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In this paper, we apply the algebraic geometrical tools to the analysis of metabolic pathway. We
analyze the metabolic flux as a convex polyhedral cone and extract the combinatorial information as

convex polytope of metabolic lux. We give the new interpretation to the combinatorial quantities,
such as Hilbert series and Ehrhart polynomial, from the viewpoint of metabolic flux analysis.
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1 Introduction

Recent years have witnessed the progress of a new interdisciplinary field between mathematics and
biology. Pure mathematics such as algebraic geometry has been applied intensively to actual problems
of biology. In the field of computational biology, the approach of algebraic statistics has been developed
(1]. In this line of research, phylogenetic algebraic geometry [2] and algebraic biology is also under
development [3].

Metabolic pathway analysis is studied not only as a method of the analysis for metabolomics but also
as one of the major fields of systems biology.‘ The recent development of metabolic analysis is based on
the flux balance analysis (FBA), in which the metabolic flux is interpreted as a convex polyhedral cone.
The FBA has shown a remarkable progress after the introduction of elementary modes [4] and extreme
pathways [5]. ‘

As arelevant but independent study, Clarke had already noticed that the null space can be represented
by the generators of a convex polyhedral cone in the study of chemical reaction networks [6, 7, 8].
Gatermann and her colleagues focused on this nature and studied the chemical reaction networks with
the methods of algebraic geometry [9, 10, 11, 12]. For instance, they enumerated the number of solutions
of steady state [9, 10, 11], and analyzed Hopf bifurcation [12]. Shiu et. al. used algebraic geometrical
method to analyze the global attractor point [14, 15, 16, 17], stability [18] and multistationality [19] of
chemical reaction networks. Following these studies, the approach by algebraic geometry to chemical
reaction networks has been further cultivated with the introduction of toric dynamical systems [13, 14,
15, 16, 17, 18, 19].

In contrast to chemical reaction networks, algebraic geometrical study of metabolic flux has been
undone, while the metabolic pathway analysis has such a suitable property for the algebraic geometrical
approach that the metabolic flux can be regarded as a convex polyhedral cone.

In this paper, we apply algebraic geometry of convex polytope to the metabolic pathway analysis.
Our approach gives new interpretations to the results investigated in the algebraic geometry of convex
polytopes from the viewpoint of the metabolic pathway analysis.

We first study the property of flux as a convex polyhedral cone by introducing the deformed toric ideal

constraints. In the previous studies of the metabolic pathway analysis, without considering deformed
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toric ideal constraints, the convex polyhedral cone of flux is represented as a linear combination of
extreme pathways with arbitrary coefficients. With the deformed toric ideal constraints, however, the
flux is no longer the convex polyhedral cone but a convex polyhedron with algebraically constrained
coefficients. We show that the constraints cause significant reduction of the flux space in some cases, as
we demonstrate with an example in Section 3. We also show that the deformed toric ideal constraints
realize the mixing of extreme pathways. This is caused by the non-linear relation of the coefficients of
generators, which originates in the deformed toric ideal constraint. To see how the mixing occurs, we
discuss the perturbation of parameters. We will see that the mixed extreme pathway corresponds to
the almost independent reactions and we can approximate the generators as those without the extreme
pathway which corresponds to the almost independent reactions.

Next, we discuss convex polytopes in the metabolic pathway analysis using the mathematical tools of
Hilbert series and Ehrhart polynomial.

The Hilbert series of a convex polytope is defined by the number of i-dimensional faces. When it is
applied to the convex polytope for a metabolic pathway, it provides a combinatorially unique quantity of
flux. We also show that an i-face is regarded as a face through which the exchange fluxes flow in or out.

The Ehrhart polynomial counts the lattice points inside a polytope, and the coefficient of the leading
term corresponds to the volume of the polytope. It is known that the volume of flux is an indicator of
genotype capability, because the genotypically capable points are realized as the points inside flux [5].
In a previous study, the approximated volume is calculated only with large flux [20]. In contrast, our
method calculates the exact volume even when the flux is small, and the computation is much easier than

the above work.

2 Metabolic Pathway Analysis and Deformed Toric Ideal Constraint

The metabolic pathway analysis starts with the stoichiometric equation,
&=8J, @

where &, S, and J denote the derivative of the concentration of metabolites with respect to time, the
stoichiometric matrix, and the flux, respectively.

We discuss the steady state condition,
SJ =0. 2)

Study of the steady state solutions of chemical reaction networks was initiated by Clarke, and is called
“stoichiometric network analysis (SNA).” Using the vector space of the steady state solutions and ana-
lyzing the null space (or the kernel space) of stoichiometric matrix § is called “Flux Balance Analysis
(FBA).” [21, 22

In the rest of this section, we treat the metabolic flux as the monomial vector of of metabolite
concentrations, and discuss an illustrative example. We analyze the relation between the elements of a
monomial vector, and treat the metabolic flux as the vector space spanned by the generators of the null

space. These generators are called “extreme pathways.”

