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Abstract. $A$ concept of one-direction relation is introduced and the networks which are
generated by the automatons are constructed. Then we can obtain fluctuations with
decreasing property. Moreover, fluctuations with power laws in molecular biology, music,
language and sports can be simulated in this manner. Next we introduce analysis on a network
and give its applications to the network ofthe one-direction relation automaton.

Introduction
We have a lot of fluctuations with power law in various fields ([2,3,4]). The typical
fluctuations can be observed in language, music and biology. Also we have such
fluctuations in cosmology and social network. Recently we have also developed the
theory of complex systems and discuss the small world, 6-degree relations. ([7]).
Moreover, we have constmcted network models, which are called Barbash-Albert
model with the node distributions ofpower law([l]). At present we have not
discussed the relationships between the phenomena and the theory. The theory on
networks is developed independently from the analysis or description ofthe
phenomena. The two contexts exist independently.
In this paper we shall try to make a bridge between these two fields and make
analysis on the network. For this we introduce a method of automaton for the
generation ofnetworks whose distribution of nodes obeys power law. Our proposal
is the introduction of automaton which is called One-way direction relation”. This
concept plays a fundamental role in this paper. We make a network ofthe automaton.
Then we see that the network has both distributions of nodes which show the power
law and exponential power changing parameters there (see Figures?? in section 2).
Hence we may expect that fluctuations with power laws may be generated by these
automatons. In the first three sections we generate networks in music, biology and
language by the one-direction relation automatons systematically.
Here we want to notice that it is not easy to see whether the given fluctuations have
power laws or not. Here we give two methods of analysis on the node distributions.
The first one is arithmetic method which is based on the stick broken model.
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We shall show that we can analyze our networks comparing them with the special
distributions of stick broken models. We notice that the model was introduced by
Mac-arther to describe the ecological system ofbig islands ([3]). We know the
distribution of the broken sticks is exponential type which is very near to power law
(see section 3). Hence we may assert the possibility of getting power law by this
method. The second one is analytic method. We introduce a concept of evolution on
network and try to develop analysis on the network. We introduce an evolution
operator as follows: we have the equation:

$\delta_{h}\psi=A\psi, \delta_{h}=\frac{\psi_{n+1}-\psi_{n}}{h},A\psi=A\psi_{n},$

where $\psi_{n}$ are functions on each node of the network. We have the solution for a
given initial value $\psi_{0}$ :

$\psi_{n}=K_{n}\psi_{0}, K_{n}=(1+hA)^{n}$

We notice that we can obtain the exponential operator. Namely, putting $h=1/n$ , we

$\lim_{narrow\infty}K_{n}=e^{\Lambda}$

By this we discuss the node distribution in terms of the evolution theory of the
network. Finally we suggest how to find a network where the following evolution
operator of power law type $\delta_{h}\psi=c\psi^{\gamma}$ , where $c,$ $\gamma$ are constants. Then we can apply
Prof. Suyari’s method for this network and we can obtain the theory of Tsallis
entropy ([6]).

1. Automaton defined by one-way relation
In this section we introduce a concept of one-way relation and obtain its automatons.

Definition
(1) $A$ system of nodes $\{P_{n}\}$ is called to satisfy one-way relation, when the following

conditions are satis$fied:For$ any pair $\{P_{i},P_{j}\}$ of nodes, we have the following relation

or no relation: $P_{i}arrow P_{j}$ . We denote the system is denoted by $\{P_{i},arrow\}.$

(2)$For$ a system $\{P_{i},arrow\}$ , we call a node $P_{k}^{*}$ start node, if there exists a $P$, suoh that
$P_{ki}^{*}arrow P_{l}$ but no $P_{r}$ satisfying $P.$ $arrow P_{k}^{*}.$

(3)$For$ a system $\{P_{i},arrow\}a$ , we call a node $P_{J}^{**}$ the end node, if there exists a $P_{l}$ such

that $P_{l}arrow P_{j}^{**}$ but no $P_{r}$ satisfying $P_{k}^{**}arrow P_{r}.$

We choose a system $\{P_{i},arrow\}$ and we generate the network which is generated by the

relation, choosing the start node $P_{a}^{*}$ We choose a set of nodes $P_{l}^{(1)}$ satisfying
$P_{l}^{(1)}arrow P_{d}^{*}$ We call the set the first generation: $P^{(1)}(P_{\alpha})=\{P_{l}^{(1)} : P_{\alpha}^{*}arrow P_{l}^{(1)}\}$

