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Abstract

The physical and mathematical reasons that could explain the appearance of Fibonacci
numbers and the golden ratio in nature had been veiled until 1981, when Yasuichi Horibe
submitted“An entropy view of Fibonacci trees” to Fibonacci Quarterly. As he used Shannon’s
information entropy formula, Horibe’s reasoning, unfortunately, was not considered
thermodynamic. In 2011, $I$ tried a new interpretation of Clausius entropy for a
$non\cdot$equilibrium state and conceived of using thermodynamic $F$ instead of $W$ in the
Boltzmann’s formula for the equilibrium state: $S=$ klog $W.$ $F$ is the conditional probability
that implies the total number of possible state shifts at $non\cdot$equilibrium. Then, $I$ found that $F$

in a $one\cdot$dimensional information system, such as “010101 $\cdots$ ,” produces the Fibonacci
sequence as the maximum entropy values. When I presented the mathematical findings on $F$

at the Fibonacci Meeting of Japan in 2012, Haruo Hosoya found that the calculation of Fwas
the same as that of the Topological Index (now also called the Hosoya Index), which had been
proposed in 1971. This coincidence indicates that the Topological Index might provide the
maximum entropy values of molecular surface electrons. The maximum entropy, for life in
nature, has these advantages: the full use of resources (the most cost.efficient performance),
$non\cdot$reactiveness (safety), and the largest capacity for data collection (adaptive intelligence).
This is the reason that Fibonacci numbers appear often in nature and why designs in nature
that follow the golden ratio appeal to us.

Introduction
A human’s ability to understand nature is strictly limited by its sensory organs. Nature’s
image in a human’s mind is a virtual world, reconstructed from sensory data, and is not
actual nature itself. The region of the brain responsible for feelings produces an emotional
response to sensory data soon after they are acquired. In contrast, the region of the brain
responsible for rational thinking prefers to segregate the sensory data into elementary parts
and basic relations that can be used to reconstruct the virtual image. As the brain’s operation
is restricted by the poor function of the neural network in a volume space of 1.5liters, a
human’s rational brain is good at simplifying complex relations, but poor at understanding
complex relations as they are. Although I do not know of any scholarly argument about the
interpretation difficulty, the bias for mixed gas might be considered as one example.

Let there be 10liters of air, composed of nitrogen (78%mol), oxygen (21%mol), and argon
(l%mol) at 1 atm and 298 $K$ (room temperature). As we cannot know the true pressures and
volumes of these gases, we must fix pressure or volume in order to simplify the situation. We
tend to think that each gas has the same fixed volume of 10liters and different partial
pressures. However, it is possible to reason that each gas has a different partial volume and
the same fixed pressure of 1 atm. The latter simplification is consistent with Blaise Pascal’s
law ofequal pressure. The values for both the simphfied combinations ofpressure and volume
would then be significantly different from actual values. In fact, $I$ am not sure Argon (only
l%mol) has a volume of 10liters or a pressure of 1 atm. Therefore, such a simplification bias
is carried out to make scientific calculations easy, simple, and practical. $A$ human’s analytical
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understanding of nature cannot exclude this kind of simplification bias.

We can say that the same kind of bias exists for the statistic interpretation of Clausius
thermodynamic entropy. The “principle of equal a priori probability,” postulated by Gibbs, is
one of such simplifications. This postulation correctly implies (almost) equal state existence
probability ($EP$) for all accessible microstates of a system at equilibrium. The word
“equilibrium” implies that although the system tends to keep the same state in $macro\cdot$scales,

it has continuous dynamic shifts from one microstate to another. As volume is a $counter\cdot factor$

of pressure in the $mixed\cdot gas$ problem, similarly equal $state\cdot$shift probabilitv ($SP$) for all
successive microstates is a counter of equal $EP$. However, Boltzmann and Gibbs used the
simplification of equal $EP$ at equilibrium without making a clear reference to equal $SP.$

However, $I$ found that under a very specific condition at $non\cdot$equihbrium, we can use both
types of simplification: equal $SP$ and equal $EP$. By using these simplifications, we can count
the total number of accessible microstates at non-equilibrium and the total number of
possible state shifts at $non\cdot$equilibrium. Both numbers have the same value, although I refer
to the value as”$F$ instead of” $W$” which Boltzmann used for equihbrium. The concept of $F$ is
far more easy and simple to understand than the concept of $W$ The $F$ interpretation of the
thermodynamic entropy will make it easier for $evenjunior\cdot high$ school students to leam the
concept of dissipative structures that are essential to understand nature.

