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1. Introduction
Conventionally, the optimization ofunknown parameters in Neyman-Scott point

processes have been conducted by minimizing the square difference between the

observed and the expected 2nd order moment functions. The maximum Palm likelihood

approach introduced by Tanaka et al. (2008) provided a new likelihood-based
methodology and exhibited better performances than the conventional minimum

contrast methods. The objective of this study is to extend this approach to

inhomogeneous Neyman-Scott processes. This paper first reviews the likelihood

equation for homogeneous Poisson processes and the Palm likelihood for the

homogeneous Neyman-Scott processes, then proposes the extension of this method to

inhomogeneous processes.

2. Inhomogeneous Poisson process
If the presence of a tree at $x$ is solely determined by function $\lambda(x)$ which indicates the

probability of the presence of a tree in the infinitesimally small unit area centered at $x,$

and there is no interaction between trees, the stochastic point pattem model is called the

inhomogeneous Poisson process with the intensity function $\lambda(x)$ . If $\lambda(x)=\mu$ (constant

function), the model is called the homogeneous Poisson process of intensity $\mu.$

If there are trees at $\{x_{1}, x_{2}, \ldots, x_{n}\}$ in a rectangular plot $A$ , the $\log$-likelihood is given

by (Cressie 1991; p. 655):

$\sum_{\iota=}^{n}\ln(\lambda(x_{j}))-\int_{A}\lambda(x)\$ . (1)

3. Homogeneous Neyman-Scott process
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Suppose that (1) a parental population followed the homogeneous Poisson process with
intensity $\mu;(2)$ each parent produced a random number of offspring according to the
Poisson distribution of intensity $v;(3)$ offspring were dispersed from each mother tree
according to the two-dimensional Gaussian distribution $\exp(-r^{2}/20^{2})/2\pi 0^{2};(4)$ there
was no interaction among offspring; and (5) parents all died. The resulting distribution
of offspring is called the Thomas process, which is contained in a more general
framework of the homogeneous Neyman-Scott process.

Given the presence of a tree at location $x$ , the occurrence probability of another
offspring at location $y$ is called the Palm intensityfunction. Let this function denote as
$\lambda_{x}(y)=P$(there is a tree at $y|$ presence of a tree at x). If the point process is stationary
and isotropic, $\lambda_{x}(y)$ depends only on $r=\Vert y-x\Vert$ , thus, fixing as $x=O$, we may write it
as $\lambda_{0}(r)$ . For the Thomas process, the Palm intensity function can be explicitly written as
(equation (9) of Tanaka et al. (2008)):

$\lambda_{o}(r)=v\mu+v\cdot\exp(-r^{2}/40^{2})/4\pi 0^{2}$ . (2)

Let $R$ be some positive constant that is sufficiently greater than the clustering scale
Suppose that trees are at $\{x_{1}, x_{2}, \ldots, x_{n}\}$ in plot $A$ . Let $B$ be the inner region that is
further than $R$ from the edges, and let $N(B)$ the number of $x_{i}s$ that belong to $B$ . For $x_{i}\in$

$B$ and $x_{j}\in A$ , the difference process is defmed as $\Delta_{ij}=x_{i}-x_{j}(i\neq j)$ and let $r_{ij}=\Vert\Delta_{ij}\Vert.$

Assuming that the distribution of the difference processes can be approximated by the
inhomogeneous Poisson process with intensity function $N(B)\lambda_{o}(r)$ , Tanaka et al. (2008)
introduced the $log$ Palm likelihood as:

$\ln L(\mu_{V},\sigma)=x_{l}\ovalbox{\tt\small REJECT} r_{ij}\leq 2^{\ln(N(B)\lambda_{0}(r_{ij}))-f_{0}N(B)\lambda_{0}(r)2mdr}$. (3)

(Note: Tanaka et al. (2008) did not separate the inner side $(B)$ and used all the pairs for
the difference process, and added the edge correction term into the equation). If the
constant term, $\ln(N(B))$ is deleted, equation (3) is written as:

$\ln\overline{L}(\mu,v,\sigma)=x,r_{i/}$ (4)

For the Thomas process, substituting (2), we have the explicit form;

$\ln\overline{L}(\mu,)=x+1-\exp(-R^{2}/4\sigma^{2}))\}$ . (5)
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Tanaka et al. (2008) proposed to maximize equation (5) for finding appropriate

parameter values.