Repeating this process we can define the k-th generation:
$P^{(k)}(P_{\alpha})=\{P^{(k)}:P_{r}arrow P_{l}^{(k)}(\exists P_{r}\in P^{(k-1)}(P_{\alpha})\}$ :

Hence we obtain the network generated by the one way relation: $Q(P_{a})=\oplus_{k}P_{\alpha}^{(k)}$

The purpose of this paper is to show that the distribution of nodes has the decreasing
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character and fluctuations with power law may be realized by use ofthe network.

2. FLUCTUATIONS OF THE NETWORK OF ONE-WAY
RELATION

In this section we give computer simulations ofthe fluctuations of the distributions of
nodes for the network of the one-way relation. We give the simulations under the
several different conditions. We consider the network of the node numbers $N$ and of
the relation numbers M. We denote the system by $S$ ($N,M$).

(1) The distribution of a single start node
We give several computer simulations with a single start node.

$\rho\frac{(N,M)=(30,29)}{m,..\infty,\sim u-\sim-\dot{\ddot{A}}\mathcal{M}}$

$*w\cdots$ $e\ldots\vee\sim\infty^{\eta}\sim-$

. .
$\nu$ .

$-$ $/\cdot:\prime=$ $a$

-..
Figure 1

(2) The distribution of random start nodes
We give several computer simulations with random start nodes.
(N,M)$=(30,100)$ (N,M)$=(30,100)$ (N,M)$=(30,100)$

$\sim\overline{e\cdot**\wedge\cdot\cdot\cdot\cdot.\alpha m*m_{}\wedge_{u}\ddot{k}^{;}\ddot{\dot{*}}.i}$

$\ovalbox{\tt\small REJECT}^{-}--------$

Figure 3
Hence we see that we have possibilities of realizing the both fluctuations with power
law and the normal distributions in the same scheme. In the proceeding section we try
to make fittings for the distributions in biology, language and music and others by
this scheme.
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3. FLUCTUATIONS IN BIOLOGY
In this section we observe many phenomena with power laws in molecular biology
([2]). The recent development in system biology tells us that we have a lot of
phenomena whose networks show the power law in the node distributions. Here we
shall show that we have big possibilities to realize the networks by use of the
automaton generated by one-way relation.

(l)Transcription of protein production
We recall the transcription mechanism. We know that DNA constitutes by four kinds
of elements A, $TC$ and G. We have complementarity relation between these
elements: $A\Leftrightarrow TCoG$ . Also we can produce $m$-RNA from DNA by Okazaki
mechanism. The production of protein has a temary construction method. Namely
choosing three $m$-RNA, we can produce proteins following the codon table (Table 1):

Namely choosing three $m$-RNA, proteins
can be produced following the codon
table.Here we notice the following facts:
(1)Three RNAs produce a protein. (2)20
kinds of proteins are produced (3)$AUG$

is called start codon which gives the
start of the production.(4) UAA, UGA,
UAG are called the stop codons which
stop the production

Table 1
We can introduce an automaton ofthe one way relation as the following transition
table of the automaton. This is just special type of indefimite automaton. Hence we

a $\prime_{\vee}..-$ need not its explanation. Next we
proceed to computer simulations. We
make the computer simulations changing
the numbers of stop codons. The first
picture in Figure 6 is the case where the
number of the stop codon is 1. The
following figures are made following
the numbers of stop codons. We can
observe the decreasing property.

Figure 5

xu

$\backslash :\cdots\sim x,n,.\backslash n\alpha\vee\cdot\#R\wedge\cdot/\sim\backslash r\sim\backslash$

Stop codon 1, Stop codon 2 Stop codon 3 Stop codon 4

Figure 6
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We can try to make the fitting of power law plot. Then we have the degree between
$-1.8$ and-2.0.
Next we proceed to other phenomena in the system of biology. Here we give
examples without explanations and indicate the possibility of constructions of
automaton of one-way relations ([2]).

