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1. Introduction
Nowadays, influenza has vigorously evolved and mutated into different variations.

Many diseases are transmitted by virus particles. Influenza is caused by a virus that can be of

three different type $(A, B and C)$ . Among these types, the virus Ais epidemiologically the most

important for humans, since it can recombine its genes with those of strains circulating in

animal populations (birds, swine and horses). These relatively rare recombination give rise

every few decades to new viral subtypes via the so called antigenic shift mechanism. The new

subtypes, classified according to the antigenic and genetic nature of their surface

glycoprotiens $HA$ (hemagglutinin) and $NA$ (neuraminidase), are usually antigenically so

different from their ancestors to escape completely the defenses of the immune system of the
previously infected hosts. Consequently, every antigenic shift is associated potentially with

particularly severe pandemics.

Many mathematical models have been proposed in the literature to describe the

inter-pandemic ecology of influenza A in humans and used to be a valuable tool in the

understanding of immune response to infectious diseases which helps in clarifying and

testing hypotheses.

2. The model
This research represents a dynamical model of influenza virus replication in human

epithelial cells. For a spread of two diseases by effects of two type of influenza virus, we
developed a simplified dynamical model, which focuses on the control of the infections by

innate and adaptive immunity. Innate immunity is represent by interferon-induced

resistance to infection of respiratory epithelial cells and by removal of infected cells by effector

cells. Adaptive immunity is represented by virus specific antibodies. The model does not
include effects of time delays and assumed that antigenic shift is not included in this model.

This model is constructed as a system of 13 ordinary differential equations with 35
parameters characterizing the rate of various processes contributing to the course of disease.

The parameters are derived from published experimental data. Then we will show the

existence of solutions and bounded of solutions and investigate the behavior of systems.

数理解析研究所講究録
第 1853巻 2013年 11-18 11



The general flow diagram is show in Fig.1, the proportion of susceptible $H(t)$, i.e.,

those cells do not have specific immune defenses against that particular strain; the fraction
$l_{1}(t),l_{2}(t)$of those individuals that are infected by virus A subtypel, 2 the two classes of those
cells resistant to infection by virus A subtype 1, 2 to that strain (i.e. recovered $R(t)$) $;D(t)$ is a
number of dead cells at time t. $V_{1}(t),$ $V_{2}(t)$ is a number of free virus A subtypel, 2 particles.

Fig.1 General flow diagram of the model.

$V_{1},V_{2}=1$ corresponds to $10^{10}$ particles/ml respiratory epithelial cells

The model of human immune response against influenza virus infection we consider
is a simplified model of population dynamics type with consists of the following interactions
(see fig.1). The epithehal cells of respiratory tract are assumed to be in one of five possible
states; healthy (fl), Infected $(l_{1}, l_{2})$ , dead $(D)$ or resistant $(R)$ to infection. The virus particles
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$(V_{1}, V_{2})$ interact with healthy cells and infect them. Infected cells release new virus particles

upon their death. Proliferation of healthy cells causes regeneration and decrease in proportion

of dead cells.
These interactions were used in the construction of a system of 13 ordinary

differential equations describing the dynamics of the main variables, list in Tablel, which

correspond to the components of the immune response shown in fig. 1

$\frac{dV_{1}}{dt}=\gamma_{V1}l_{1}-\gamma_{VA1}S_{1}AV_{1}-\gamma_{VH1}HV_{1}-\alpha_{V1}V_{1}-\frac{a_{\nu^{V_{1}}}}{1+a_{v}V_{1}}$ (1)

$\frac{dV_{2}}{dt}=\gamma_{V2}l_{2}-\gamma_{VA2}S_{2}AV_{2}-\gamma_{VH2}HV_{2}-\alpha_{V2}V_{2}-\frac{a_{\nu^{V_{2}}}}{1+a_{\nu}V_{2}}$ (2)

$\frac{dH}{dt}=b_{HD}D(H+R)+a_{R}R-\gamma_{HV1}V_{1}H-\gamma_{HV2}V_{2}H-b_{HF}FH$ (3)

$\frac{dl_{1}}{dt}=\gamma_{HV1}V_{1}H-b_{lE}El_{1}-a_{l1}l_{1}$ (4)

$\frac{dl_{2}}{dt}=\gamma_{HV2}V_{2}H-b_{l\epsilon}El_{2}-a_{l2}l_{2}$ (5)

$\frac{dM}{dt}=[b_{MD}D+b_{MV}(V_{1}+V_{2})](1-M)-a_{M}M$ (6)

$\frac{dF}{dt}=b_{F}M+C_{F}(l_{1}+l_{2})-a_{F}F-b_{FH}HF$ (7)

$\frac{dR}{dt}=b_{HF}FH-a_{R}R$ (8)

$\frac{dE}{dt}=b_{EM}ME-b_{Et}(l_{1}+l_{2})E+a_{E}(1-E)$ (9)

$\frac{dP}{dt}=b_{PM}MP+a_{p}(1-P)$ (10)

$\frac{dA}{dt}=b_{A}P-\gamma_{AV1}S_{1}AV_{1}-\gamma_{VA2}S_{2}AV_{2}-a_{A}A$ (11)

$\frac{dS_{1}}{d\mathfrak{t}}=r_{1}P(1-S_{1})$ (12)

$\frac{dS_{2}}{dt}=r_{2}P(1-S_{2})$ (13)

$D=1-H-R-l_{1}-l_{2}$ (14)

The variable $D$ serves as a maker for issue damage and an indicator of the severity of disease.
We assume that $H+l_{1}+l_{2}+R+D=1.$

Infected cells by virus 1, 2 can be destroyed by the same effector cell. The production

rate of effector cells $(E)$ and plasma cells $(R$ are stimulated by the same APC $(M)$ .
And hence the system (1)$-(14)$ is dimensionless.