4. Inhomogeneous Neyman-Scott process

After the Thomas process produced an offsprin$g$ population, if the location-dependent

thinning operated, the resulting point pattem is an example of the inhomogeneous

Neyman-Scottprocess (Waagepetersen 2007).

For this point process, the Palm intensity function can be written as:

$\lambda_{x}(y)=s(y;a)(v\mu+v\cdot\exp(-\Vert y-x\Vert^{2}\int 40^{2})/4\pi 0^{2})$ . (6)

In the same way as the homogeneous Neyman-Scott process, if we assume that the

difference process can be approximated by the inhomogeneous Poisson process of

intensity function given by equation (6), we have the $\log$ Palm likelihood for the

inhomogeneous Neyman-Scott process as:

$\ln\tilde{L}(\mu,v,\sigma,a)=I_{i}g\{|k_{1^{-}}3_{x_{l}|\leq R}^{\ln(A,(x_{j})-\int_{|\triangleright||sR}\lambda_{x_{i}}(y)\phi\}}$

$=* g[\sum_{*1k_{J^{-x,||R}}}\ln\{s(x_{j};a)v(\mu+\frac{ex\infty-\Vert x_{j}-x_{i}\Vert^{2}/4\sigma^{2})}{4_{M^{2}}})\}-\int_{\triangleright-*,||sR}s(y;a)v(\mu+\frac{\exp(-\Vert y-x_{i}\Vert^{2}/4\sigma^{2})}{4\varpi^{2}})\Phi]$

. (7)

In general, the integral in equation (7) does not have an explicit form, thus, we have

to numerically compute the integral, for example, by the Riemannian sum. For this

purpose, a square is more convenient than a circle. Hereafter, let $\Vert y-x_{i}\Vert_{S}\leq R$

indicate the square of edge length $2R$ centered at $x_{i}$ . Equation (7) is rewritten as:

$\ln L_{lNS}(\mu,\nu,\sigma,\Theta)=x_{l}g[|k_{j}-xR_{sR}^{\ln\{s(x_{j};a)v(\mu}+\frac{\exp(-\Vert x_{j}-x_{i}\Vert^{2}/4\sigma^{2})}{4\pi\sigma^{2}})\}$

(8)

$- \int_{y-x_{j}|bsR}s(y;a)v(\mu+\frac{\exp(-\Vert y-x_{i}\Vert^{2}/4\sigma^{2})}{4\pi\sigma^{2}})\phi]\}$

5. Example
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Fig. 1 shows an example ofrealized point pattems of an inhomogeneous Neyman Scott
process. The environmental gradient is given by

$f( x)=\sum_{J^{rightarrow}}^{4}e\frac{(x-z_{j})^{2}\wedge}{2s^{2}}/2\varpi^{2}$ , (9)

where the four (local) maxima (z) are (35, 35), (50, 50), $(65,65),$ $(80,80)$ , and $s=15.$

The survival function is given by

$s( x)=\frac{i}{1+\exp(\sim 8f(x)+2)}$ (10).

Parents are randomly distributed with density 0.008, and produced random numbers of
offspring according to the Poisson distribution ofintensity 15. Offspring were dispersed
by the 2-dimensional normal distribution with variance $=15^{2}$ . For human eyes, in Fig. 1,
clustering by dispersal limitation and that by high survival probabilities are mixed and
hardly distinguishable.

Applying the extended maximum Palm likelihood methods, we obtained the
estimates shown in Table 1. We have obtained parameter values that were close to the
true ones, except the parental density for which we had 1.5 times over estimate.

Fig. 1
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An example of realized point pattem by the inhomogeneous Neyman-Scott process. The circles are
parents and black dots are offspring. Darker areas had lower survival probabilities.
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Table 1
Parameter values obtained by the maximum Palm likelihood method. The results over

10 simulated point pattems are shown.

$\frac{ParameterTmevalueMeanSD}{Dispersa155.6091.588}$

Parental density 0.008 0.0130 0.0185
$-8$ -8.083 3.754

$\underline{SuIvivalprobability22.0560.525}$
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