(2) Transcription mechanism

$く_{}\sim:\cross\cdot.\mathfrak{i}1_{4}:.\sim\backslash \lambda.\sim..;_{y\gamma}..;_{t};_{1\rangle\cdots.:}/..\cdots\backslash /_{\backslash .:\backslash /}-\cdot\cdot.$

$\backslash _{\backslash _{\backslash }}$

$\backslash \nwarrow$

$\# 4\hslash$ //
$\backslash _{\backslash }$ $\backslash i$

$\ \dot{w}_{\wedge}\Re;=/^{\prime_{=}}>\cdot\vee\cdot.J\backslash .,$$,\iota.,.\prime\sim\backslash r_{l}\nearrow.\cdot,\}’K,\cdots h_{x_{^{|_{\backslash }^{f}X_{\delta}(u_{\nearrow_{\backslash }^{\backslash }}},\sqrt{}}}^{\backslash }\backslash _{v}$

$\theta..\grave{x}4^{/}..\prime.i’\prime\cdots/_{\wedge}.\mathscr{K}_{:l^{\backslash \wedge\backslash }}^{\prime..;_{1}}\sim.\sim\prime^{*...\cdot\cdot.\cdot.\cdot\cdots\cdots\cdot\cdot\cdot\cdot\cdot\cdots\cdot\cdot 1_{\wedge^{\backslash }\wedge}}\wedge^{\backslash }\backslash ..\backslash _{i_{\}}^{:}}*\cdots\cdots:^{9}.$

(2) Composite $\theta eath$ mechanism

$—\overline{\vee’\mu}$
$x :_{\overline{\Re}}$

$\aleph^{\backslash }\wedge^{\vee}..\cdot$

$k^{\prime\wedge}8^{\cdot} \cdots\cdot\cdot.\cdot.\cdot.\cdot\cdot\backslash aarrow\ovalbox{\tt\small REJECT}_{-}^{\ovalbox{\tt\small REJECT}}\hat{\dot{\infty}}\prime\frac{\frac{!}{}:_{arrow}}{V}.-$

$m_{:}---:_{\theta/}\wedge\cdot\cdot\forall 4.\cdot\cdot$ :
$*.\cdot\cdot-\forall$

$\underline{\nu}-\wedge:\prime.$ $\#^{\wedge}$ $-\wedge-$

$-\Lambda*{\}$
$\vee. s\not\in Ae\backslash$

(3) Interrelationships in the protein productions

$s^{c} \Psi>*-\sim \lambda_{A^{\wedge.*}}^{\backslash _{x^{\vee^{*}}}};_{k\wedge^{*u}}^{\wedge\bigwedge_{_{d}A_{i^{*}A*\searrow*_{\wedge*_{rightarrow}}}}^{*}}k_{*\lambda}*A\ell_{1\lambda}^{\lambda}k.*\wedge\mu_{A^{-}}$

Figure 7

4. FLUCTUATIONS IN MUSIC
We can observe $1/f$-fluctuation in music, especially in classic music. This fluctuation
can be described as follows: We hear a music. Then we have the following Fourier
expansion at any time: $\sum a_{n}f_{n}$ .(see Figure 8 over). Considering the following
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function defmed on integers: $f(n)=\log|a.$ $|$ , we see that $f(n) \propto\frac{c}{n}$ which is called
$1/f$-fluctuation (see Figure 8 under).

Figure 8

The $1/f$-fluctuation phenomena is typical for classical music. But this is completely
broken for contemporary music, especially for some noisy music”. In this paper we
shall propose a method of automaton of the cadenza in classical music and we can
show that we can realize the phenomena. At first we recall the cadenza in the classical
music. Next we proceed to the constmctions of automaton of one-way relation. The
construction is given as follows:
(1) The start harmony triple is the class I harmony. (2) The end hamony tniple is the
class I. (3) Other process is given by the indeterminate automaton of cadenza.

