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1 Introduction
In this paper we discuss on the error probabilities in information transmission over Gaus-
sian channels ( $GC$ ’s) with feedback. The $GC$ is a communication channel with an additive
Gaussian noise. A GC is called a white Gaussian channel (WGC), if the noise is a white
Gaussian noise. The $GC$ is one of most important communication channels not only from
the theoretical point of view but also from the view point of applications. In information
transmission over $GC$ ’s, it is known that the minimum error probability, under the av-
erage power constraint, converges to zero quite rapidly. In 1966, Shalkwijk and Kailath
[1] proposed a coding scheme and demonstrated that the resulting error probability con-
verges to zero double exponentially fast. Then it has been shown that, for any positive
integer $K$ , there exists a coding scheme under which the error probability $P_{e}(T)$ at time
$T$ decreases more rapidly than the exponential of order $K$ $(cf. [1]-[7])$ . Recently Gallager
and Nakiboglu [7] proposed a new coding scheme for the discrete-time WGC and proved
a stronger result on the multiple-exponential decay of the error probability.

The first aim of this paper is to prove a stronger result on the asymptotic behavior
of the error probability for the continuous-time WGC. The second one is to generalize
the result due to Gallager and $Nakibo\dot{g}lu[7]$ to the discrete-time $GC$ , where the additive
noise is not necessarily white.

The continuous-time WGC is presented by

$\dot{Y}(t)=X(t)+\dot{B}(t) , t>0,$

or equivalently
$Y(t)= \int_{0}^{t}X(u)du+B(t) , t>0$ , (1.1)

where $X(t)$ and $Y(t)$ are the input signal and the output signal, respectively, at time
$t$ , and the noise $\{B(t)\}$ is a Brownian motion ( $\{\dot{B}(t)\}$ is a Gaussian white noise). The
discrete-time $GC$ is presented by

$Y(n)=X(n)+Z(n) , n=0,1,2, \ldots$ , (1.2)

where $X(n)$ and $Y(n)$ are the input signal and the output signal, respectively, and the
additive noise $\{Z(n)\}$ is a Gaussian process. The $GC$ is said to be a stationary Gaussian
channel (SGC) if $\{Z(n)\}$ is a stationary Gaussian process, and a WGC if $\{Z(n)\}$ is
independent random sequence with identical Gaussian distribution.

We assume in (1.1) and (1.2) that the input signal satisfies the average power constraint

$E[X(t)^{2}]\leq P, \forall t$ , (1.3)
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where $P>0$ is a constant. We also assume that the feedback link is noiseless and without
time-lag. Let $T$ be the terminal time of the information transmission. Then the message
$U_{0}\equiv U_{0}(T)$ to be transmitted is a random variable such that

$Pr(U_{0}=m)=\frac{1}{M_{T}}, m\in \mathcal{M}_{T}\equiv\{1,2, \ldots, M_{T}\}$, (1.4)

where $U_{0}$ is independent of the noise, $M\equiv M_{T}=\lfloor e^{K\Gamma}\rfloor(\lfloor x\rfloor$ is the maximum integer
not greater than x) and $R>0$ is a constant. $R$ is said to be the rate of the message $U_{0}.$

Given a coding scheme (encoding and decoding), we can reproduce the decoding message
$\hat{U}(t)$ as a function of the output $Y_{0^{t}}\equiv\{Y(u);u\leq t\}$ . We denote by

$P_{e}(t)=\triangle Pr(\hat{U}(t)\neq U_{0}) , t\leq T$ , (1.5)

the error probability at time $t$ . The rate $R$ is said to be achievable, if there exists a coding
scheme such that the resulting error probability satisfies $\lim_{Tarrow\infty}P_{e}(T)=0$ . The capacity
$C$ of the channel is the supremum of achievable rates.

We introduce the notation

$\exp_{n}(x)=\triangle\exp\{\exp_{n-1}(x)\}, n=1,2, \ldots$ , (1.6)

to denote the exponential function of order $n$ , where $\exp_{0}(x)=x$ . Then the results
obtained in $([1]-[7])$ can be stated as follows. For any positive integer $K$ , there exist a
coding scheme under which the error probability $P_{e}(T)$ decreases more rapidly than the
exponential of order $K$ , i.e.

$P_{e}(T)=o( \frac{1}{\exp_{K}(T)}) , Tarrow\infty$ . (1.7)

For the discrete-time WGC, Gallager and Nakiboglu [7] proposed a coding scheme and
successfully demonstrated the multiple-exponential decay (1.7) of the resulting error prob-
ability at all rates below capacity. In addition, they pointed out that the error probability
decreases with an exponential order which is linearly increasing with block length $T$ , i.e.
for some positive constant $\alpha$ , there exists a coding scheme under which the error proba-
bility $P_{e}(T)$ decreases as

$P_{e}(T)=o( \frac{1}{\exp_{\lfloor\alpha T\rfloor}(T)}) , Tarrow\infty$ . (1.8)

Needless to say, the known result (1.7) is an easy consequence of (1.8). We can generalize
the results (1.7) and (1.8) by Gallager and Nakiboglu [7] to discrete-time SGC’s ([8]).