Thermodynamic $F$ instead of $W$

Let us consider an example of state shifts from $non\cdot eq\iota\dot{u}$hbrium to equihbrium (Fig. 1). Fig.
l(a) shows a system that has two states. Each state has two optional paths: the shift to itself
and the shift to the other. All values of $SP$ from the same state must be equal; this is a
postulation. First, for example, the $EP$ of the left state is 0.9 and the $EP$ of the right state is
0.1. Then, the flow (state shift) from the left to the right must be larger than the counter-flow.
This $non\cdot$equal probability shift will continue until the system has equal $SP$ for all states.
This simple system has equal $SP$ and equal $EP$ at equilibrium.
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Fig. 1. Two types of equilibrium im easy $\infty$unting.
The darkness and height of each state indicates a degree of $EP$. The largeness of each arrow
from a state indicates the degree of $SP.$

Figs. l(b) and l(c) show a rather complex system composed of three states. This system
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has two types of equilibrium. Fig. l(b) shows the equilibrium with equal flow and $non\cdot equal$

existence (type $F$ equilibrium). Fig. l(c) shows the equilibrium with $non\cdot$equalSP and equal
$EP$ (type Wequilibrium). Fig. 2 shows $SP$ and $EP$ values of both equilibrium types. As is easy
to see, the $SP$ values of type Wequilibrium are not well balanced. This implies that we can get
equal $EP$ values just as an averaged probability, as shown in Fig. l(c). To keep equal $EP$

intentionally, the system needs a statistical enhancement of flow. Use of the equilibrium
model of type $W$ is very limited, but it was enough for Boltzmann to easily count the total
number of accessible states of a system at equilibrium.

(a) $\langle b\rangle$ Type $F$ $(c\rangle$ Type $W$

Fig. 2. Calculation of $SP.$

When I was examining some asymmetric systems composed of several states, $I$ found a
very specific stage where both equal shift and equal existence are relevant. $I$ let any shift take
1 time unit $(1\Delta t)$ and calculated conditional probabilities of flows and states step by step. Fig.
3 displays one such experiment.

Fig. 3. Conditional probabih$W$ at non-equihbrium.

As Fig. 3(b) shows, just at the moment when any change starts to occur in a system, we
can think both of equal $SP$ and equal $EP$, and both probabilities have the same value. The
total number offlow branches of Fig. 3(b) is three, and the total number of accessible states is
also three. Probability of an arrow is 1/3 and probability of a state is also 113. This is a very
simple relation that everyone can recognize. $I$ call this number three $F$ instead of $W$
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Let me present a clear definition of $W$and Boltzmann’s Wimplies the(total number of
accessible microstates for a system at equilibrium” under the postulation of the “principle of
equal probability of existence.” $F$ implies “total number of shifts (flows, paths, branches,

changes, $\ldots$
) from a microstate of a system at non-equilibrium to its accessible (successive)

microstates within a moment of the system” under postulation of the “principle of equal

probability of shift and existence.” This number is the same as the “total number of

‘branchable’ (accessible, ‘shMable’, $\ldots$
) microstates for a system within a moment of the system

at $non\cdot equihbrium$
” under the same postulation. Further, “a moment (ldt)” is a minimal time

unit of the system. Later, it will be shown that $\Delta t$ implies $\Delta$

Next, $I$ started to examine if $F$ can work well as the entropy of a system at
$non\cdot$equilibrium and at equilibrium.

Fentropy of a one-dimensional information system

For the first experiment, $I$ used a $one\cdot$dimensional information system such as
“ABABBBAABCC,” where several kinds of elements arranged themselves in aline. $I$ assumed
that all elements are conserved, exchange of neighboring elements could occur within one unit

time of the system ($1s$ here), and possibilities of all exchanges are equal. Then, $I$ counted how
many different arrangements the system can have in 1 $s$ . Obviously, exchange of the same
kind of element is as good as the nonoccurrence of the exchange. It is essential to find the axes
for exchange and the count combination of axes.

