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We are eager about a construction of mathematical immune models that describe the host-defense
mechanism against cancer and also provide with a future useful and supplementary mathematical tool
for medical treatment from a viewpoint of mathematical medicine. As is well known, there are two
distinct models for tumour immune: one is a deterministic model and the other is a random model.
In this article, based upon the probabilistic modelling method we propose an immune response model
against cancer as a mathematical model of branching particle system. The peculiar features of this
research consist in (i) proposing a special class of superprocesses as its limit; (ii) grasping the effects
of immunity as the reflex extinction of the superprocess. Mathematically, the superprocess may
arise from a system of branching particles by the renormalizing procedure, namely, by taking the
short time high density limit of the system. The local extinction property of the model is extremely
important on an applicational basis, because it just corresponds to the situation that the cancer cells
are expelled locally by the actions of immune effectors. In this article we introduce our third model
and in particular discuuss the extinction of the model.

われわれはガンに対する生体防御機構を記述でき，数理医学的観点から将来治療に役に立つ補助的な数理
道具を提供することにもつながる免疫モデルを数学的に構築することに意欲的に取り組んでいる．よく知
られているように，腫瘍免疫に対しては 2つの異なるモデルが存在している．1つは確定的モデルであり，
いま 1つはランダムなモデルである．本論文では確率論的なモデリング手法に基づいて，ガン細胞に対す
る免疫応答モデルを分枝粒子系の数理モデルとして提案する．本研究の特徴的な点は (i) 極限としての超
過程の特別なクラスを取り扱うこと，(ii) その超過程の消滅性の現象的反映として免疫反応の効果をとら
えることにある．数学的に見れば，超過程は再正則化手続きを取ることによって分枝粒子系から出現する．
実際，その手続きは世代交代の時間間隔を短縮し個体質量を倭小化する高密度化極限を取ることによって
実現されるものである．モデルの局所消滅という性質は，ガン細胞が免疫作用によって局所的に駆逐され
る様子に対応すると考えられるので応用上極めて重要である．この論文では第 3 モデルを紹介し，そのモ
デルの消滅性について議論する．

1 Introduction
The purpose of this research consists in modelling mathematically the immune resonse against cancer

cells. Ordinarily, some of normal cells are transformed into irregular ones by several reasons, such as
chemicals, carcinogens, carcinogenic virus and bacteria, DNA replication error, DNA repair disorder,

chromosomal end centromere disorder, radiation and so on, and the tumorigenic process proceeds. In

concord with that, a group of immune cells invoke the immune response against canceration, and in so

図 1: cancer cells (pa.1)

doing they accomplish their important errand of host-defense mechanism in the living body. Here the

数理解析研究所講究録
第 1853巻 2013年 194-201 194



図 2: cancer cells (pa.2)

effectors are supposed to be $NK$ (naturak killer) cells, cytotoxic $T$ cells, and activated macrophages, etc.
We focus our mind especially on the immune response both in the transformation period of cell and in
the proliferation period of cancerated cell, and propose a stochastic model that is capable to describe
the cytotoxic actions by a bunch of effetors against cancer cells. Analyzing the model mathematically,
we study the qualitative properties of the biological phenomena related to immune response against
cancer. In our previous research [6] for our first primitive model we introduced the immigration rate
$q>0$ (a positive constant) as the cytotoxic intensity of effectors against cancer. In the succeeding paper
[9] we improve this point and propose a more elaborate model that can describe the effects by those
effectors, depending on the location in accordance with the environmental changes. In this article as
our third model we introduce a new model that allows the effector field to change itself depending on
the associated environmental change. In this paper we may adopt stochastic modelling approach [13] to
grasp the immune response against cancer as a mathematical model of branching particle system, and
to consider the effectiveness of immunity as a reflection of extinction property on superprocesses. In [1]
we considered a formulation of catalytic processes applicable to filaments and catalysts in physiology
and biochemistry, and studied asymptotic behaviours of solutions to related equations. While, in [2]
we investigated a special class of stochastic processes related to chemical reaction of the medicinal, and
proved the existence and uniqueness theorem for measure-valued processes which is able to describe the
increase $or$ decrease of a branching particle system in number according to whether the environment is
good or not.