In this paper we also treat the continuous-time WGC with feedback and prove a
stronger result on the multiple-exponential decay of the error probability. More precisely,
we shall show that, for any positive constant $\alpha$ , there exists a coding scheme under which
the error probability $P_{e}(T)$ decreases as (1.8). It should be emphasized that the order

$\lfloor\alpha T\rfloor$ of the exponent in (1.8) is linear in $T$ and the coefficient $\alpha$ may be taken arbitrarily
large.

The continuous-time WGC is treated in Section 2. We propose our coding scheme in
\S 2.1, and give the formula to calculate the error probability in Theorem 1. The asymptotic
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behavior of the error probability is evaluated in \S 2.2, and one of main result (1.8) is given
in Theorem 2. The discrete-time SGC is treated in Section 3. The Gallager-Nakiboglu
scheme for the SGC is explained in \S 3.1. The multiple exponential decay of the error
probability for the discrete-time SGC is shown in \S 3.2 (see Theorem 4).

2 Continuous-Time White Gaussian Channel
2.1 Coding Scheme and Error Probability
In this section, we treat the continuous-time WGC (1.1) with feedback. We assume that
the average power constraint (1.3) is imposed on the input signals. The constraint (1.3)
may be replaced by

$\frac{1}{T}\int_{0}^{T}E[X(t)^{2}]dt\leq P$, (2.1)
or

$\lim_{Tarrow\infty}\frac{1}{T}\int_{0}^{T}E[X(t)^{2}]dt\leq P$. (2.2)

It is well known that the capacity $C$ of the WGC subject to (1.3) (or (2.1), (2.2)) is not
increased by feedback and is equal to $C=P/2.$

Let $U_{0}\equiv U_{0}(T)$ be the message given by (1.4). The input signal $X(t)$ and the decoding
message $\hat{U}(t)$ at $t$ are given in the forms

$X(t)=\varphi_{T}(t, U_{0}, Y_{0}^{t-})$ and $\hat{U}(t)=\psi_{T}(t, Y_{0}^{t})$ ,

respectively, where $\varphi_{T}$ : $(0, T]\cross \mathcal{M}_{T}\cross R^{(0,T)}arrow R,$ $\psi_{T}$ : $(0, T]\cross R^{(0,T]}arrow \mathcal{M}_{T}$ are
measurable functions, $Y_{0}^{t-}\equiv\{Y(u);u<t\}$ and $Y_{0}^{t}\equiv\{Y(u);u\leq t\}.$

Let us define our coding scheme. To define the encoding scheme and decoding scheme,
the schemes investigated in [1, 3, 6, 7] are helpful and useful. We divide the time axis
$(0, \infty)$ into sub-intervals $T_{k}=(T_{k-1}, T_{k}], k=1,2, \ldots, (0=T_{0}<T_{i}<T_{2}< --)$ and
denote by $|T_{k}|=T_{k}-T_{k-1}$ the length of the interval $T_{k}$ . Although, the length $|T_{1}|=T_{1}$

of the first sub-interval $T_{1}$ should be long enough, the lengths of other intervals $T_{k},$ $k\geq 2,$

may be chosen arbitrary. For example, we may define as $T_{k}=T_{k-1}+\triangle,$ $k\geq 2$ , where
$\triangle>0$ is an arbitrary constant. On each interval $T_{k}$ , the WGC (1.1) can be rewritten in
the form

$Y_{k}(t)= \int_{0}^{t}X_{k}(u)du+B_{k}(t) , 0<t\leq|T_{k}|$ , (2.3)

where $X_{k}(t)=X(t+T_{k-1}),$ $Y_{k}(t)=Y(t+T_{k-1})-Y(T_{k-1})$ and $B_{k}(t)=B(t+T_{k-1})-$
$B(T_{k-1})$ . Note that each $B_{k}\equiv\{B_{k}(t);0<t\leq|T_{k}|\}$ is a Brownian motion and $B_{1},$ $B_{2},$

$\ldots,$

are mutually independent. We also note that, for each $k,$ $(2.3)$ presents a WGC. The re-
$ceiver\wedge$ decodes at time $T_{k-1}$ and denotes by $\hat{U}(T_{k-1})$ the decoding message. The definition
of $U(T_{k-1})$ will be given by (2.9).