For example, “ABABBBAABCC” is $A|B|A|$ BBB $|$ AA $|B|$ CC,” and it can be thought of
as “ $|||x|x||$ ” (“ $|$

”implies an axis for exchange, and $x$
” implies $non\cdot$interference between

neighboring axes). “
$|||$

” can be of five kinds of combinations, such as “mn,” “
$|$ nn,” “ $|n|,$

”

$n|n,$ ” and $m|$ ”( $n$
” implies no exchange). “

$|$

” can be of two kinds: $n$
” and” $|.$

” “
$||$

” can be of
three kinds, which are “nn,” “ $|n,$

” and $n|.$
” Hence, the “ $|||\cross|x||$

” can have $5x2x3=30$

kinds of combinations. The $F$ entropy of the“ABABBBAABCC” is 30.

I noticed that a configuration pattern such as “010101 $\cdots$

” has the maximum $F$ entropy. $I$

counted &om‘‘Ol’’ to $olOlO10$” and obtained the sequence“2, 3, 5, 8, 13, and 21.” After some
investigation, $I$ could determine this to be the same as the Fibonacci sequence.

Although my knowledge in mathematics and physics is limited, my knowledge in

medicine and biology is sufficient to understand the meaning of the result of the first
experiment on $F$ entropy. The reason for the many appearances of the Fibonacci sequence in
nature is quite clear: The Fibonacci sequence implies maximum themodynamic entropy.

Life in nature has many kinds of $one\cdot$dimensional information systems. DNA is a
one $-$dimensional sequence of nucleotides, and a protein is a one-dimensional sequence of

amino acids. Oral language is a $one\cdot$dimensional sequence of voices.

Fibonacci numbers are often shown in reproduction, an essential function for life. This
implies that life uses, a one-dimensional information system for reproduction. $A$

one-dimensional information system is primitive, basic, tough, easy to maintain, inexpensive
to replicate, and reliable, as compared to two$\cdot$ or three-dimensional information systems.

Later, $I$ learned that the calculation method for $F$ entropy is the same as the one for the
Hosoya Index (combinations of $non\cdot$neighboring bonds that connect vertices of molecular
graphs), and Horibe had proved that the Fibonacci sequence implies maximum informational
entropy. This knowledge leads us to the concept that probability can be used to integrate the
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Hosoya Index of chemistry, the entropy of thermodynamics, and the entropy of information
theory.

Thus, the successful explanation of the Fibonacci numbers in nature by $F$ entropy
demands reconsideration of (statistical) thermodynamics today.

When I found $F$ entropy, $I$ was not confident of its scientific orthodoxy, so to speak. As $I$

was a layman, the restriction due to the second law of thermodynamics was a severe
encumbrance to my investigation. While $W$ entropy by Boltzmann needs the second law to
explain irreversibility in spontaneous processes, $F$ entropy does not need the law, and
furthermore, it denies the classical concept of the law.

However, the pure probable concept of entropy illustrated in several books by Arieh
$Ben\cdot Naim$ freed me completely from the irrational approach to entropy. Everything is
constantly changing. Entropy is just a possible degree of randomness in such a change.
Entropy is first a problem of probability than anything else. The $F$ entropy hypothesis was
encouraged by $Ben\cdot Naim$ , but it has not been validated by him as yet. The following is my
idea of $F$, based on the Fentropy hypothesis described above.

Entropy [rule] and entropy [value]

Entropv $r_{rule1}$ of a system is defined as restrictive rules for randomness of the system change.
Entroov fvaluel of the system is defined as a degree of randomness determined by the entropy
[rule] of the system. The positive entropv $\lceil$rulel of a system is defmed as a change on the
entropy [rule] of the system that increases the entropy [value] of the system. The negative
entropv lrulel of the system is defined as a change in the entropy [rulel of the system that
decreases the entropy [value] of the system. If any change in the entropy [rule] occurs, a
change in entropy [valuel follows. Human’s rational brain prefers to think analytically in this
manner. You will soon realize that these terms are very useful.
Entropy in macro-scales
In any spontaneous change, entropy in $macro\cdot$scales not only increases, but also decreases
irreversibly. Let me directly discuss the second law of thermodynamics. An illustration of a
potential $heavy\cdot particle\cdot stir$ experiment is given in Fig. 4. Imagine that you stir up heavy
particles at the bottom of a beaker that is two-thirds full of water.

This system has two levels of equilibrium ($eq\cdot A$ and eq-$B$). Stirring is the positive entropy
[rule] of the system. While water is being stirred, the entropy [value] at the equilibrium of the
system is $S_{eq^{\vee}B}$ . To stop stirring is the negative entropy [rule] of the system. When you stop
stirring, the entropy [valuel at equilibrium is $S_{eq\cdot A}$ . These are matters of equilibrium with the
classical symbol $S$ used for the entropy [value] at equilibrium, as shown in Fig. 4.