Example 1.1:
Feedback Inhibition of pathway, Palsson (2011) [23]
In a biosynthetic pathway, the first reaction is often inhibited by the end product of the pathway. We
discuss the example in [23], since it is one of the simplest realistic pathways in which there is an inhibitory
feedback and the monomial vector form of flux is known. Fig.1 illustrate the example.

The differential equations that describe this feedback loop are



X 1: Feedback Inhibition of pathway

1 = b —koz1 — k1761, ®3)
T2 = kizex: — koo, (4)
3 = koza — kazs, (5)
Ty = k3z3 — k4zy4, (6)
Ts = kazy — kszs — (kezsze — k-627), (7)
Te = —kezszst+k-677, (8)
7 = kexsze — k_sx7, ©)

which are obtained by the mass action kinetics. We consider this system with FBA. For this example,

the stoichiometric matrix is

-1 0 -1 0 0 0 0 0 1

1 0 0 -1 0 0 0 0 O

0 0 0 1 -1 O 0 0 O
S=] 0o o o 0 1 -1 0 o0 0|, (10)

0 -1 0 0 0 1 -1 1 0

6o -1 0o o O 0 o0 1 O

0 1 0 0 0 0 -1 0

and the flux vector is
J = (kywgz1, keasTe, kox1, koo, ks, kaza, kszs, k_ex7,b1)T. (11)
The generators of null space computed from the stoichiometric matrix are

E, = (0,1,1,0,0,0,0,1,1)T, (12)
E; = (1,0,-1,1,1,1,1,0,0)7, (13)
B3 = (0,1,0,0,0,0,0,1,0)". (14)

These generators are extreme pathways. By taking a linear combination of the extreme pathways, the
metabolic flux at a steady state is given by
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J = jiE1+j2E2 + j3Es
[ i w
J1+73

J1—J2
J2

= J2 . (15)
J2
J2

J1+ 73
J1

The difference from our analysis from the ordinary theory is that we introduce internal structure of
the metabolic flux which is realized as a monomial vector form given by the mass action kinetics. The

monomial vector form typically affects to the genotype capability as the deformed toric ideal constraints
[24]. We thus consider the deformed toric ideal of the above pathway, which was not discussed in the
previous work [23]. The ideal Igif = {f € Q}]|f(z) = 0} C Q[z] is called a deformed toric ideal,
where Y7 is the configuration whose entries are the exponents of the monomials in the flux vector.
The generators of the deformed toric ideal are the binomial relation between the elements of flux with
the monomial representation. The substruction of the second term from the first term vanishes with the
adjusted coefficients. This has the property of toric ideal. Because of the adjustment with the coefficients,
this might be called ‘deformed’ toric ideal. Introducing Laurent monomials, from the monomial vector
representation of J in Eq.(11), the deformed toric ideal is given by

I; = (Jrkeko/J3 — J2kiks/J7). (16)
From the corresponding representation of flux in Eq.(15), the deformed toric ideal represented by j; is

given by

I; = (joksko/(J1 — j2) — (j1 + J3)k1ks/j2)- (17)
The equality joksko/(j1 — j2) — (J1 + ja)kiks/j2 = 0O is the only deformed toric ideal constraint. The
constraint is not only the relation between the elements of flux, but also gives the restriction of parameter
space of flux [24]. This significantly reduces the possible parameter space, which is closer to the true
set of steady states than the standard FBA. Additionally, while the algebraic constraints may introduce
a complex structure, we can derive useful information on the mixing of the extreme pathways as we

demonstrate in the next section.

3 Metabolic Flux as Convex Polyhedron with Algebraically Constrained Co-
efficients

We have seen that the genotypically capable metabolic flux J is expressed by a linear combination
of the extreme pathways. Each element of internal fluxes metabolic flux, however, has to take a positive

value. Metabolic flux J can be thus interpreted as an element in the convex polyhedral cone;
J =51E1 + jo B2 + j3 B3, (18)

where j; is non-negative real numbers. With this representation, we can analyze the metabolic flux from
the viewpoint of a convex polyhedral cone. The geometrical properties of the metabolic flux can be

related with the combinatorial properties of the extreme pathways.



For the convex polyhedral cone, we also consider the deformed toric ideal constraint. For the current

example, the constraint in (17) is represented by

s = Jakeko — j2kiks + jijokiks

- - , 19
Gr — j2)krks (19)
in which j3 is the function of j; and jo. With this j3, the metabolic flux J is given by
, . i2keko — j2k1ks + j1jokik
J=j1E1+]2E2+]2 60 — J1K1Rs T J1J2R1 5E3. (20)

(J1 — Jo)kiks
The combination coefficients are represented as the function of j; and j3. This is the important effect of
the deformed toric ideal constraint, because this changes the picture of flux from the linear combination
of extreme pathways to the nonlinear, algebraic combination of extreme pathways.

From (20) we observe nonlinear mixings of extreme pathways: the metabolic flux J is no longer a
convex polyhedral cone, but a subset in the convex polyhedron defined by the nonlinearly constrained
coefficients of the generators.