図 3: the immune ccils: effectors (pa.3)
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2 Stochastic model for immune response against cancer

The immune system in the living body is regulated by the effector-induction protocol. It is known that

various kind of effectors (such as $T$ cells, $B$ cells, $NK$ cells, NKT cells, dendritic cells, and macrophages,

etc.) form a very complicated network, and that there is a possibility that it provokes a positive and$/or$

negative immune response for/against cancer cells. Our main concern is antitumor immune response, and

$NK$ cells, NKT cells and $T$ cells have to do with the immune surveillance for cancerated cells. When the

tumorigenic process proceeds, normal cells are transformed into irregular ones by some reasons and are
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cancerated, and they repeat disorder proliferation peculiar to the cancer because of continual emission of

false proliferation signals by malfunctioned oncogenes and tumor suppressor genes. On the other hand,

the cancer cell is preyed or destroyed by effectors (a group of immune cells such as $NK$ cells and so on) by

virtue of the immune surveillance mechanism in a living body. Then, taking them all into consideration,

we introduce a natural number valued random variable $N_{n}$ : $\Omegaarrow N$ for each $n$ , which means the total

number of cancer cells in the n-th generation. We assume that there is a sequence $\{\gamma_{n}\}_{n}$ of positive

numbers such that $\gamma_{n}arrow\gamma\in \mathbb{R}^{+}$ $(as narrow\infty)$ and also that

$E[\xi_{n}]=1+\frac{\gamma_{n}}{n},$
$Var(\gamma_{n})=\sigma_{n}^{2}arrow\sigma^{2}$ $(ae narrow\infty)$

$\langle$ 1)

where $\gamma_{n}$ is the number of offsprings generated by the n-th generation. This implies that the branching

particle system has a clear tendency to increase in number. When we suppose that for each cell, the

proliferation or division occurs independently at a random time, we introduce the branching rate $n\lambda$

$(\lambda>0)$ , which means the accelerated increase rate for the number of cancer cells. We adopt a model by

a branching particle system as a proliferation process for cancer. The second expression in (1) implies

that the finiteness of the varinace (or the second moment) will be kept even in the passage to the limit

$narrow\infty.$
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Since we have only to describe the immune response in a locally limited tissue, the region in question
is restricted to a comparatively small area. So that, it suffices to consider the model in a bounded domain
$D\subset \mathbb{R}^{d}$ with $d=3$ . For $N_{n}$ pieces of cancer cells in the n-th generation, each cancer cell is sopposed to
start at the initial point $x_{i}^{(n)}\in \mathbb{R}^{d}(i=1,2, \ldots, N_{n})$ . While, it is considered that the target cell $(=$ the
cancer cell) moves little in the early stage, namely in the transformation period of cell, and also that in
the proliferation period of cancerated cell it may diffuse and expand as if the liquid should seep through
a leather bag because of a superfluity of proliferated cancer cells. Hence, we regard it as a diffusion with
diffusion coefficient $k(\epsilon)$ depending on a small parameter $\epsilon(>0)$ . The diffusion operator is defined as
$L_{\epsilon}=k(\epsilon)\triangle$ , where $\triangle$ is the Laplacian.

In our model the effectors are supposed to be $NK$ cells, killer $T$ cells, macrophages among a group
of immune cells, and we will take the cytotoxicity of these effectors against cancer into account. In the
previous paper [6], the previous report [4] or the previous announcements [3] (see also [5]), we introduce
a deterministic emigration rate $q>0$ (a positive constant) in the terminology of the theory of stochastic
processes, which expresses the intensity of cytotoxicity by effectors against cancer. Although one may find
it interesting as the first random $mo$del, it is not necessarily desirable to treat it like a simple and poor
model, in order to imitate the effects of immune response by effectors against cancer from the viewpoint
of the modelling theory as well as from the standpoint of future simulation analysis. In the succeeding
studies [9] we improve this point and propose a more elaborate model, which can describe the effects
by those effectors, depending on the location in accordance with the environment changes. There are
three methods in the improvement. That is, it means that instead of the positive constant $q$ , we adopt a
(random) function $q$ like:

