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1 Preface
Collective cell movement is an essential process in many events of all animals, including
wound healing and embryonic development although our understanding for what attnibutes

the emergence of collective cell movement is far from complete. Modelming multicellular
behavior leads to further understanding of collective cell movement. In this report, $I$ first
introduce the Cellular Potts Model, a cell-oriented model that can express the multicellular
behavior. Next, $I$ show that the model results obtained by numerical simulations with

quantified data well matches the experimental observations of multicellular movement.

Finally, $I$ report that the model including dynamics of direction of each individual cell applied
in this study can represent characteristic multicellular behavior observed in experiments.

2 Cellular Potts Model
In this section, $I$ explain about the Cellular Potts Model (CPM). The CPM represents
morphology of each cell as a connection of lattices sites; therefore, an assembly of different
indexed clusters of lattice site whose index has the same value represents a group of cells
(Fig. $1A$). In the model, a state transition resulting from lattice replacement between

neighboring ones is preferred for decreasing the energy of the system $H[1]$ . The energy
adopted in the model contains the minimal factors necessary to capture the multicellular
dynamics, such as interfacial energy, cell volume constraint, cell division, and cell migration
(Fig. $1B$). $H$ is defined as

$H= \sum_{\overline{x},\overline{x}’}J_{\tau(\sigma_{\overline{X}})\tau(\sigma_{\overline{X}’})}(1-\delta_{\sigma_{\overline{x}}\sigma_{\overline{x}’}})+\lambda_{v}\sum_{\sigma}(V_{\sigma}-V_{0})^{2}$
, (1)

where $\overline{x}$ and $\vec{x}’$ each represent a position of lattice site, $\sigma$ is an index labeled on a
specified lattice, $\tau$ represents an attribute i.e., cell or medium, $J$ is the interfacial energy
between cell-cell or cell-medium, $\lambda_{v}$ is the magnitude of cell volume constraint, $V_{\sigma}$ is the
current cell volume, $V_{0}$ is the ideal cell volume, and $\delta$ represents the Kronecker delta. The

interfacial energy per unit length $J$ determines the adhesion strength of the interacting
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materials, such as cell-cell or cell-medium, and $\lambda_{v}$ represents resistance to cell

compression/expansion.

The system transition occurs stochastically by a lattice-based Monte Carlo method;

that is, the labeled value of a randomly chosen lattice site $\sigma_{\overline{X}}$ is attempted to be replaced by

a different labeled value of its neighboring lattice site randomly chosen $\sigma_{\overline{\chi}},$ . The transition is

realized by evaluating the change in energy $\Delta H$ associated with its replacement. Even if
$\Delta H$ is positive, the replacement occurs at a given probability. The change in energy resulting

from the state transition $\Delta H$ contains one for the cell migration:

$\Delta H=H_{afier}-H_{before}-E_{m}$ , (2)

where the migration energy $E_{m}$ defined as

$E_{m}= \lambda_{m}\sum_{\sigma}a_{\sigma}\cdot\tilde{\vec{v}}_{\sigma}\simeq$
. (3)

$a$ epresents the vector of the front-rear axis of cell migration, $\vec{\nu}$ represents the vector

connecting from the position of cell to a candidate position of the cell shifted by the

replacement, and $\lambda_{m}$ is the intensity of cell migration. The tilde over each letter indicates the

unit vector (Fig. $1C$).

To update the front-rear axis accompanied by the state transition, we propose the

following:

A

Figure 1 Cellular Potts Model. (A) An example of model simulation. (B) Schematic explanation of

energies used in the model. (C) Migration energy and update rule of front-rear axis.
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$\vec{a}_{i}’=\tilde{\vec{a}}_{i}+\vec{\nu}_{i}$ (4)

where $\vec{a}’$ is the updated front-rear axis, and the suffix $i$ represents the cells that change

position by the lattice replacement.

