$ of
$G$ on $N$ . Here $\tau_{N}$ is a fixed normal faithful tracial state of $N$ . We regard $N$

as a von Neumann subalgebra of $M$ , then we have a unitary representation
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$v$ of $G$ to $M$ such that $\alpha_{g}(y)=v_{g}yv_{g}^{*}$ for all $g\in G,$ $y\in N$ . Each $x\in M$ is
uniquely written as

$x= \sum_{g\in G}x_{g}v_{g}, x_{g}\in N$
(3.1)

The conditional expectation $E_{N}$ of $M$ onto $N$ is given by $E_{N}(x)=x_{1}$ , where
1 is the unit of $G$ , and it holds, for each $x\in M$ , that

$x_{g}=E_{N}(xv_{g}^{*})$ for all $g\in G$ . (3.2)

The trace $\tau_{N}$ is extended to the trace $\tau_{M}$ of $M$ by $\tau_{M}=\tau_{N}\circ E_{N}.$

If $u\in M$ is a unitary, then the family $\{u_{g};g\in G\}\subset N$ satisfies that

$\sum_{g\in G}u_{g}u_{g}^{*}=1_{N}$
and

$\sum_{g\in G}u_{g}\alpha_{k}(u_{hk^{-1^{*}}})=0,$
$(k\neq 1)$ . (3.3)

By means of the family $\{u_{g}u_{g}^{*};g\in G\}$ , which is a finite partition of unity
in $N$ , we define the entropy $S(u)$ as the followings:

3.1 Definition.
For a unitary $u\in M=N\cross_{\alpha}G$ , let

$S(u)= \sum_{g\in G}\tau_{N}\eta(u_{g}u_{g}^{*})$
. (3.4)

3.1.1 Case of type $I_{n}$ factors.

First, we take up the case of the type $I_{n}$ factor $M$ . Let $A$ be a maximal
abelian subalgebra of $M$ . Then $M$ is isomorphic to the matix algebra $M_{n}(\mathbb{C})$

and $A$ is isomorphic to the algebra of diagonal matrices $D_{n}(\mathbb{C})$ . The $M$ is
represented as the the crossed product of $A$ by the group $\mathbb{Z}_{n}$ with respect to
$\alpha$ :

$M=A\cross_{\alpha}\mathbb{Z}_{n}.$

Here, the automorphism $\alpha$ of $A$ is given by

$\alpha(e_{i})=e_{i+1}, (mod n)$

for a mutually orthogonal minimal projections $\{e_{1}, e_{2}, \cdots, e_{n}\}$ of $A$ . Let
$\{e_{ij};i,j=1,2, \cdots, n\}$ be a system of a matrix units of $M$ with $e_{ii}=e_{i},$ $(i=$
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1, 2, $\cdots,$ $n)$ . Then the unitary $v= \sum_{i=1}^{n}e_{ii-1}$ in $M$ satisfies that $\alpha(a)=vav^{*}$

for all $a\in A$ . For the decomposition of a unitary $u\in M$ :

$u= \sum_{j=0}^{n-1}u_{j}v^{j}.$

the entropy $S(u)$ is nothing else but the average of the von Neumann entropy
for $\{S(u_{j}u_{j}^{*}):j=0,1, \cdots, n-1\}$ , that is

$S(u)= \sum_{j=0}^{n-1}\tau_{A}\eta(u_{j}u_{j}^{*})=\frac{1}{n}\sum_{j=0}^{n-1}Tr\eta(u_{j}u_{j}^{*})=\frac{1}{n}\sum_{j=0}^{n-1}S(u_{j}u_{j}^{*})$ .

3.2 Mutually orthogonal maximal abelian subalgebras
Let $A$ and $B$ be two maximal abelian subalgebras of $M=M_{n}(\mathbb{C})$ . Then
there exists a unitary $u$ with $B=uAu^{*}$ By using the crossed product de-
composition $M=A\cross_{\alpha}\mathbb{Z}_{n}$ , we gave a characterization in [3] for the mutually
orthogonality of $A$ and $B$ via the von Neumann entropy $S(u)$ .

3.2.1 Theorem.

Let $A$ and $B$ be maximal abelian subalgebms of M. Let $u$ be a unitary in $M$

with $uAu^{*}=B$ . Then the following are equivalent:
(1) $A$ and $B$ are mutually $orthogonal_{f}.$

(2) $u_{j}u_{j}^{*}= \frac{1}{n}1_{A},$ $j=0,1,2,$ $\cdots,$ $n-1$ ;
(3) the entropy $S(u)$ takes the maximal value:

$S(u)= \log n=\max${$S(w)|w\in M$ , unitary}.