(i) $q(x)$ , $x\in D$ ; (ii) $q(\omega)$ or $q(\omega, x)$ , $\omega\in\Omega$ ; (iii) $q(t, \omega)$ , $\omega\in\Omega.$

In the model (i) the intensity of cytotoxicity $q$ depends on the location $x\in D$ , which means that the
intensity $q(x)$ varies as the environment changes, and it strengthens or weakens according to the good
or bad environment. In the second new model the parameter $\omega$ expresses the environmental change
independent of the sample $\omega’$ which comes from the original stochasticity of the branching model. The
latter case $q(\omega, x)$ just corresponds to the case $q(\omega)$ depending on the location. In the model (iii) the
time evolution of $q(\omega)$ can also be described. As a matter of fact, we can realize the case (i) as the choice
of branching rate $\alpha(x)$ and branching mechanism $\beta(x)$ depending on the location, for example. The aim
of this article is to establish the realization of the case (ii) through a construction of catalytic process
which belongs to a special class of superprocesses. Once it has been accomplished, the next target should
be a derivation of extinction property of the model. Under the above-mentioned settings, we propose a
random model for the target cancer cells:

$X_{t}^{(n)}= \frac{1}{n}\sum_{i=1}^{N_{n}(t)}\delta_{x_{i}^{(n)}(t)}$ (2)
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where $x_{i}^{(n)}(t)$ is the location of the i-th cancer cell in the n-th generation at time $t$ , and $N_{n}(t)$ denotes

the total number of cancer cells alive at time $t$ . (2) is the quantity related to an empirical measure,

expressing the state of the cancer at time $t$ . For instance, the qualitative property of a random walk is

well reflected by its limiting process, say, the Brownian motion. Likewise, the qualitative property of an

aggregate of cancer cells can be thought to be reflected by its limiting process $X_{t}$ . On this account, we

have to only to analyze the limit superprocess $X_{t}$ in what follows.

3 Analysis on the limiting process
Let $C=C(\mathbb{R}^{d})$ be the space of continuous functions on $\mathbb{R}^{d}$ . When $C_{b}$ denotes the set of bounded

continuous functions on $\mathbb{R}^{d}$ , then $C_{b}^{+}$ is the set of positive members $g$ in $C_{b}$ . Let $\langle\mu,$ $f \rangle=\int fd\mu,$

and $M_{F}=M_{F}(\mathbb{R}^{d})$ is the space of finite measures on $\mathbb{R}^{d}$ We denote an $L_{\epsilon}$-diffusion process by
$\Xi=\{\xi, \Pi_{s,a}, s\geq 0, a\in \mathbb{R}^{d}\}$ . Then $K\equiv K(dr)$ is the associated continuous additive functional ( $CAF$),

and we assume that $K$ lies in the Dynkin locally admissible class [10] of $CAF$ , and we write it as $K\in \mathbb{K}^{q}$

(some $q>0$). Then a superprocess $X=\{X, \mathbb{P}_{s,\mu}, s\geq 0, \mu\in M_{F}\}$ with branching rate functional $K$ (or

$(L_{\epsilon}, K, \mu)$-superprocaes) can be characterized as a continous $M_{F}$ -valued time-inhomogeneous Markov

process $X=\{X_{t}\}$ with Laplace functional

$\mathbb{P}_{s,\mu}e^{-\langle X_{t},\varphi\rangle}=e^{-\langle\mu,v(s,t)\rangle}, 0\leq s\leq t, \mu\in M_{F}, \varphi\in C_{b}^{+}$. (3)

Here the function $v$ is uniquely determined by the $\log$-Laplace equation

$\Pi_{s,a}\varphi(\xi_{t})=v(s, a)+\Pi_{s,a}l^{t}v^{2}(r, \xi_{r})K(dr) , 0\leq s\leq t, a\in \mathbb{R}^{d}$. (4)