However, the actual change in the particles progresses step by step. You will recognize
two kinds of irreversibility shown in Figs. 4 and 5. The direction of entropy change must not
be fixed in the second law. If the system is at a lower entropy [value] than the entropy [value]
that the entropy [rule] of the system determines at equilibrium, the actual entropy [value] of
the system increases macro.irreversibly. Further, if the system is at a higher entropy [valuel
than the entropy [valuel at the equilibrium of the system, its actual entropy [value] decreases
macro irreversibly.
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$\Rightarrow$ $\Rightarrow$ $\Rightarrow$

$\iota^{}__{A}\lambda^{r_{k}}-.*\cdot r\cdot R_{\backslash }ai\lambda^{\wedge.\backslash }s\wedge l$

Positive entropy [rule] Negative entropy [rule]

$F$ ofthe system $\tau_{\alpha k\prime sh_{i}Awnes}$

Fig. 4. $A$ stirring experiment showing macroscopi$C$ irreversibihty.

Fig. 5. Increasing and deoeeasing $mams\infty pic$ irreversibility.

In nature, there are many different kinds of entropy. This easy example will help you
understand entropy very well.

A fish in soup has temperature and stmcture entropy

Put some fresh fish into soup at room temperature. Then, cool it down, boil it up, cool it down,
and boil it up again. Finally, let it cool down to room temperature. Fig. 6 shows the change in
temperature entropy and structure entropy of the fish. Instead of abolishing the second law, $I$
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would like to attempt to reform it by $re\cdot$examining the relationship between energy and
entropy.

Fig. 6. lbmperature and structure entropy of fish in soup.

Thermodynamic and elementary entropy

Thermodynamic entropy is a complex of some kinds of elementary entropy. Fig. 7 shows
thermal movements and directions of mass points schematically. At the contact surface
between a hot body and a cold body, heat energy starts to move from the hot body to the cold
one irreversibly. Fig. 7 displays the heat$-$ entropy change and direction-entropy change of mass
points. Classical Clausius entropy is a complex of several kinds of entropy. Hosoya entropy is
one of such entropies.

Fig. 7. Movement of heat energy and change in entropy.

An energy movement carries probability

Fig. 7 suggests any energy movement from one place to another changes both the entropy
[rules] at the old place and the new. This seems to suggest that energy carries entropy. Fig. 8
shows the change in entropy from a microscopic energy movement, and Fig. 9 shows an
entropy change from a macroscopic energy movement.
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Microscopic movement of energy
$-\Delta F$ $+\Delta F$

Negative entropy [rule] Positive entropy $[rule|$

Change is irreversible, but the speed Change is irreversible, and the speed
of the change becomes slower of the change becomes faster

Fig. 9. Entropy [rule] change from a $mams\infty pic$ movement of energy.

Fig. 10. The illusory arrow of time.

All elementary changes in entropy are reversible. In macroscopic energy movement,
several microscopic reverse changes in entropy are covered by $larger\cdot$sized microscopic
$counter\cdot$changes in entropy. All changes are averaged to make a macroscopic irreversible
change. As Arieh $Ben\cdot Naim$ says, Boltzmann first understood this property to establish
statistical thermodynamics.
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Time $-$ dependent irreversibility makes a virtual clock in a human’s brain. The common
flow of time in space (arrow of time”) is just an illusion (Fig. 10). Hence, $\Delta F$of a system is $\Delta t$

of the system.

Fig. 11 is a revised Fig. 8, and Fig. 12 is a revised Fig. 9 using the clock model as the
entropy change.

Microscopic movement of energy

$-\Delta F - +\Delta F$
Negative entropy [rule] Positive entropy [rule]

Fig. 11. Time comes and goes by $\dot{m}ms\infty pic$ movement ofenergy.

Macroscopic movement of energy

Time goes slower Time goes faster

Fig. 12. Tme goes slower and fastel by the $macros\infty pic$ movement of energy.
Entropy is as conservative as energy, but in a different manner
As has been shown above, the change in the amount of entropy $(\Delta f)$ has a close relationship
with the amount of energy movement that has caused the entropy change. The laws of
thermodynamics could be rewritten as the following:

First law:

1. In any system, there is a conservative quantity that never increases or decreases before
or after any qualitative change of the system. We call it energy.” (Energy is space restricted,
probably by entropy [rule].$)$

2. In any system, there is a quality that has a conservative quantity that the total amount
ofquantitative changes $(\Sigma\Delta f)$ of the system is kept constant, independent of any process of
the system. We call it“entropy” (Fig. 13).