On the interval $T_{k}$ , the transmitter inputs the signal $X_{k}(t)$ given by

$X_{k}(t)=\sqrt{P}a_{k}\exp(Pt/2)(W_{k}-\hat{W}_{k}(t)) , 0<t\leq|T_{k}|$ , (2.4)

where
$W_{k}=U_{0}-\hat{U}(T_{k-1})\triangle$ (2.5)
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is the decoding error at time $T_{k-1},$

$\hat{W}_{k}(t)=\triangle\sqrt{P}a_{k}^{-1}\int_{0}^{t}\exp(-Pu/2)dY_{k}(u)$ , (2.6)

and $a_{k}>0$ is a constant satisfying

$a_{k}^{2}E[W_{k}^{2}]=a_{k}^{2}E[|U_{0}-\hat{U}(T_{k-1})|^{2}]=1$ . (2.7)

Intuitively speaking, the transmitter sends linearly scaled versions of the decoding error
with help of linear feedback. If the message $U_{0}$ is correctly decoded at $T_{k-1}$ , i.e. $\hat{U}(T_{k-1})=$

$U_{0}$ , then $W_{k}=0$ , meaning that no signals are input on the interval $T_{k}$ . This is one of
basic ideas to define an optimal coding scheme under the average power constraint (cf.
[3, 6, 7] $)$ . Having received the output signal

$Y_{k}(t)= \sqrt{P}a_{k}\int_{0}^{t}\exp(Pu/2)(W_{k}-\hat{W}_{k}(u))du+B_{k}(t) , 0<t\leq|T_{k}|$ , (2.8)

the receiver reproduces at time $T_{k}$ a decoded message $\hat{U}(T_{k})$ defined by

$\hat{U}(T_{k})=\triangle\hat{U}(T_{k-1})+\overline{W}_{k}, k=1,2, \ldots$ , (2.9)

where
$\overline{W}_{k}=\lceil\frac{\hat{W}_{k}(|T_{k}|)}{a_{k}(1-\exp(-P|T_{k}|))}-\frac{1}{2}\rceil$ (2.10)

( $\lceil x\rceil$ denotes the minimum integer not less than x) and $\hat{U}(T_{0})=\triangle E[U_{0}]=(M+1)/2$ . We
can show that $W_{k}$ is independent of $B_{k}=\{B_{k}(t);0<t\leq|T_{k}|\},$ $E[W_{k}]=0$ and that
$E[X_{k}(t)^{2}]=P$ , so that the constraint (1.3) is satisfied with equality. It is clear from (2.5)
and (2.9) that $\{W_{k}\}$ satisfies

$W_{k+1}=W_{k}-\overline{W}_{k}$ . (2.11)
So far, we have defined $\hat{U}(t)$ only for $t=T_{k}$ . We may define $\hat{U}(t)$ simply by

$\hat{U}(t)=\triangle\hat{U}(T_{k}) , T_{k}\leq t<T_{k+1}.$

Corresponding to the feedback channel (2.8), the channel without feedback is presented
by

$\tilde{Y}_{k}(t)=\sqrt{P}a_{k}\int_{0}^{t}\exp(Pu/2)W_{k}du+B_{k}(t)=\int_{0}^{t}\xi_{k}(u)du+B_{k}(t)$ , $0<t\leq|T_{k}|$ , (2.12)

where
$\xi_{k}(t)=\triangle\sqrt{P}a_{k}\exp(Pt/2)W_{k}, 0<t\leq|T_{k}|$ . (2.13)

The covariance function of $\{\xi_{k}(t)\}$ is given by

$R(t, u)=E[\xi_{k}(t)\xi_{k}(u)]=P\exp\{P(t+u)/2\}$ . (2.14)

Applying the linear filtering theory (see [9, 10, 11]), one can show that the linear subspace
$\mathcal{L}_{t}(Y_{k})\wedge$ spanned by $Y_{k}(s),$ $s\leq t$ , coincides with $\mathcal{L}_{t}(\overline{Y}_{k})$ and that the orthogonal projection
$\xi_{k}(t)$ of $\xi_{k}(t)$ on $\mathcal{L}_{t}(Y_{k})=\mathcal{L}_{t}(\tilde{Y}_{k})$ is given by

$\hat{\xi}_{k}(t)=P\exp(Pt/2)\int_{0}^{t}\exp(-Pu/2)dY_{k}(u)=P\exp(-Pt/2)\int_{0}^{t}\exp(Pu/2)d\tilde{Y}_{k}(u)$ .
(2.15)
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Hence we know from (2.6), (2.13) and (2.15) that $\hat{W}_{k}(t)$ is nothing but the orthogonal
projection of $W_{k}$ on $\mathcal{L}_{t}(Y_{k})=\mathcal{L}_{t}(\tilde{Y}_{k})$ and satisfies

$a_{k} \hat{W}_{k}(t)=\sqrt{P}\exp(-Pt)\int_{0}^{t}\exp(Pu/2)d\tilde{Y}_{k}(u)$. (2. 16)