We need Dynkin’s Historical Superprocess. $\mathbb{C}=C(\mathbb{R}_{+}, \mathbb{R}^{d})$ denotes the space of continuous paths on $\mathbb{R}^{d}$

with topology of uniform convergence on compact subsets of $\mathbb{R}+\cdot$ To each $w\in \mathbb{C}$ and $t>0,$ $w^{t}\in \mathbb{C}$

expresses the stopped path of $w$ , and $\mathbb{C}^{t}$ is the totality of all these paths stopped at time $t$ . To every
$w\in \mathbb{C}$ , putting $\tilde{w}_{t}=w^{t},$ $t\geq 0$ , we aaeociate the corresponding stopped path trajectory $\tilde{w}$ . The image of
$L_{\epsilon}$-diffusion $w$ under the map : $warrow\tilde{w}$ is called the $L_{\epsilon}$-dffusion path process. We define $\mathbb{C}_{R}^{\cross}\equiv \mathbb{R}_{+}\hat{\cross}\mathbb{C}.$

$=\{(s, w) : s\in \mathbb{R}_{+}, w\in \mathbb{C}^{s}\}$ . We consider the set $M(\mathbb{C}_{R}^{\cross})\equiv M(\mathbb{R}+\cross \mathbb{C})\wedge$ of measures $\gamma$ on $\mathbb{R}+\cross \mathbb{C}\wedge$ which

are finite, if restricted to a finite time interval. Then Dynkin’s historical superprocess [10]

$\tilde{X}=\{\tilde{X},\tilde{\mathbb{P}}_{s,\mu}, s\geq 0, \mu\in M_{F}(\mathbb{C}^{s})\}$

is defined as a time-inhomogeneous Markov process with state $\tilde{X}_{t}\in M_{F}(\mathbb{C}^{t}),$ $t\geq s$ , with Laplace

functional

$\langle\mu,v(s, t)\rangle=-\log\tilde{\mathbb{P}}_{s,\mu}e^{-\langle\overline{X}_{t},\varphi\rangle}, 0\leq s\leq t, \mu\in M_{F}(\mathbb{C}^{s}) , \varphi\in C_{b}^{+}(\mathbb{C})$ (5)
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where $v$ is uniquely determined by the $\log$-Laplace type equation

$\tilde{\Pi}_{s,w_{8}}\varphi(\tilde{\xi}_{t})=v(s,w_{s})+\tilde{\Pi}_{s,w_{8}}\int_{s}^{t}v^{2}(r,\tilde{\xi}_{r})\tilde{K}(dr)$ , $0\leq s\leq t,$ $\mu\in M_{F}(\mathbb{C}^{s})$ , $\varphi\in C_{b}^{+}(\mathbb{C})$ . (6)

THEOREM 1. Let $K\in \mathbb{K}^{\eta}$ and $\mu\in M_{F}$ with compact support. Then there exists an $(L_{\epsilon}, K, \mu)-$

superprocess
$\mathbb{X}=\{X, \mathbb{P}_{s,\mu}, s\geq 0, \mu\in M_{F}\}$

with branching $mte$ functional $K.$

THEOREM 2. There exists a Dynkin’s historical superprocess $\tilde{\mathbb{X}}=\{\tilde{X},\tilde{\mathbb{P}}_{s,\mu}, s\geq 0, \mu\in M_{F}(\mathbb{C}^{S})\}.$

Suppose that $p>d$ , and let $\phi_{p}(x)=(1+|x|^{2})^{-p/2}$ be the reference function. Define $C_{p}=\{f\in C$

: $|f|\leq C_{f}\cdot\phi_{p},$ $\exists C_{f}>0\}$ . We denote by $M_{p}=M_{p}(\mathbb{R}^{d})$ the set of non-negative measures $\mu$ on $\mathbb{R}^{d},$

satisfying $\langle\mu,$ $\phi_{p}\rangle=\int\phi_{p}(x)\mu(dx)<\infty$ . It is called the space of $p$-tempered measures. When $\{\xi_{t}, \Pi_{s,a}\}$

is an $L_{\epsilon}$ -diffusion, then we define the continuous additive functional $K_{\eta}$ of $\xi$ by