3. Energy and entropy are classified. Exchange between different types of energy or
between different types of entropy is restricted. The amount of entropy that energy carries
has a quantitative relationship with the type of energy and the type of entropy.
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Fig. 13. Sum of $ffli\epsilon\infty$merved independent of process.

Second law:

1. In a system composed of $micro\cdot$reversible changes, an improbable condition transfers
spontaneously and irreversibly in macro scales to the probable condition of the system. (What

is probable is apt to occur. This $macro\cdot$irreversibihty is a statistical property of the system.)

2. No movement of energy without friction against the movement. (Energy carries entropy.
Any movement of energy accompanies friction through which entropy of the energy transfers
to other energy. Friction here has wide meaning beyond mechanical friction. Friction is the
relationship with surroundings. Without any relationship with the world, an object camot
exist in the world. Any existence in a world has friction with the world. Some structures may
collapse due to friction, but other structures may grow due to friction, such as a typhoon.)

3. Any movement of energy is absolutely irreversible. (It is impossible to measure this
absolute irreversibility by friction as we are a part of the universe.)

Movement of energy, transfer of entropy, and friction are different aspects of the same
change. Now, we are ready to understand dissipative structure(s). Life in nature is
representative of a dissipative structure. If the Fibonacci sequence implies maximum entropy,
it is very natural for life to express Fibonacci numbers in its stmctures.

Thermodynamic mechanism of dissipative structures
The easiest dissipative structure to understand is a whirlpool in a river (Fig. 14). Ifwater flow
from the upper reaches of the river stops, or if water flow to the lower reaches of the river is
stopped, the whirlpool disappears. This is the fate of any dissipative structure.

Fig. 14. Awhirlpool in a rivel disappears without water flow.

It is interesting to ask why Clausius gave attention only to the irreversible increase in
entropy. The reason is simple. We live in the universe at $non\cdot$equilibrium, which is
continuously changing toward a higher entropy state of equilibrium. In such an
$entropy\cdot increasing\cdot type$ space, $micro\cdot$energy movement that increases entropy of the space
occurs much more regularly than micro energy movement that decreases entropy of the space.
Almost all inorganic changes appear to increase the entropy of the world except for a few
reactions that decrease entropy. Without such exceptions, cannot life exist in an
entropy-increasing-type space?
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Yes! $A$ dissipative structure is a formation that keeps its general appearance by
discarding its rising entropy. Fig. 15 shows the mechanism by which a dissipative structure
takes away excess entropy auto.produced in its body. Fig. 16 is an altemative representation
of Fig. 14.

Fig.15. Mechanism of discarding entropy from a body.

Fig. 16. $A$ dissipative stmcture exists only in enelgy flow.

Fig. 17. $A$ dissipative structure exists only in irreversibility.

Now you can understand your whole life (Figs. 17 and 18). Not only life but also almost all
of existence and all phenomena in our universe are dissipative structures. Everything that
has an end is a dissipative structure. Hence, even a positron is a dissipative structure.
Nations are also dissipative structures. Further, what is important is that Charles Darwin’s
evolutionary theory can be applied to all dissipative structures. Without evolutionary change,
no dissipative structure can continue for long. Buddha might have been the first person who
realized the fate of a dissipative structure.
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Fat equi ibrium $s_{cq-A}$

Aurues

Fig. 18. Sample life cyde of a human.

The final postulation of my idea of $F$ might be paradoxical. All changes in nature occur
“spontaneously.” What occurs next is definitely determined, but in a probable mamer. Hence,

it would seem that $Pierre\cdot$Simon Laplace’s demon of scientific determinism can live with dice.

Acknowledgments
Special thanks to: Shigem Nakamura, who invited me to the Fibonacci Meeting of Japan on
23th March 2012; Arieh Ben.Naim, who liberated me from the second law; Haruo Hosoya,
who found the common property between the Topological Index and $F$ entropy; and Masumi
Kawasaki, who not only understood the important relationship between the Fibonacci
sequence and entropy, but also introduced me to Shigeru Furuichi, who made a rediscovery of
Horibe’s achievements and invited me to this meeting at RIMS in Kyoto University.