To realize the minimum system energy at equilibrium, the state transition occurs
stochastically with biological noise such as cytoskeletal fluctuations in the following:

$Pr\{\begin{array}{l}transitionisrealized\end{array}\}=\{\begin{array}{l}\exp[-\beta\Delta H], if \Delta H>01, if \Delta H\leq 0(5)\end{array}$

$\beta$ represents the magnitude of the biological such as membrane fluctuations. See [1, 2] for

more details. [3] is a good primer for ones who want to make a CPM program.

3 Experiments
In this section, $I$ show experimental results about dependence of multicellular movement and
that of intercellular adhesion on $Ca^{2+}$ concentrations included in culture medium. The
concentrations of $Ca^{2+}I$ used were 0.075, 0.15, 0.75, and 1.5 $mM.$

For the measurement of multicellular movement, $I$ used a conventional free-injury
experimental system, in which removing a non-toxic plastic sheet allowed confluent cultured
cells to move to a free space. To quantify the dynamics of individual cells, we conducted
particle image velocimetry (PIV) analysis for the time-lapse images of cell movement
captured every 10 minutes. Using the results of the PIV analysis, we computed the average
velocity ofparticles within a small fixed grid between two temporal sequential images.

For the measurement of intercellular adhesion, $I$ adopted a femtosecond-laser-based
assay. See [4] for the details of measurement procedures. From this analysis, $I$ found that the
relative intercellular adhesion strength for each $Ca^{2+}$ treatment $W$, i.e., $W^{X}$ for $X=0.075,0.15,$

0.75, and 1.5, was quantified; $W^{075}=1.0,$ $W^{15}=1.6,$ $M^{75}=6.0$ , and $W^{5}=13.2.$

4 Quantities for Collective Cell Movement
To measure the directional and cohesive cell movement, three quantities were introduced: (I)

moving distance of front edge, (II) degree of forward movement, and (III) spatial correlation
length. The more directional/cohesive the movement becomes, the greater the degree of
forward movement/spatial correlation length.
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The degree of forward movement is defined as follows:

$\langle^{N}u_{i}^{X}$ , (6)

where $i$ is the index of cells, $\tilde{\vec{u}}_{i}^{X}$ is the $x$ component of the unit vector of cell displacement

per 10 minutes, and $N$ is the total number of cells in the observation window. $A$ tilde and $\langle\cdot\rangle$

indicate the unit vector and time average, respectively.

For the spatial correlation length, $I$ first calculated the spatial correlation function $\phi$ :

(7)

where $\Delta\vec{u}_{i}$ is a deviation from its spatial mean $\sum_{i-1}^{N}\vec{u}_{i}$ . The spatial index $k$ was converted to

the distance in radial directions $R$ . Then, the spatial correlation length is defined as follows:

$\langle\frac{1}{2}\int_{0}^{R_{m_{\kappa}}}\psi tR\rangle$ . (8)

5 Parameters
I set one pixel ofthe simulation space as 2 $\mu m$, and the computer simulation was performed in
$600\cross 600$ pixel2. The ideal cell volume was determined by some images, $V_{0}=100$ . As an
initial distribution of the front-rear axis, we assumed that the direction of front-rear axis had a
uniform distribution, and that cell volume was slightly compressed, $V_{0}=95$ . The initial

variation of $V_{0}$ did not affect conclusions qualitatively.

As mentioned in previous studies [1,5], the energy to maintain intercellular

adhesion was defmed as $\gamma=J_{cell}$ $-J_{cell-cell}/2$ , where $J_{ccll}$ and $J_{cell-medj_{A}}$ are each

the interfacial energy between the cells and that between the cell and medium. In this study,

the laser-used estimation revealed the relative strength of intercellular adhesion $W$ among
$Ca^{2+}$ treatments, i.e., $W^{x}=\gamma^{X}/\gamma^{0J)75}$ for $X=0.075,0.15,0.75$, and 1.5. $I$ assumed that the

interfacial energy between cell and medium is proportional to that between cells. $I$ set
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$J_{cel/-medjum}=1.5J_{u-ceu}C\mathcal{C}$ , leading to $\gamma^{x}=J_{cell-cell}^{x}$ ; the qualitative results did not change
significantly when the constant value changed. For numerical simulations the parameter
values were given as: $\gamma=0.1-10.0,$ $\lambda_{v}=0.1-10.0,$ $\lambda_{m}=1.0-10.0$ , and $\beta=1-2$ . In the model, a
cell divides with a constant probability $\mu$ at each Monte Carlo step, and the cell division
probability was given as $\mu=10^{-4}$ from measured data (not shown).