$K_{\eta}=\langle\eta,$ $\delta_{x}(\xi_{r})\rangle dr=(\int\delta_{X}(\xi_{r})\eta(dx))dr$ for $\eta\in M_{p}$ . (7)

Then $X^{\eta}=\{X_{t}^{\eta};t\geq 0\}$ is nothing but a measure-valued diffusion with branching rate functional $K_{\eta}.$

Next we assume that $d=1$ and $0<\nu<1$ . Let $\lambda\equiv\lambda(dx)$ be the Lebesgue measure on $\mathbb{R}$ , and let $(\gamma,\mathbb{P})$

be the stable random measure on $\mathbb{R}$ with Laplace functional

$\mathbb{P}e^{-\langle\gamma,\varphi\rangle}=\exp\{-\int\varphi^{\nu}(x)\lambda(dx)\}, \varphi\in C_{b}^{+}$. (8)

Note that $\mathbb{P}-a.a\omega$ realization, $\gamma(\omega)\in M_{p}$ under the condition $p>\nu^{-1}$ . We consider a positive $CAFK_{\gamma}$

of $\xi$ for $\mathbb{P}-a.a.$ $\omega$ . So that, thanks to Dynkin’s general formalism for superprocess with branching rate
functional, there exists an $(L_{\epsilon}, K_{\gamma}, \mu)$ -superprocess $X^{\gamma}$ when we adopt a p–tempered measure $\gamma$ for $CAF$

$K_{\eta}$ in (7) instead of $\eta,$ ae far as $K_{\gamma}=K_{\gamma}(\omega;dr)$ may lie in the class $\mathbb{K}^{q}$ for some $q>0.$

THEOREM 3. Let $K_{\gamma}\in \mathbb{K}^{q}.$ $For\mu\in M_{F}$ with compact support, there exists an $(L_{\epsilon}, K_{\gamma}, \mu)$ -superprocess
$\{X^{\gamma}, \mathbb{P}_{s,\mu}^{\gamma}, s\geq 0\}$ with bmnching rate functional $K_{\gamma}.$

EXAMPLE 4. For $d=1,$ $a=1$ and $b=0,$ $X^{\gamma}$ is a stable catalytic SBM. This was initially constructed
and investigated by Dawson-Fleischmann-Mueller (2000).

Since the initial measure $\mu$ has compact support, according to Dawson-Li-Mueller (1995), $X^{\gamma}$ has
the compact support property, with the result that the range $\mathfrak{R}(X)$ of $X^{\gamma}$ is compact. We are going
to work with historical superprocesses. As a matter of fact, for the sake of convenient criterion, we put
the superprocess $X^{\gamma}$ lifted up to the historical superprocess setting $\tilde{X}_{t}^{\gamma}(dw)$ . For a path $w\in \mathbb{C}$ , we
consider the stopped path $w^{t}\in \mathbb{C}$ defined by $w_{s}^{t}=w_{t\wedge s},$ $(s\geq 0)$ . Then we can show the existence of the
corresponding historical superprocess in the Dynkin sense.

THEOREM 5. Let $K_{\gamma}$ be a positive $CAFof\xi$ lying in the Dynkin class $\mathbb{K}^{q}$ . Then there exists a historical
superprocess $\{\tilde{X}^{\gamma},\tilde{\mathbb{P}}_{s,\mu}^{\gamma}, s\geq 0\}$ in the Dynkin sense. In fact, $\tilde{\mathbb{X}}^{\gamma}=\{\tilde{X}^{\gamma},\tilde{\mathbb{P}}_{\mathcal{S},\mu}^{\gamma}, s\geq 0, \mu\in M_{F}(\mathbb{C}^{S})\}$ is a
time-inhomogeneous Markov process with state $\tilde{X}_{t}^{\gamma}\in M_{F}(\mathbb{C}^{t}),$ $t\geq s$ , with Laplace transition functional