The interactions are based on clonal selection theory, mass-action kinetics,

characteristics of interactions and the birth-death balance of population of cells and

molecules.

Eq. (1), (2)of the system describes the rate of change of virus 1, 2 concentration
$V_{1},$ $V_{2}$ .It expresses the production rate of a viral particle by infected cells, rate of neutrahzation
of influenza Atype 1 and 2 virus by specific antibodies, the rate adsorption of viral particles

by uninfected cells, the natural decay of viral particle and the rate of nonspecific mucociliary

removal of virions supported by cough and other mechanisms.
Eq. (3) determines the time rate of change of healthy cells $H$ During recovery, new

healthy cells are generated as a result of proliferation of both healthy and resistant cells (the

offspring of resistant cells lose resistance) and hence the proliferation term is proportional to
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$(H+R)$ , and to $D$ (in a logistic fashion) since regeneration can only occur in the presence of
damage. Resistant cells $R$ gradually lose their resistance to infection and return into their

initial sensitive state (healthy state), which is characterized by the term $a_{R}R$ The terms
$\gamma_{HV1}V_{1}H,\gamma_{HV2}V_{2}H$ are the loss of healthy cells due to infection and the term $b_{HF}FH$

characterizes transition of the healthy cells into resistant state.
Eq. (4), (5)characterize the time rate of change of infected cells $l_{1},$ $l_{2}$ . The infection of

healthy cells and resistant cells by virus 1, 2 are described in the terms $\gamma_{HV1}V_{1}H,$ $\gamma_{HV2}V_{2}H.$

The term $b_{lE}El_{1},$ $b_{lE}El_{2}$ characterizes the destruction of infected cells by effector cells during

which no new virus produced. The last term indicates the natural death, damage by virus and

recovery of infected cells during which new virus particles are produced.

Eq. (6)establishes that the time rate of increase of activated APC $(M)$ is proportional

to the amount of the each virus and the amount of dead cells by each virus. The natural decay

of activated state ofAPC is represented by the last term.
Eq. (7) describes the time rate of change of interferons which depends on the

production rate of Fby APC and by infected cells, on the rate of interferons which blinding

uninfected cells and the nonspecific decay of interferons represented by $a_{F}F$

Eq. (8) shows that resistant cells $R$ are induced from healthy cells and by resistant
cells $R$ gradually lose their resistance and convert back to healthy cells with finite lifetime.
The terms $b_{HF}FH$ characterize transition of the healthy cells into resistant $R$ state.

Eq. (9), (10) characterizes the rate of change of effector cells $E$ concentration and

takes into account the production rate of effector cells stimulated by APC and the destmction
rate of infected cells by effector cells. The terms $a_{E}(1-E)$ $a_{p}(1-P)$ in Eqs. (9), (10) are
approximated expressions for homeostatic maintenance of the levels of active effectors and
plasma cells. The first term in Eq. (10) characterizes the activation process of plasma cells

stimulated by APC.
Eq. (11) stands for the time rate of change of the concentration of antibodies

describing the production rate by plasma cells, the neutralization rate of free viral particles

by specific antibodies and the natural decay rate (last term)

Eq. (12), (13)The variable $S_{1},S_{2}$ represents the compatibility between antibodies
and the virus strain in an individual and ranges from $0$ (no compatibility) to 1 (maximal

compatibility) and can be interpreted as a measure of blinding affinity of the antibody and the
virus. The rate of increase of $S_{1},S_{2}$ is approximated by term $rP(1-S_{1}),rP(1-S_{2})$ which

accounts for two natural observation: (i) the increase in $S_{1},S_{2}$ are stimulated by plasma cells
and (ii) $S_{1},S_{2}$ cannot increase beyond 1. By adjusting the time evolution of $S_{1},S_{2}$ we may

observe how the course of the disease depends on the evolution of antigenic distance.
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where each of the parameters has a clear epidemiological meaning, thus can be
estimated from data.
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3. Simulation
We use software XPPAUT to run all simulations. The time courses of variables were obtained
by numerical integration using parameters provided in Table2. following clinical data.

$\infty. \mathcal{M}.$

$W$ $\omega.$

$V_{1}(0)=0.01,V_{2}(0)=0.S_{1}(0)=0.01, S_{2}(0)=0, r_{1}=000003, r_{2}=0$

$V_{1}(0)=0,V_{2}(0)=0.01,S_{1}(0)=0, S_{2}(0)=0.01, r_{1}=0, r_{2}=0.00001$
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$V_{1}(0)=0.01,V_{2}(0)=0.01,$ $S_{1}(0)=0.1,$ $S_{2}(0)=0.01,$ $r_{1}=0.00003,$ $r_{2}=0.00001$

$V_{1}(0)=0.7,V_{2}(0)=0.01,$ $S_{1}(0)=0.1,$ $S_{2}(0)=0.01,$ $r_{1}=0.00003,$ $r_{2}=0.00001$
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$\wedge,.$

$V_{1}(0)=0.01, V_{2}(0)=0.01, S_{1}(0)=0, S_{2}(0)=0.01, r_{1}=0, r_{2}=0.00001$
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