Kinds of harmony Automaton of cadenza

$4^{-}-\xi\xi^{--}3_{-}^{-}--f^{-}-f-$

I II III IV V VI VII
Figure 9

By this we can produce music and obtain the following fluctuation (Figure 10). We
may say that the fluctuation can describe power law

(The pictures are due
K.Suzuki, K.Tsuchiya
and K.Yano)

Figure 10

4. FLUCTUATIONS IN LANGAGE
The typical example of $1 \int f$-fluctuation can be observed as the Zipf-law. Namely we
choose a book written in English. Then we can consider the distribution of words
with respect to the frequency in appearance. The ranking is stated as follows: (1) the,
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(2) of, (3) and, $\cdots\cdots$ Taking the logarsmic coordinate we have the Figure $i1$ :

Although this phenomena is well known, we
have no reasons of the distribution. We try to
obtain by use of one-way automaton. We can
discuss the generation of sentences producing
sentences by use of a construction of simple
grammar which is called PIGIN GRAMMAR
Figure 11

Here we shall introduce a simple grammar and obtain the distribution of the
frequency ofwords. The most essential part ofthe grammar can be stated as follows:

Pigin words Table of grammar

Table 2

Examplel Example 3
$\piarrow r$ $($1 si $eep)$ $Narrow Varrow$ ( $b$ cy beeks)

Example2 $N-*\psiarrow Narrow Varrow NExamp|e4$

$Narrow V-*A\infty he|spmy)$

Cknow he bOught bOOk $S$)

We produce sentences by the one-way relation as follows:
(1) Start word is $N$ . (2) The end words are not deterministic. Namely words are end
words when no more words can not be continued. (3) The production rules are given
by the following grammar:
continuation impossible. Then we have the following computer simulations on the
distributions:

Computer simulation (1) Computer simulation (II)

Figure 12

We see that we can obtain the decreasing distribution which does not against the Zipf
law. We may try to obtain the Zipf’s law making more realistic Pigin grammar.

5. FLUCTUATION FHENOMENA OF OTHER TYPES
We can observe many phenomena of power laws in several distributions. Here we
give several examples of other types different from that of the one-way automaton:
(1) The fluctuations generated by both way automaton
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We give two examples: (1) Social network (2) Distribution of galaxies (Figure 13):

Figure 13

$Numb\cdot/0/|n$2-$t-n
U1390

We notice that the both systems have different characters form that of one-way
relations. For the case of the social network of MIXI, the network can be extended
under the following conditions are satisfied: When one asks the other to have a
contact, the other asked people should show it’s acceptation. Under the both
agreement, the net work can be extended. Hence we have to introduce the concept of
both-way relation. Hence we put the following definition:

Definition
(1)$A$ system of nodes $\{P_{n}\}$ is called to satisfy both-way relation, when the following

conditions are satis$fied:For$ any pair $\{P_{i},P_{j}\}$ of nodes, we have the following one way

relations or no relation: $P_{i}arrow P_{j}$ and $P_{j}arrow P_{i}$ . We denote the system obtained by

$\{P_{i},rightarrow\}$ (2)$For$ a system $\{P_{i},rightarrow\}a$ , we call a node $P_{k}^{*}$ the start node, if there exists a
$P_{l}$ such that $P_{kr}^{*}rightarrow P_{l}$ but no $P_{r}$ satisfying $P_{r}rightarrow P_{k}^{*}$ . (3)$For$ a system $\{P_{i},rightarrow\}a$ , we

call a node $P_{k}^{*}$ the start node, if there exists a $P_{l}$ such that $p_{ki}*rightarrow P_{l}$ but’ no
$P_{r}$ satisfying $P_{r}rightarrow P_{k}^{*}$

Then we can constmct the network system and we can obtain the fluctuation of
decreasing properties. The details may be omitted.

As for the case of generation of galaxies, we may find the both-way direction because
of the gravitational interactions introduce both-way relation:

$f=G \frac{m_{1}m_{2}}{r^{2}}$

We want to make a comment on this network. In the theory of cosmology, we have
still no understanding on the origin of the fluctuation of the galaxies. This is a serious
problem on the origin of masses in this universe. Hence our method may have a
possibility of the contribution to this problem.