A random variable $\hat{B}_{k}(t)$ defined by

$\hat{B}_{k}(t)=\frac{\sqrt{P}\exp(-Pt)}{1-\exp(-Pt)}\int_{0}^{t}\exp(Pu/2)dB_{k}(u)$ (2.17)

will play
$\wedge$

important roles to evaluate the error probability. Since $\{B_{k}(t)\}$ is a Brownian
motion, $B_{k}(t)$ is a Gaussian random variable with expectation $0$ and variance

$E[ \hat{B}_{k}(t)^{2}]=\frac{P\exp(-2Pt)}{(1-\exp(-Pt))^{2}}\int_{0}^{t}\exp$ ( $Pu$) $du= \frac{1}{\exp(Pt)-1}$ . (2.18)

It is easy to see from (2.12), (2.16) and (2.17) that

$a_{k}\hat{W}_{k}(t)=(1-\exp(-Pt))(a_{k}W_{k}+\hat{B}_{k}(t))$ . (2.19)

Using (2.10), (2.11) and (2.19), we can easily show that the decoding error $W_{k+1}=$
$U_{0}-U(T_{k})$ at time $T_{k}$ is presented by

$W_{k+1}=U_{0}- \hat{U}(T_{k})=-\lceil\frac{\hat{B}_{k}(|T_{k}|)}{a_{k}}-\frac{1}{2}\rceil$ . (2.20)

A formula for the error probability $Pr(\hat{U}(T_{k})\neq U_{0})$ is given in the following theorem.
Theorem $1.\sim$Under the coding scheme proposed in this section, the error probabihty
$P_{e}(T_{k})=Pr(U(T_{k})\neq U_{0})$ is given by

$P_{e}(T_{k})=2Q(b_{k}a_{k}) , k\geq 1$ , (2.21)

where
$Q(x)= \frac{1}{\sqrt{2\pi}}\int_{x}^{\infty}\exp(-y^{2}/2)dy$ (2.22)

is the complementary distribution function of $N(O, 1)$ and

$b_{k}= \frac{\sqrt{\exp(P|T_{k}|)-1}}{2}$ . (2.23)

Proof. It is clear from (2.20) that

$P_{e}(T_{k})=Pr(\hat{U}(T_{k})\neq U_{0})=Pr(W_{k+1}\neq 0)=Pr(|\hat{B}_{k}(|T_{k}|)|\geq a_{k}/2)$ . (2.24)

Since $\hat{B}_{k}(|T_{k}|)\sim N(0, (2b_{k})^{-2})$ (see (2.18)), (2.21) follows from (2.24). $\square$
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2.2 Asymptotic Behavior of Error Probability
Let us evaluate the asymptotic behavior of the error probability and prove our main result
(1.8) in the following theorem.

Theorem 2. Assume that the WGC (1.1) with feedback is subject to the average power
constraint (1.3) and that the rate $R$ is less the capacity $C$ . Then, for any constant
$\alpha>0$ , there exists a coding scheme such that the resulting error probability $P_{e}(T)=$

$Pr(\hat{U}(T)\neq U_{0})$ satisfies
$Tarrow hm_{\infty}P_{e}(T)\exp_{\lfloor\alpha T\rfloor}(T)=0$. (2.25)

The following lemma is useful to evaluate the asymptotic behavior of the error prob-
ability (see Gallager and Nakiboglu [7] for the proof).

Lemma 1 ([7]). Let $\eta$ be a Gaussian random variable with distribution $N(O, \sigma^{2})$ . Then

the second moment $E[\tilde{\eta}^{2}]$ of a random variable $\tilde{\eta}=\triangle\lceil\frac{\eta}{c}-\frac{1}{2}\rceil$ is upper-bounded by

$E[ \tilde{\eta}^{2}]\leq\frac{1.6\sigma}{c}\exp(-\frac{c^{2}}{8\sigma^{2}})$ , (2.26)

where $c\geq 4\sigma$ is a constant.

Remark. In [7], the random variable $\tilde{\eta}$ is called the $c$-quantization of $\eta.$

We proceed to prove Theorem 2.
Proof of Theorem 2. Let $\delta,$ $D_{0}$ and $\Delta$ be positive constants such that

$R<(1-\delta)C, D_{0}<(1-\delta)C-R, \Delta<\delta/\alpha$ . (2.27)

Let $T$ be the terminal time of the information transmission. We use the coding scheme
proposed in \S 2.1, where $T_{k}$ is determined by

$T_{k}=(1-\delta)T+(k-1)\triangle, k=1,2, \ldots$ , (2.28)

and denote by $Pe(T_{k})=Pr(\hat{U}(T_{k})\neq U_{0})$ the resulting error probability. Note that $|T_{k}|=$