3.2.2 Complex Hadamard matrix.

A uniary matrix $u\in M_{n}(\mathbb{C})$ is called a complex Hadamard matrix in [7] if
all entries $u(i,j)_{Q}fu$ have the same modulus, that is $|u(i,j)|=1/\sqrt{n}$ for all
$i,j=1,$ $\cdots,$ $n$ . For a $u\in M_{n}(\mathbb{C})$ , Sunder and Jones gave the characterization
in [7, 5.2.2] that $D_{n}(\mathbb{C})$ and $uD_{n}(\mathbb{C})u^{*}$ are mutually orthogonal if and only
if $u$ is a complex Hadamard matrix.
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It is clear that if $u$ is a complex Hadamard matrix then $S(u)=\log n$ and
the above proof for (3) $\Rightarrow(2)$ of Theorem 4.2.1 shows that the converse is
true. Hence we have that $u$ is a complex Hadamard matrix if and only if
$S(u)=\log n$ . See [7, 5.2.2] for examples of complex Hadamard matrices.

3.3 Commuting squares and the entropy for unitaries
In this section, let us see how the discussion in the section 3 develops in the
framework of $II_{1}$ factors.

For a subfactor $N$ of a finite factor $M$ , Jones ([6]) introduced the index
$[M: N]$ , the set of all values of which is $\{4\cos^{2}\frac{\pi}{n};n=3,4,5, \cdots\}\cup[4, \infty)$ .

The most typical example of orthogonal pairs of subfactors in $II_{1}$ factors
will be the followings:

3.3.1 Example of orthogonal pair of subfactors in $II_{1}$ factors.

Let $\lambda$ be a real number such that

$\lambda^{-1}\in\{4\cos^{2}\frac{\pi}{n};n=3,4,5, \cdots\}\cup[4, \infty)$ ,

and let $\{\cdots, e_{-1}, e_{0}, e_{1}, e_{2}, \cdots\}$ be a sequence of projections with the prop-
erties:

$e_{i}e_{i=\pm 1}e_{i}=\lambda e_{i}$ , and $e_{i}e_{j}=e_{j}e_{i}$ if$|i-j|\geq 2.$

Such the sequences of projections appeared in the step of Jones construction
of subfactors ([6]).

Let $M_{\infty}$ be the von Neumann algebra generated by $\{e_{i}|i\in \mathbb{Z}\}$ , then $M_{\infty}$

is the hyperfinite $II_{1}$ factor, and the unique trace $\tau$ of $M_{\infty}$ is given by the
property:

$\tau(we_{k})=\lambda\tau(w) , (w\in alg\{e_{k}|j<k\}.$

Let $N$ be the von Neumann subalgebra of $M_{\infty}$ generated by $\{e_{i}|i<0\}$ , and
let $L$ be the von Neumann subalgebra of $M_{\infty}$ generated by $\{e_{i}|i\geq 0\}$ . Then
$\{N, L\}$ is a mutually orthogonal pair of subfactors in $M_{\infty}.$

We remark that $[M_{\infty} : N]=[M_{\infty} : L]=\infty$ , and we would like to discuss
in the framework of subfactors with finite index.
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3.3.2 Commuting square condition

From now, assume that $M$ is a type $II_{1}$ -factor. If $N$ is a von Neumann
subalgebra of $M$ , then we have always the unique faithful normal conditional
expectation $E_{N}$ : $Marrow N$ . Let $N_{1}$ and $N_{2}$ be von Neumann subalgebras
of $M$ . In a connection with Jones index theory([6]), the notion of a mutual
orthogonal pair$\cdot$ was generalized by Goodman-Harpe-Jones ([5]) to the notion
of a pair satisfying the commuting square condition. The diagram

$\ovalbox{\tt\small REJECT} \subset M$

$\cup$ $\cup$

$N_{3}$ 欧 $N_{2}$

is said to be a commuting square if

$E_{N_{1}}E_{N_{2}}=E_{N_{2}}E_{N_{1}}$ and $N_{3}=N_{1}\cap N_{2}.$

We say that a pair $\{N_{1}, N_{2}\}$ satisfies the commuting square condition if
$E_{N_{1}}E_{N_{2}}=E_{N_{2}}E_{N_{1}}$ . Of course, the pair $\{N_{1}, N_{2}\}$ satisfies the commuting
square condition if $N_{1}=N_{2}$ . We say a pair $\{N_{1}, N_{2}\}$ is nontrivial if $N_{1}\neq N_{2},$

and we are interested in non-trivial pairs of subfactors which satisfy the
commuting square condition.