References
[1] H. Hosoya?bpological Index. A Newly Proposed Quantity Characterizing the lbpological Nature of

Structural Isomers of Saturated Hydrocarbons” Bulletin of the Chemical Society of Japan, 44 (1971)

$2332\cdot 2339.$

[2] Y. Horibe An Entropy View of Fibonacci Trees” The Fibonacci Quarterly 20 (1982) $168\cdot 178$

[3] Y. Horibe Notes on Fibonacci’Rees and Their Optimality” The Fibonacci Quarterly 21 (1983) $118\cdot 128$

[4] Y. Horibe “Entropy of ‘Ibminal Distributions and the Fibonacci lrees” The Fibonacci Quarterly 26 (1988)

135 $\cdot$ 140
[5] Arieh $Ben\cdot Naim$ Entropy Demystified” World Scientific Pub Co Inc.; Expanded edition (2008)

[6] Arieh $Ben\cdot Naim^{\langle}$ A Farewell to Entropy’‘ World Scientific Pub Co Inc. (2008)

[7] Arieh $Ben\cdot Naim$ Discover Entropy and the Second Law of Thermodynamics” World Scientific Pub Co Inc.
(2009)

[8] Arieh $Ben\cdot Naim$ “Entropy and the Se$\infty nd$ Law: Interpretation and Misss.Interpretationsss” World
Scientific Pub Co Inc. $(2012)$

[9] Kyoto$20121113$Aumes.$v04.pdf$ and.ppt: used at the workshop. $(J_{spsnese})$

[10] $rp\}\backslash \dagger\Re\yen\lceil 7$ イ $\tau^{r}ノ\backslash +\backslash /^{\backslash }\neq\#の/$」$\backslash \neq ffi(*\mathfrak{F}ffl)$ 」 $B*\mathfrak{F}\Re\dagger\pm,$ $2008\not\in ae2$ th
[11] ma $*t_{\mathbb{E}J}^{A}*\yen\lceil\}\backslash jp_{\backslash D^{\backslash }\sqrt[\backslash ]{}}\backslash \backslash$カ，$\triangleright$ . $ィJ^{\backslash }\overline{\mathcal{T}}^{\backslash }/$ ク $\lambda.$ $7$ イ $\#^{1^{\backslash }}\backslash +\backslash /\neq\Re\hslash>$ らヒクゴ $\overline{\vee\prime}zの\underline{=}$ ft $W$までをつなぐ ff し $\iota\backslash \ovalbox{\tt\small REJECT}$

$\yen J$ $BX^{\ni}ff\#\dagger\pm,$ $2012*$
$[12]\ovalbox{\tt\small REJECT}_{p}\eta$ま–g $\lceil EWェ\sqrt[\backslash ]{}backslash \mathfrak{o}\mathfrak{e}^{\circ}-th$ $(ae 2\Re)\rfloor*$ ftfflW, $1997\not\in a2\mathfrak{R},$ $\lceil(J\backslash ffl:g\Leftrightarrow \mathfrak{t}b$とェ $\nearrow^{\backslash }\vdash \mathfrak{o}\mathfrak{e}^{\theta}-$ 」

[13] $\ovalbox{\tt\small REJECT}_{p}\Re$ま– $\yen$ $\lceil\not\in 41b$とェ $\sqrt[\backslash ]{}\vdash\Pi\epsilon^{\circ}-$ 」 $\#\mathfrak{B}\hslash 4\yen$ No.294, サイェ $J^{\backslash }iX\dagger\pm.$ $1987*$
[14] $ァ^{}1)-$ べ $\nearrow^{\backslash }$.-fイ $A\yen$ , $tPPtk-\mathbb{R}\ovalbox{\tt\small REJECT}\lceil ェ\nearrow^{\backslash }\triangleright\Pi$ $\mathfrak{e}$o–i;わ $\hslash$ lる」 $ir\ovalbox{\tt\small REJECT}\dagger\pm 7/\triangleright-\nearrow\backslash \backslash \backslash$ $\grave{}$ノク $xB$.1690, 2010 $*$

Appendix
$F=2^{Fs}$ . So $Fs=\log_{2}F$ , where $Fs$ is entropy computed using Shamon’s formula on shift
probability. This equation implies thermodynamic entropy is information entropy.
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