$\triangle$ and $b_{k}=2^{-1}\sqrt{\exp(P\triangle)-1}(k\geq 2)$ do not depend on $k$ . Since the error probability
is given by $P_{e}(T_{k})=2Q(b_{k}a_{k})$ (Theorem 1), to evaluate the asymptotic behavior of the
error probability $P_{e}(T_{k})$ , it is sufficient to examine the asymptotic behavior of $\{a_{k}\}$ . Note
the asymptotic behavior

$Q(x) \sim\frac{1}{\sqrt{2\pi}x}\exp(-x^{2}/2) , xarrow\infty$ , (2.29)

where $f(x)\sim g(x)(xarrow\infty)$ means $\lim_{xarrow\infty}f(x)/g(x)=1$ . We also note that

$2Q(x)<\exp(-x^{2}/2) , \forall x\geq a_{0}$ , (2.30)

where $a_{0}>0$ is a constant. Then, it is clear from (2.21) and (2.30) that

$P_{e}(T_{k})=2Q(b_{k}a_{k})< \exp(-\frac{b_{k}^{2}a_{k}^{2}}{2}) , k\geq 1$ . (2.31)
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Since $\hat{B}_{k}(|T_{k}|)\sim N(0, (2b_{k})^{-2})$ , applying Lemma 1 to (2.20), we obtain

$E[|U_{0}- \hat{U}(T_{k})|^{2}]\leq\frac{1.6}{2b_{k}a_{k}}\exp(-\frac{b_{k}^{2}a_{k}^{2}}{2})<\frac{1}{b_{k}a_{k}}\exp(-\frac{b_{k}^{2}a_{k}^{2}}{2})$ . (2.32)

Then, noting (2.7), we have the key inequality

$a_{k+1}^{2} \geq b_{k}a_{k}\exp(\frac{b_{k}^{2}a_{k}^{2}}{2}) , k\geq 1$ . (2.33)

Since $|T_{1}|=(1-\delta)T$ , we can easily see that $b_{1}^{2}\sim\exp\{2(1-\delta)CT\}/4$ . Then, noting
(2.27), we have

$b_{1}^{2}a_{1}^{2}>\exp(2D_{0}T) , Tarrow\infty$ . (2.34)
Then, using (2.33), we can prove the inequality

$b_{k}^{2}a_{k}^{2}>b_{k}^{2}b_{k-1}a_{k-1} \exp_{k-1}\{\frac{\exp(2D_{0}T)}{2}\}, k\geq 2$ , (2.35)

by induction. We may assume $b_{k}^{2}b_{k-1}a_{k-1}>2$ , because $a_{k-1}$ is large enough. Then,
combining (2.31), (2.34) and (2.35), we can obtain the inequality

$P_{e}(T_{k}) \exp_{k}\{\frac{\exp(2D_{0}T)}{2}\}<1, k\geq 1$ . (2.36)

Since $\exp_{k}(T)=o(\exp_{k}\{\exp(2D_{0}T)/2\})$ , it is clear from (2.36) that

$P_{e}(T_{k})\exp_{k}(T)=o(1)$ . (2.37)

Since $\triangle<\delta/\alpha,$

$T_{\lfloor\alpha T\rfloor}<(1-\delta)T+\lfloor\alpha T\rfloor\triangle<(1-\delta)T+\delta T=T$

and
$P_{e}(T)\leq P_{e}(T_{\lfloor\alpha T\rfloor})$ .

Then, putting $k=\lfloor\alpha T\rfloor$ in (2.37), we obtain the desired result (2.25). $\square$

3 Discrete-Time Stationary Gaussian Channel
3.1 Coding Scheme and Error Probability
In this section, we treat the discrete-time SGC (1.2) with feedback and subject to the
average power constraint (1.3), where the additive noise is a regular stationary Gaussian
process. We assume without loss of generality that the distribution of $Z(n)$ is $N(0,1)$
$(Z(n)\sim N(0,1))$ . If the Gaussian noise $\{Z(n)\}$ is an i.i, $d.$ , the channel (1.2) is mem-
oryless, that is, a WGC. The terminal time $N$ of the channel uses and the rate $R>0$
are fixed, unless otherwise mentioned. Let $U_{0}\equiv U_{0}(N)$ be the message given by (1.4).
Then the input signal $X(n)$ is some function $\varphi_{N}(U_{0}, Y_{0}^{n-1})$ of the message $U_{0}$ and previous
outputs $Y_{0}^{n-1}\equiv(Y(O), Y(1), \ldots, Y(n-1))$ . Let $\hat{U}(n)$ be a decoded message, at time $n,$

which is a function $\psi_{N}(Y_{0^{n}})$ of $Y_{0}^{n}.$
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Let us define the $GN$ scheme (Gallager and Nakiboglu scheme) for the SGC (1.2) with
feedback. We divide the time duration $N=\{0,1,2, \ldots, N\}$ of the communication into
three stages, $N_{0}=\{0\},$ $N_{1}=\{1,2, \ldots, n_{1}\}$ and $N_{2}=\{n_{1}+1, n_{1}+2, \ldots, N\}$ . The input
signal $X(O)$ of the channel (1.2) at time $0$ is given by