(2) The fluctuations generated by stick broken model
We have another type of the system generation, which is well known as the stick
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The model to be fitted can be found in the so called stick broken model, which $is$

initially introduced for the description of ecology in the big island. The distribution
is described as the distribution of the pieces of a long stick which is known as the
Hardy-Ramanjyan formula:

$\exp(An^{1/2})$

$P(n) \approx\overline{4n3^{1/2}} P_{k}(n)=\sum_{n_{t}+\ldots+n_{m}=k}n_{j}P(n_{1},n_{2},\ldots,n_{m})$

Explicit treatment will be given in the forthcoming section, where $P\langle n)$ is the total
number ofpossible decomposition of the length $n$ and $P_{k}(n)$ is the numbers ofpieces
$b_{fO}kensticks^{P_{k}(i}of1engthk.We\S_{)_{Thisdistributionisquitec1osedtothesoca11ed1/f-fluctuation}}^{iveacomputersimu1ationforthedistributionofthepiecesof}$

Even though, we know that the distribution does not satisfy the power law.

Figure 15

6. THE ANALYSIS ON THE NETWORK OF ONE-WAY
RELATION (I)

In this section and next sections we give analysis on the network defined by
automaton of an one-way relationship. Here we give numerical analysis on the
distribution based on the stick broken model. In the next section we give differential
and integral method.
We choose a stick with the length 4. Then we have the following distribution on the
numbers ofpieces of given length:

4$13 P(4)=5$
2 2 $P_{1}(4)=7, P_{2}(4)=3$

$1 1 2$

$arrow-$

$\backslash \backslash$ 1111 $P_{3}(4)=1,$ $P_{4}(4)=i$
$*–$ $*$

Figure 16
We can associate the network for this distribution:

$cy_{R}^{\mathscr{J}^{d^{\wedge}}}/\backslash )\prime t^{1}$ $(a_{I^{\{}\}}\rangle\ovalbox{\tt\small REJECT}-\lambda$

$\ovalbox{\tt\small REJECT}\cdot m$

(4)rm.ac.ma
$r$Figure 17

We can compare the node distributions of one-way relation automatons with that of
stick broken model. We give an example of the demonstration for the evolution of
Asian peoples by use ofmitocondria ([2]).
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Hence we can analyze the distribution finding the part of stick broken model (Figure
18, right side) and deforming the model to the original distribution in the following
steps:

(1) We see that there exists one to one correspondence between the counting of the
distribution $P_{k}(n)$ of stick broken model and that of the distnibution $Q_{k}(n)$ of nodes.

(2) Next we find the stick broken part of the network.
(3)Deformation of adding small nodes and realize them

Comparison of distributions
(1) $+(2)+(3)+(4)+(5)$

Figure 19

8. THE ANALYSIS ON THE NETWORK OF ONE-WAY
RELATION (II)

In this section we give an analysis on an a network and give its application to the
network of one-way automaton. At first we recall the evolution theory in
mathematical physics. Then we introduce concepts of generating and annihilating
operators for generation or dilating nodes of the network. Finally we proceed to
evolution of the function space on the network and discuss the fluctuations.

(1) The diffusion (evolution) process
Here we recall the basic facts on diffusion process. The beginning is the heat
equation: $\partial T/\partial t=a\partial^{2}T/\partial x^{2}$ . We can give the following solution for the initial value
function $T(x,0)=f(x)$ by use of the heat kemel:

$T(x,t)= \int_{-\infty}^{X}K(x,t)f(\xi)d\xi, K(x,t)=\frac{1}{2\sqrt{\prime\varpit}}\exp(\frac{(x-\xi)^{2}}{4at})$

The direct generalization of this formulation can be given as follows: $\partial u/\partial t=Au,$

where $A$ is an operator between some function space. The initial value problem with
an initial function, we can give the solution under suitable conditions:

$u(t)=( \exp A)f, \exp A=\sum_{n=0}^{\infty}\frac{A^{n}}{n!}$

(2) The discrete diffusion (evolution) process
We want to generalize the evolution process to a network. At first we introduce the
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sequence $\psi=\{\psi_{n} : n=0,1,2,\ldots)\}$ of functions and define the discretized evolution
equation by the following setting:

$\frac{\partial}{\partial t}\psi\supset\frac{\psi_{n+1}-\psi_{n}}{h}, A\psi\supset A\psi_{n}$