While it is difficult to see how the mixing occurs directly, we can nonetheless extract useful information

on this mixing by local expansion. Consider perturbation along j; and ja;
Jiom g1+ Ag,
J2 > J2+Aja.

These perturbations can be interpreted as deformation of the polyhedron which causes the mixing of

generators. With these perturbations, js is approximated by

) keko  j3 i Jija
J3 =~ ; — — + = ;
kiks j1—jJ2  ji—J2  J1—J2
1 {—kasz + 73 + (j1 = 242) (1 — J2) — jljz} Ajy
(1=742)2 | kiks”?
1 kﬁk() .2 .o . .2 co. . .. .
Gipa2 {————klksjz + 272(j1 — j2) = ji + 51(G1 — J2) + Jrja ¢ Aj2

= Ao+ A1Aj1 + A2Qj2,
which is the first order approximation of js along j; and j,. The metabolic flux J is then

J

1R

(J1 + Aj1)Er + (j2 + Aj2)Ea + AoEs + A1 E3Aji + Ay EsAj,
Ey + E1Ajy + EyAjs, (21)

where the first order approximation of the mixed generators are given by

Ey = ji1E1+ j2Ea + AgEs, (22)
E, = Ei+ AE;, (23)
E, = E,+ AyE;. (24)

The degree of freedom of j3 is lost and the degree of freedom along Aj; and Ajs is left. Including the
remianing degree of freedom, the generators are mixed with F3 by the coefficients as the function of j;
and j,. From egs. (23) and (24), we notice that the perturbation along Aj; and Ajs are causing the
mixture of E3 to E; and E;. The mixing coefficients of the original E; are the functions of j;.

Notice that E3 has the 2nd and 8th elements, which correspond to the fluxes of ksxsxe and k_gz7,
respectively. Since the reaction from zs and zg to z7 is reversible (see figure 1), this reaction forms
the cycle and is almost independent from the other reactions. Therefore, adding E5 has little effect
to the original Ey and E;. So, when Aj; and Aj, are small, we can approximate the generators as
Ey = j1B1 + j2Ep, By = E1, Ey = Es.
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4 Stanley-Reisner Ring of Metabolic Flux

In this and the next sections, we introduce an upper bound to the coeflicients j,, and discuss convex
polytopes rather than convex polyhedra. This bounding comes from both mathematical and realistic
reasons: it is natural to assume that the flux is bounded by some chemical or physical constraints, and
an upper bound may be given by the linear programming of constrained system of flux balance analysis.
By considering polytopes, we can discuss the combinatorial properties more easily.

We consider the convex polytope whose vertices are Ei, E2, E5 and origin. This convex polytope is
generated by a finite set of vertices and the vertices of this polytope are restricted to integer points.
Hilbert series is invariant under scale transformation, because Hilbert function depends only on the
combinatorial quantity, i.e. the number of faces and the number of how to choose the monomials. The
f-vector of the current convex polytope is (4,6,4,1). This can be confirmed also by the mathematical
software Macaulay2. We calculate the Hilbert series of this convex polytope.

T+HA+A24 X340

TR 25)

F(k(A),\) =

Hilbert series can be interpreted as the combinatorially unique quantity of metabolic flux.

5 Ehrhart Polynomial of Metabolic Flux

Going back to the original form of flux, J = j1 E1 + j2E2 + j3Es, j; are real numbers. Here, j; are
assumed to be bounded. We approximate the real number j; by rational number. Then, multiply LCM of
the denominators of j; to P, we obtain the number of integer points inside this polytope as i(P,n). The
multiplication of constant integer factor to rational P is used in the derivation of Ehrhart polynomial.

Note that the coefficient of leading term of Ehrhart polynomial is the volume of polytope P [25].
The points inside polytope are the genotypically realizable points of metabolic flux, the volume gives the
genotype capability of flux. Then, we can calculate the volume from Ehrhart polynomial.

For example, we show the case of the convex polytope with the vertices, £y, Es, E3 and origin as P.
Ehrhart polynomial is "

éns +n? 4+ —6—n +1. (26)

Therefore, the volume is 1/6. This indicates the genotype capability.

6 Conclusions

In this paper, we discussed how the metabolic flux can be interpreted from the viewpoint of the
algebraic geometry of convex polytope.

At first, we reviewed the metabolic pathway analysis by FBA, with the concrete example of the
feedback inhibition of metabolic pathway.

The later sections are devoted to give the interpretation from metabolic pathway analysis to the
analysis of former sections. At first, we gave the formulation of metabolic flux as the convex polyhedral
cone and analyzed the nonlinear mixing of generators which is caused by deformed toric ideal constraint.
Next, we studied the Stanley-Reisner ring of metabolic flux and gave the interpretation of Hilbert series
as a combinatorial unique quantity of flux. Then, we gave the interpretation of Ehrhart polynomial as
the indicator of genotype capability of flux.
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