$X(0)= \sqrt{P}\beta_{0}(U_{0}-E[U_{0}])=\sqrt{P}\beta_{0}(U_{0}-\frac{M+1}{2})$ , (3.1)

where $\beta_{0}=\sqrt{12/(M^{2}-1)}$ is a normalizing constant. Since $E[U_{0}]=(M+1)/2$ and
$V[U_{0}]=E[(U_{0}-E[U_{0}])^{2}]=(M^{2}-1)/12$ , we have $E[X(0)]=0$ and $V[X(0)]=E[X(0)^{2}]=$
$P$ . Note that, since $M=e^{RN},$

$\beta_{0}\sim\sqrt{12}\exp(-RN) , Narrow\infty.$

The received signal $Y(O)=X(0)+Z(0)$ is fed back to the transmitter, which, knowing
$X(O)$ , determines $Z(O)$ . Therefore, to transmit the message $U_{0}$ , it is enough to send the
Gaussian message $Z(0)\sim N(0,1)$ .

The channel use at time $0$ is rather auxiliary and distinct from the others. Essentially
speaking, the $GN$ scheme is a combination of the Shalkwijk and Kailath scheme ($SK$

scheme) on the time duration $N_{1}$ and the high signal-to-noise ratio (high-SNR) scheme
on $N_{2}$ . The terminal time $n_{1}$ of $N_{1}$ will be specified later (see Theorem 4). The $SK$

scheme on $N_{1}$ is a linear scheme, where the input signal $X(n)$ at time $n$ is defined by

$X(n)=\beta_{n}(Z(0)-\hat{Z}(n-1)) , n\in N_{1}$ , (3.2)

$here\hat{Z}(n-1)\wedge=\triangle E[Z(0)|Y_{1}^{n-1}](n\geq 2)$ is the conditional expectation of $Z(0)$ given $Y_{1}^{n-1},$

$Z(O)=0$ and $\beta_{n}$ is a constant satisfying

$\beta_{n}^{2}=\frac{P}{E[(Z(0)-\hat{Z}(n-1))^{2}]}$ . (3.3)

Clearly the constraint (1.3) is satisfied with equality. Noting that the conditional expec-
tation $E[Z(n)|Z(O)-Z(n-1)]$ is written in the form

$E[Z(n)|Z(0)-\hat{Z}(n-1)]=c_{n}(Z(0)-\hat{Z}(n-1))$

( $c_{\eta}$ is a constant), we define the $sign$ of $\beta_{n}$ as sgn$(\beta_{n})=$ sgn$(c_{n})(c_{n}\neq 0)$ and sgn$(\beta_{n})>0$

$(c_{\eta}=0)$ . The decoded message $\hat{U}(n)(n\in N_{1})$ is defined as

$\hat{U}(n)=\lceil\frac{Y(0)-\hat{Z}(n)}{\sqrt{P}\beta_{0}}+\frac{M}{2}\rceil, n\in N_{1}$ . (3.4)

We can easily show that the decoding error is given by

$\hat{U}(n)-U_{0}=\lceil\frac{Z(0)-\hat{Z}(n)}{\sqrt{P}\beta_{0}}-\frac{1}{2}\rceil$ . (3.5)

Let us define the high-SNR scheme on $N_{2}$ . The input signal at time $n$ is defined by

$X(n)=\alpha_{n}(U_{0}-\hat{U}(n-1)) , n\in N_{2}$ , (3.6)
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where $\hat{U}(n-1)$ is the decoded message at the preceding time $n-1$ and $\alpha_{n}>0$ is a
constant given by

$\alpha_{n}^{2}=\frac{P}{E[(U_{0}-\hat{U}(n-1))^{2}]}$ . (3.7)

Clearly the constraint (1.3) is satisfied with equality. The decoded message $\hat{U}(n)(n\in N_{2})$

is defined by

$\hat{U}(n)=\hat{U}(n-1)+\frac{\tilde{Y}(n)}{\alpha_{n}}, n\in N_{2}$ , (3.8)

where $\tilde{Y}(n)$ is the $\alpha_{n}$-quantization of the output $Y(n)$ .