$\tilde{\mathbb{P}}_{s,\mu}^{\gamma}\exp\{-\langle\tilde{X}_{t}^{\gamma}, \varphi\rangle\}=e^{-\langle\mu,v(s,t))}, 0\leq s\leq t, \mu\in M_{F}(\mathbb{C}^{s}), \varphi\in C_{b}^{+}(\mathbb{C})$ , (9)

where the function $v$ is uniquely determined by the $log$-Laplace type equation

$\tilde{\Pi}_{s,w_{s}}\varphi(\tilde{\xi}_{t})=v(S, W_{s})+\tilde{\Pi}_{s,w_{8}}l^{t_{v^{2}(r,\tilde{\xi}_{r})\tilde{K}_{\gamma}(\omega;dr)}}, 0\leq s\leq t, w_{s}\in \mathbb{C}^{s}$. (10)
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Roughly speaking, in order to prove our result Theorem 5, we need to apply Theorem 3 to historical

process. We shall adopt some notation and terminology from Dynkin (1991). Let $(E_{t}, \mathcal{B}_{t})$ be a measurable

space that describes the state space of the underlying process $\xi$ at time $t$ (which can usually be imbedded

isomorphically into a compact metrizable space $C$ ), and $\hat{E}$ be the global state space given by the set

of pairs $t\in \mathbb{R}+$ and $x\in E_{t}$ . The symbol $\mathcal{B}(\hat{E})$ denotes the a-algebra in $B$ , generated by functions

$f$ : $\hat{E}arrow \mathbb{R}$ . Note that $\hat{E}(I)=\{(r, x) : r\in I, x\in E_{r}\}\in \mathcal{B}(\hat{E})$ for every interval $I$ . The sample space

$W$ is a set of paths (or trajectories) $\xi_{t}(w)=w_{t}$ for each $w\in W$ . Furthermore, $\mathcal{F}(I)$ is the $\sigma$-algebra

generated by $\xi_{t}(w)$ for $t\in I$ . Let $w(I)$ denote the restriction of $w\in W$ to $I$ , and $W(I)$ be the image

of $W$ under this mapping. Moreover, $-\sim--=(\xi\leq t, \mathcal{F}_{\underline{-}}\simeq(I),\tilde{\Pi}_{r,w(\leq r)})=(\xi(-\infty, t]\mathcal{F}_{-}\simeq(I),\tilde{\Pi}_{r,w(-\infty,r]})$ is the

historical process for $\xi=(\xi_{t}, \mathcal{F}(I), \Pi_{r,a})$ . Under those circumstances, it suffices to prove the following

assertion in order to prove the main result Theorem 5.

THOREM 6. $Let_{-}^{-}-\sim be$ a histom$cal$ process, $\tilde{K}_{\gamma}=\tilde{K}_{\gamma}(\omega)$ be its $CAF$ associated to stable random measure
$\gamma$ with properties:
(a) For every $q>0,$ $r<t$ and $x\in E_{r},\tilde{\Pi}_{r,x(\leq r)}e^{q\overline{K}_{\gamma}(\omega;(r,t))}<\infty.$ $(b)$ For every $t_{0}<t$ , there emsts a

positive constant $C$ such that $\tilde{\Pi}_{r,x(\leq r)}\tilde{K}_{\gamma}(\omega;(r,t))\leq C$ holds for $r\in[t_{0}, t),$ $x\in E_{r}$ . Put $\psi^{t}(x, z)=b^{t}(x)z^{2}$

$=1\cross z^{2}$ . Then there exists a Markov process $M^{\gamma}=(M_{t}^{\gamma}, \mathcal{G}(I), P_{r,\mu}^{\gamma})$ on the space $\mathcal{M}\leq t=M_{F}(\mathbb{C}^{t})$ of all

finite measures on $(W, \mathcal{F}_{\leq t}^{*})=(W, \mathcal{F}^{*}(-\infty, t])$ with the universal completion $\mathcal{F}_{\leq t}^{*}$ of $\sigma$-algebra, such that

for every $t\in \mathbb{R}_{+}$ and $\varphi\in \mathcal{F}_{\leq t}^{*},$

$P_{r,\mu}^{\gamma}\exp\{-\langle M_{t}^{\gamma}, \varphi\rangle\}=e^{-\langle\mu,v(r,\cdot)\rangle}, 0\leq r\leq t, \mu\in \mathcal{M}\leq r$ , (11)

where $v^{f}(w_{\leq r})=v(r, w(-\infty, r])$ is a progressive function determined uniquely by the equations