3.3.3 Index 2 subfactors

Here, we replace the notion of mutual orthogonality to that of commuting
square condition, and show that, for a pair of finite index subfactors, the
entropy $S(u)$ plays a key role in our characterization similarly in the section
3.

As the first non-trivial subfactor $N$ of $M$ , index 2 subfactors appear.
The index 2 subfactor is unique up to the conjugacy and it is the biggest
subfactor from the point of view of the index theory. By replacing the mutual
orthogonality to the commuting square condition, we study the pairs of the
biggest subfactos, that is the index 2 subfactors.

Jones picked up the index 2 subfactors $N$ of $M$ in [8, Chapter 3] and
invesgated properties of $N\cap uNu^{*}$ , where $u$ is a unitary in $M$ satisfying
some conddition. For such a pair $\{N, u\}$ of the index 2 subfactor $N$ and $u,$

we characterize the commuting square condition for the pair $\{N, uNu^{*}\}.$
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Let $N$ be a subfactor of $M$ such that $[M : N]=2$ . As Jones showed in
[6], $M$ is decomposed into the the crossed product of $N$ by the group of an
outer automorphism $\alpha$ of $N$ with the periond 2:

$M=N\cross_{\alpha}\mathbb{Z}_{2}.$

Then there exists a self-adjoint unitary $v$ in $M$ such that
$\alpha(x)=vxv^{*}$ for all $x\in N$

and $M$ is represented as $M=N\oplus Nv$ . Also we have a projection $e$ in $N$

such that
$\alpha(e)=e^{\perp}=1-e.$

The uniqueness of the trace $\tau$ of a $II_{1}$ factor implies that $\tau(e)=1/2.$

Let $A$ be the von Neumann subalgebra of $N$ generated by $e$ :
$A=\mathbb{C}e\oplus \mathbb{C}e^{\perp}=\mathbb{C}e\oplus \mathbb{C}(1-e)$ . (3.5)

Each unitary $u$ in $M$ is decomposed into the form
$u=u_{0}+u_{1}v,$ $u_{0},$ $u_{1}\in N$ (36)

and
$u_{0}=E_{N}(u) , u_{1}=E_{N}(uv)$ . (3.7)

We call the $\{u_{0}, u_{1}\}$ the coefficients of $u.$

We restrict our attention to the unitaries $u\in M$ such that the coefficients
of $u$ are contained in the abelian subalgebra $A$ of $M$ , and we characterized
in [3] the commuting square condition for $\{N, uNu^{*}\}$ via the entropy $S(u)$

as follows:

3.3.4 Theorem.

Let $N$ be a $II_{1}$ factor and $\alpha$ be an outer automorphism of $N$ with the periond
2. Let $M$ be the crossed product $M=N\cross_{\alpha}\mathbb{Z}_{2}$ . Assume that $A$ is the above
2-dimensional subalgebm of N. Then for a unitary $u\in M$ whose coefficients
$u_{0}$ and $u_{1}$ are contained in $A$ , the following conditions are equivalent:

1. $N$ and $uNu^{*}$ satisfy the non-t短 vial commuting square condition;

2. $u_{j}u_{j}^{*}= \frac{1}{2}1_{N},$ $j=0,1$ ;

3. $S(u)=\log 2.$
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3.3.5 Remark.

1. The notion of the Jones index for subfactors are generalized to some
constant for subalgebras by of Pimsner-Popa([14]). Since the above
$A$ is a 2-dimensional $*$-subalgebra of $N$ and $\alpha(A)=A$ , it implies by
[8, Lemma 3.10] that under the above assumption for the coefficients
$\{u_{0}, u_{1}\}$ of $u$ , that is $\{u_{0}, u_{1}\}\subset A$ , the von Neumann subalgebra $N\cap$

$uNu^{*}$ of $M$ is of finite index in the sense of Pimsner-Popa([14]).

2. If $N_{1}$ and $N_{2}$ are subfactors with finite index of a type $II_{1}$ factor $M$

and if $N_{1}$ and $N_{2}$ are mutually orthogonal, then $N_{1}\cap N_{2}=\mathbb{C}1$ so that
the index is infinite: $[M:N_{1}\cap N_{2}]=\infty.$
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