Theorem 3. Under the $GN$ scheme defined above, the error probability $P_{e}(n)=Pr(\hat{U}(n)$

$\neq U_{0})$ is given by

$P_{e}(n)=\{\begin{array}{ll}2Q(\beta_{0}|\beta_{n+1}|/2) , n\in N_{1},2Q(\alpha_{n}/2) , n\in N_{2},\end{array}$ (3.9)

where $Q(x)$ is the complementary distribution function of $N(O, 1)$ (see (2.22)).
Proof. Let $n\in N_{1}$ . Then, since $\hat{U}(n)-U_{0}$ is the $\sqrt{P}\beta_{0}$-quantization of $Z(O)-\hat{Z}(n)\sim$

$N(0, P\beta_{n+1}^{-2})$ (see (3.5)), we can easily show

$Pr(\hat{U}(n)-U_{0}=j)=\frac{1}{\sqrt{2\pi}}\int_{(j-1/2)\beta_{0}|\beta_{n+1}|}^{(j+1/2)\beta_{0}|\beta_{n+1}|}\exp(-x^{2}/2)dx,$ $j=0,$ $\pm 1,$ $\pm 2,$
$\ldots$ , (3.10)

and

$P_{e}(n)= Pr(\hat{U}(n)-U_{0}\neq 0)=\frac{2}{\sqrt{2\pi}}\int_{\beta_{0}|\beta_{n+1}|/2}^{\infty}\exp(-x^{2}/2)dx=2Q(\beta_{0}|\beta_{n+1}|/2)$.

Thus, we have obtained the first equation of (3.9). Let $n\in N_{2}$ . Then, it is clear from
(3.6) and (3.8) that

$U_{0}- \hat{U}(n)=U_{0}-\hat{U}(n-1)-\frac{\tilde{Y}(n)}{\alpha_{n}}=U_{0}-\hat{U}(n-1)-\frac{X(n)+\tilde{Z}(n)}{\alpha_{n}}=-\frac{\tilde{Z}(n)}{\alpha_{n}},$ $(3.11)$

where $\tilde{Z}(n)$ is the $\alpha_{n}$-quantization of $Z(n)\sim N(0,1)$ . Therefore,

$P_{e}(n)=Pr(\tilde{Z}(n)\neq 0)=Pr(|Z(n)|\geq\alpha_{n}/2)=2Q(\alpha_{n}/2)$.

Thus, we have obtained the second euation of (3.9). $\square$

3.2 Asymptotic Behavior of Error Probability
A characterization of the feedback capacity $C$ of the SGC has been given by Kim [12] as the
solution to a variational problem. In particular, a closed-form expression of the capacity is
given for the first-order autoregressive moving-average (ARMA) SGC ([12, 13]). However,
in general, no explicit formulas are available for the capacity. In this paper, instead of
the capacity $C$ , we need to introduce a constant $C^{*}$ by

$C^{*}= \lim_{narrow}\inf_{\infty}\frac{1}{n}\log\triangle|\beta_{n}|$ , (3.12)
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where $\beta_{n}$ is the constant given by (3.2). It will be shown that $C^{*}\leq C$ (see Corollary 1).
Then, we can prove the multiple-exponential decay of the error probability at all rates
below $C^{*}.$

Let us evaluate the error probability under the coding scheme proposed in \S 3.1. We
can prove the multiple-exponential decay of the error probabihty in the following theorem.

Theorem 4. Assume that the SGC (1.2) with feedback is subject to the average power
constraint (1.3) and that the rate $R$ is less than $C^{*}$ . For any positive integer $K$ , let $D_{k},$

$k=0,1,$ $\ldots,$
$K$ , and $\delta>0$ be constants such that

$0<D_{K}<\cdots<D_{1}<D_{0}<(1-\delta)C^{*}-R$. (3.13)

Under the $GN$ scheme, the error probability $P_{e}(n),$ $n\in N_{2}$ , is upper-bounded by

$P_{e}(n_{1}+k)<\exp\{-\exp_{k+1}(2D_{k-1}N)\}, k=1, \ldots, K$ , (3.14)

if $n_{1}>(1-\delta)N$ and $N$ is large enough, where $n_{1}$ is the terminal time of $N_{1}$ . Moreover,
for any constant $\alpha$ such that $0<\alpha<(C^{*}-R)/C^{*}$ , we have

$\lim_{Narrow\infty}P_{e}(N)\exp_{\lfloor\alpha N\rfloor}(N)=0$ . (3.15)

Proof. Let $\overline{D}_{k},$ $k=0,1,$ $\ldots,$
$K$ , be constants such that $0<\overline{D}_{k+1}<D_{k}<\overline{D}_{k}<D_{0}<\overline{D}_{0}<$

$(1-\delta)C^{*}-R$ . Since $\hat{U}(n)-U_{0}$ is the $\sqrt{P}\beta_{0}$-quantization of $Z(O)-\hat{Z}(n)\sim N(0, P\beta_{n+1}^{-2})$ ,
applying Lemma 1 and using (3.7) and (3.12), we can show that $\alpha_{n+1}^{2_{1}}$ is lower-bounded
by

$\alpha_{n_{1}+1}^{2}>\exp_{2}(2\overline{D}_{0}N)$ . (3.16)