$v^{r}(x\leq r)+\tilde{\Pi}_{r,x(\leq r)}l^{t}\leq s,\leq s=\tilde{\Pi}_{r,x(\leq r)}\varphi(\xi\leq t)$ for $r\leq t$ (12)

$v^{r}(x_{\leq r})=0$ for $r>t.$

Let $\mathbb{H}$ be the cone of all bounded functions $f\in \mathcal{B}$ with the topology of bounded convergence. In

addition, we define $\mathbb{H}_{c}=\mathbb{H}\cap\{f : 0\leq f\leq c\}$ . In order to prove Theorem 3 we need the following lemma.

Based upon the discussion on approximation in terms of branching particle systems cf. Dynkin (1994),

we suppose that the function $v_{t}^{r}(\beta, x)$ satisfies

$v_{t}^{r}(\beta, x)+\Pi_{r,x}l^{t}\psi_{\beta}^{s}(\xi_{8}, v_{t}^{s}(\beta,\xi_{8}))K_{\gamma}(\omega;ds)=\Pi_{r},{}_{x}F_{\beta}(\xi_{t})$ (13)

with $F_{\beta}(x)= \frac{1}{\beta}(1-e^{-\beta f(x)})$ .

LEMMA 7. (Key Lemma) Let $K_{\gamma}$ be the $CAF$ of $\xi$ . For $\beta>0$ , we assume that $\psi_{\beta}^{t}(x, z)$ converges

to $\psi^{t}(x, z)$ uniformly on the set $(t, x)\in\hat{E},$ $z\in[0, c]$ for every $c\in(0, \infty)$ . Then the function $v_{t}^{r}(\beta, x)$

given by (13) converges uniformly on every set $r\in[t_{0}, t)$ and $f\in \mathbb{H}_{c}$ to the unique solution $v^{r}(x)$ of the

following integral equation

$v^{r}(x)+\Pi_{r,x}l^{t}\psi^{s}(\xi_{s}, v^{s}(\xi_{8}))K_{\gamma}(\omega;ds)=\Pi_{\tau,x}f(\xi_{t})$ for $r\leq t$ (14)

$v^{r}(x)=0$ for $r>t.$

In the previous work [6] (see also [3-5]) we have recognized that the extinction property of super-

processes is very important in the model argument. Especially as far as local extinction is concerned,

it is of extreme interest and importance because it just corresponds to the situation that the cancer
cells are expelled locally from the cancerated area by the immune effects of effectors. Since the initial

measure $\mu\in M_{F}$ has a compact support, it follows from the argument of compact support property
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that the range $\mathfrak{R}(X)$ of $X$ is compact. Under the historical superprocess setting $\tilde{X}_{t}(dw)$ , we define
$\mathbb{C}_{M}=\{w\in \mathbb{C} : |w_{s}|<M, \forall s\geq 0\}$ for $M\geq 1$ . By the compact support property, we have

$\lim_{Karrow\infty}\inf_{t\geq 0}\tilde{\mathbb{P}}_{0,\mu}(supp(\tilde{X}_{t})\subseteq \mathbb{C}_{M})=1, \mathbb{P}-a.a.\omega.$

PROPOSITION 8. For $K\in \mathbb{K}_{\eta},$ $\lim_{tarrow\infty}\tilde{\mathbb{P}}_{0,\mu}(\tilde{X}_{t}\neq 0, and supp(\tilde{X}_{t})\subseteq \mathbb{C}_{M})=0.$

Finally, through the projection technique in the theory of measure-valued processes we obtain

THEOREM 9. (Extinction property) Let $d=1$ and $\mu\in M_{F}$ with compact support. Then

$\mathbb{P}_{0,\mu}$ ($X_{t}=0$ for some $t>0$ ) $=1.$
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