6 Comparison between Experimental Data and Model Results
Over the parameter range I did extensive numerical simulations and compared results

generated by the simulations with experimental results. The PIV analysis for the experimental

observation revealed that the front edge in the group of cells moved farther for higher $Ca^{2+}$

concentrations $(Jonckheere-Te\iota$pstra $test, P<<0.OO1 for each time, n=3 for each$ treatment) ,

and more directional and cohesive movement was generated for the higher $Ca^{2+}$ treatments
$(Jonckheere-$Terpstra $test, P<<0.OO1, n=4 for each$ treatment) (Fig. 2).

In consideration of the experimental results, $I$ examined the dependence of three quantities for
multicellular movement on the relative strength of intercellular adhesion corresponding to

each $Ca^{2+}$ treatments. $I$ found that the model results well matched the trend of experimental
observation $(n=2000 for each$ value $of$ relative adhesion strength, $Fig. 2)$ . Indeed, the
movement distance of the front edge became long, and the two order quantities for the
collectivity of multicellular movement also increased in response to the increase of

intercellular adhesion strength.

$\overline{\in c\circ}$

$\overline{\overline{の}}$

$u^{X_{\rfloor}}\propto$

0,075 0.15 0.75 1.5
$Ca^{z}\infty ncentnbon[mM|$

$\overline{\Phi}$

$\mathring{\geq}0$

Figure 2 Comparison between experimental and model results. The dependence of three quantities on the
$Ca^{2+}$ treatments (upper) and that on the corresponding relative adhesion strength (below) are shown.
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In conclusion, the experiments and the numerical simulation of model revealed that

the strength of intercellular adhesion is a sufficient factor for the emergence of collective cell

movement.

7 A Key Factor for Modeling Multicellular Movement: Cell Polarity
In the last section, $I$ show that the dynamics of cell polarity for the cell migration given to

individual cells is a key point to express multicellular behavior in mathematical modeling. $I$

observed multicellular movement of a relatively small number ofcells, i.e., 2, 3, and 8 cells so
as to capture the movement as simple as possible. Interestingly, $I$ found that a small number

of cells moved cooperatively maintaining their neighboring connections, and exhibited a

swirling movement in all cases. The figure 3 shows only the case of 3-cells movement. Note

that tracking data of a single cell in the 3-cells movement clearly shows a circling motion.

The numerical simulation of the model for a small number of cells was performed to

test whether the model can represent the characteristic swirling motion. Surprisingly, the

model including Eq. (4) well represented the characteristic swirling behavior in all situations:
2-cells, 3-cells, and 8-cells. Also, $I$ confirmed that the multicellular swirling behavior was

realized in most of the parameter range used in this study.

Time[hr]

$\overline{\Xi\varpi\omega 0}$

$\vdash\underline{\simeq\varpi 0\underline{co}}$

Figure 33-cells movement and tracking of a single cell. Tracking lines were depicted using the Image$J.$

The characteristic swirling behavior is seen in the experiment and in the model simulation.
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We detennined Eq. (4) according to an earlier study [6], in which a basic idea of
temporal update of cell polarity vector that can model multicellular sprout formation is
proposed. We suggest the dynamics of front-rear axis as Eq. (4) in a heuristic manner this

time. For further development data collection of multicellular behaviors in various situations
and statistical modeling using the data are necessary to build a better mathematical model of

multicellular behavior.
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