Since $\tilde{Z}(n)(n\in N_{2})$ is the $\alpha_{n}$-quantization of $Z(n)\sim N(0,1)$ , using Lemma 1, we have

$E[ \overline{Z}(n)^{2}]\leq\frac{1.6}{\alpha_{n}}\exp(-\frac{\alpha_{n}^{2}}{8}) , n\in N_{2}.$

Then it follows from (3.7) and (3.11) that

$\alpha_{n+1}^{2}=\frac{P\alpha_{n}^{2}}{E[\tilde{Z}(n)^{2}]}\geq\frac{P\alpha_{n}^{3}}{1.6}\exp(\frac{\alpha_{n}^{2}}{8})\geq\exp(\frac{\alpha_{n}^{2}}{8}) , n\in N_{2}$. (3.17)

Using (3.16) and (3.17), by induction, we can prove the inequality

$\alpha_{n_{1}+k}^{2}>\exp_{k+1}(2\overline{D}_{k-1}N) , k\geq 1$ . (3.18)

Since $D_{k-1}<\overline{D}_{k-1}$ , using (3.9), (2.29) and (3.18), one can easily show (3.14):

$P_{e}(n_{1}+k)=2Q(\alpha_{n_{1}+k}/2)<\exp\{-\exp_{k+1}(2D_{k-1}N)\}, k\geq 1.$

Let $\alpha$ be a constant such that $0<\delta<\alpha<(C^{*}-R)/C^{*}$ , and let $(1-\delta)N<n_{1}<$

$n_{1}+K\leq N$ . Then, since $P_{e}(N)\leq P_{e}(n_{1}+K)$ , the inequality

$\lim_{Narrow}\sup_{\infty}P_{e}(N)\exp_{K+2}(2D_{K-1}N)\leq 1$ (3.19)
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follows from (3.14). Since $K+2\leq N-n_{1}+2<\delta N+2$ and $\delta<\alpha$ , we see $K+2<\lfloor\alpha N\rfloor$

and $\exp_{\lfloor\alpha N\rfloor}(N)=o(\exp_{K+2}(2D_{K-1}N))$ for sufficiently large $N$ . Therefore, (3.15) is
$an\square$easy consequence of (3.19).

We now briefly discuss on the capacity of the SGC.
Corollary 1. Let $C$ be the feedback capacity of the SGC (1.2) subject to (1.3). Then

$C^{*}\leq C$ , (3.20)

where $C^{*}$ is the constant given by (3.12).

trueProof. Theorem 4 tells us that all rates below $C^{*}$ are achievable. Therefore (3.20)
$\square is$

Example 1 (WGC). Let the channel (1.2) be the WGC subject to the constraint (1.3).
Then we can easily see that $C^{*}$ coincides with the capacity $C$ and is given by

$C^{*}=C= \frac{1}{2}\log(1+P)$ .

Example 2 $(ARMA(1,1)$ SGC). Let the Gaussian noise $\{Z(n)\}$ be an ARMA(1,1) pro-
cess. In this case, $\{Z(n)\}$ has the representation

$Z(n)+\beta Z(n-1)=W(n)+\alpha W(n-1)$ ,

where $\{W(n)\}$ is an i.i. $d$ . with distribution $N(O, \sigma^{2}),$ $W(n)$ is independent of $\{Z(j);j\leq$

$n-1\},$ $\alpha\in[-1,1],$ $\beta\in(-1,1)$ and $\sigma^{2}=(1-\beta^{2})/\{(1-\beta^{2})+(\alpha-\beta)^{2}\}$ . It is known
(Kim [12]) that

$C=C^{*}= hm\frac{1}{n}\log|\alpha_{n}|=-\log x_{0}narrow\infty,$

where $x_{0}$ is a unique positive root of

$Px^{2}= \frac{(1-\beta^{2})(1-x^{2})(1+s\alpha x)^{2}}{((1-\beta^{2})+(\alpha-\beta)^{2})(1+s\beta x)^{2}}$

and $s=sgn(\beta-\alpha)(s=0 if \alpha=\beta)$ .

4 Concluding Remarks
For the continuous-time WGC we have shown the multiple-exponential decay (1.8) of the
error probability (Theorem 2), where the $co$efficient $\alpha$ may be taken arbitrarily large. We
have seen that, to realize a large $\alpha$ , we need to take the length $\Delta=|T_{k}|(<\delta/\alpha)$ of
subintervals small enough. This is possible for the continuous-time $GC$ , and the situation
is different in the discrete-time $GC$ , where the coefficient $\alpha$ is upper bounded by $\alpha<$

$(C^{*}-R)/C^{*}$ (Theorem 4).
In the case of continuous-time channels, although we we have shown the multiple-

exponential decay (1.8) only for WGC, it is expected that we may show (1.8) in a wide
class of $GC$ ’s.
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