Then we can define the equation:

$\delta_{h}\psi=A\psi, \delta_{h}=\frac{\psi_{n+1}-\psi_{n}}{h},A\psi=A\psi_{n}$

We can obtain the kemel operator and obtain the initial value problem as follows: For
a given initial value $\psi_{0}$ , we have the so$1ution:\psi_{n}=K_{n}\psi_{0},$ $K_{n}=(1+hA)^{n}$ We notice
that we can obtain the exponential operator by making continuation process:
Putting $h=1/n$ , we have $\lim_{narrow\infty}K_{n}=e^{A}$

(3) The generation of nodes and introduce a network
Next we introduce the evolution of a network of one-way relation. We begin with a
description of generation and annihilation of nodes by operators. We choose a start
node $P^{*}$ . For an arbitrary node $P_{j}$ , we define the creation operator of $P_{j}$ from $P^{*}$ by

$\hat{P}_{j}(P_{k})=\{\begin{array}{l}P_{j} when P_{k}=P^{*}\phi( 0 th erwise)\end{array}$

Also we introduce annihilation operator ofpoint $P_{j}$ as follows:

$\hat{P}_{j}^{*}(P_{k})=\{\begin{array}{l}P^{*} when P_{k}=P_{j}\phi (otherwise)\end{array}$

For a pair oftwo points $P_{j}$ and $P_{k}$ , we define the transition operator $\hat{P}_{k}$ as follows:

$\hat{P}_{jk}(P_{l})=\delta_{kl}P,$

In terms of these operators, we can describe a generation of network by use of
creation and transition operators:

$L^{(1)}=\{\hat{P}_{j}^{(1)}(P^{*}):(j=1,2,\ldots,N^{(1)})\}$

$L^{(2)}=\{\hat{P}_{kj}^{(2)}(P^{*}):(j=1,2,\ldots,N^{(1)}),(k=1,2,\ldots,N^{(2)}\}$

$L^{(k)}=\{\hat{P}_{kj}^{(k)}(P^{*}):(j=1,2,\ldots,N^{(k-1)}),(k=1,2,\ldots,N^{(k)}\}$

Introducing the evolution operator by

$\hat{A}=\sum\sum\hat{P}_{ij}^{(k)}$

we can generate each node by the operator $\hat{A}$ , which is denoted by
$\delta P=\hat{A}P, \delta=P_{n+1}P_{n}^{*},\hat{A}\psi=\hat{A}P_{n}$

Introducing the exponential mapping by

$\exp(\hat{A})=\prod_{k=1}^{\infty}(1+\sum\sum\hat{P}_{ij}^{(k)})$
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we can describe the total nodes by use of exponential mapping:
$L=\exp\hat{A}(P^{*})$ , where $L=\oplus L_{j}$

(3) Discrete Suyari equation
Here we discuss the discrete version of Suyari equation. In order to describe the
equation, we have to introduce the description of the network in the dual space.
Choosing the characteristic function of each node, we can formulate the node
distributions. Choosing $A=\psi^{-\gamma-1}$ , we can generalize the equation to the discrete

equation:
$\delta_{h}\psi=\psi^{-r}$

Then for the initial value $\psi^{*}$ , we have the solution:

$\psi=\exp(\hat{A})\psi^{*}=\prod_{k=1}^{\infty}(1+\sum\sum\hat{P}_{ij}^{(k)^{-\gamma-1}})\psi^{*}$

The details will be given in another paper.

(4) Distribution of nodes
Finally we shall describe the node distribution of the given network and find how to
examine whether it obeys power law or not. We choose a network with a generator $A.$

Then introducing the generation operator $A_{N}$ of the degrees of nodes at each node

point, we obtain its difference equation. Then introducing the linear space which is
generated by nodes, we can describe the node distnibution $N:\delta N=A_{N}N$. We notice

that the subspaces can be described as the eigen spaces of the Lapalcian operator on
the network.

$\Delta N(P)=n(P)N(P)$

, where $n(P)$ is the degree of the node at $P$ . Then we can discuss the fluctuation
whether it obeys power law or exponential law or not by the discussions (2). The
detail will be given in a forthcoming paper.
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