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0. INTRODUCTION AND NOTATION

This work is originally motivated by a study of Wiener sausage swept by a disc/sphere
attached to a $d$-dimensional Brownian motion started at the origin. Our interest is in
finding a correct asymptotic form of the expected volume of the sausage of length $t$ as
$tarrow\infty$ under the conditional law given that the Brownian motion at time $t$ be at a given
site $x$ which is outside a parabolic region so that $x^{2}>t$ . It turns out that to this end
one needs to estimate the harmonic measure of the circle/sphere for the heat operator
(the space-time distribution of Brownian hitting), so we are concemed with asymptotic
estimation of such a harmonic measure as well. It has the density which can be factored as
the product of the hitting time density and the density for the site distribution conditioned
on the time and I will give the exposition of the results under the following titles

1. Density of Hitting Time Distribution,
2. Density of Hitting Place Distribution,
3. Expected Volume of Wiener Sausage for Brownian Bridge.

The subjects 2 and 3 are inter-related: some result in 2 uses one from 3 and vice versa.
The results of both 2 and 3 heavily depend on those from 1 and I will give manners of the
dependence. Most of the statements advanced therein may translate into the corresponding
ones to Brownian motion with constant drift and some of them will be presented in

4. Brownian Motion with Constant Drift.
I will also include a corresponding result concerning

5. Range of Pinned Random Walk.

We fix the radius $a>0$ of the Euclidian ball $U=\{x\in R^{d} : |x|<a\}(d=2,3, \ldots)$ . Let
$P_{x}$ be the probability law of a $d$-dimensional standard Brownian motion started at $x\in R^{d}$

and $E_{x}$ the expectation under $P_{x}$ . The following notation is used throughout.

$\nu=\frac{d}{2}-1 (d=1,2, \ldots);e=(1,0, \ldots, 0)$ ;

$\sigma=\inf\{t>0:|B_{t}|\leq a\}$ ;

$q^{(d)}(x, t)= \frac{d}{dt}P_{x}[\sigma\leq t] (x=|x|>a)$ .

$p_{t}^{(d)}(x)=(2\pi t)^{-d/2}e^{-x^{2}/2t}.$

$\Lambda_{\nu}(y)=\frac{(2\pi)^{\nu+1}}{2y^{\nu}K_{\nu}(y)}(y>0)$ ; $\Lambda_{\nu}(0)=\lim_{y\downarrow 0}\Lambda_{\nu}(y)$.

Here $K_{\nu}$ is the modified Bessel function of second kind of order $\nu$ . We write $f(t)\sim g(t)$ if
$f(t)/g(t)arrow 1$ in any process of taking limit like $tarrow\infty^{)}$ . From the known properties of
$K_{\nu}(z)$ it follows that

$\Lambda_{\nu}(0)=\frac{2\pi^{\nu+1}}{\Gamma(\nu)}$ for $v>0$ ; $\Lambda_{0}(y)\sim\frac{\pi}{-lgy}$ as $y\downarrow 0$ ; and

$\Lambda_{\nu}(y)=(2\pi)^{\nu+1/2}y^{-\nu+1/2}e^{y}(1+O(1/y))$ as $yarrow\infty.$
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1. DENSITY OF HITTING TIME DISTRIBUTION

The definition of $q^{(d)}(x, t)$ may be naturally extended to Bessel processes of order $v$ and
the results concerning it given below may be applied to such extension if $v\geq 0.$

Theorem 1 Uniformly for $x>a$ , as $tarrow\infty,$

$q^{(d)}(x, t) \sim a^{2\nu}\Lambda_{\nu}(\frac{ax}{t})p_{t}^{(d)}(x)[1-(\frac{a}{x})^{2\nu}] (d\neq 2)$ (1)

and for $d=2,$

$q^{(2)}(x, t)=p_{t}^{(2)}(x)\cross\{\begin{array}{ll}\frac{4\pi 1g(x/a)}{(1gt)^{2}}(1+o(1)) (x\leq\sqrt{t}) ,\Lambda_{0}(\frac{ax}{t})(1+o(1)) (x>\sqrt{t}) .\end{array}$ (2)

REMARK 1. $A$ weaker version of the result above is given in [2] : the upper and lower
bounds by some constants are obtained instead of the exact factor $(1+o(1))$ (although in
some cases the results of [2] are very close to and even finer than ours). For each $x>a$ fixed
the result also is given in [4] but with some coefficient being not explicit. The estimate
(2) restricted to the parabolic region $x<\sqrt{t}$ is an immediate consequence of the results
in [10]. For the random walks the results corresponding to (1) and (2) but restricted to
within the parabolic region are given in [9].
REMARK 2 (Scaling property). If $q^{o}(x, t)$ designates the density $q$ when $a=1$ , then from
the scaling property of Bessel processes it follows that $q(x, t)=a^{-2}q^{o}(x/a, t/a^{2})$ .

The estimation of $q(x, t)$ will be made in the following three cases
(i) $x<\sqrt{t}$ ; $(\ddot{u})$ $\sqrt{t}<x\leq Mt$ (with $M$ arbitrarily fixed) ; (iii) $x/tarrow\infty.$

The methods employed in these cases are different from one another. Roughly speaking,
for the case (i) the estimation is based on the well known formula for the Laplace transform
of $q^{(d)}(x, \cdot)$ , to which we apply the Laplace inversion formula. For the case (ii) we exploit
the fact that any Bessel process of order $v>-1$ can be decomposed as a sum of two
independent Bessel processes and apply the result of the case (i). The case (iii) follows
from Lemma 4 [2] where a better estimate than required for Theorem 1 is given. The proof
of it, mostly purely analytic, rests on the integral representation obtained in [1] and the
derivation from it is somewhat involved. In the last section of this note there will be given
a relatively more probabilistic proof for the case (iii) of Theorem 1.

2. DENSITY OF HITTING SITE DISTRIBUTION CONDITIONED ON $\sigma=t$

2.1. THE CASE $d=2$ . For convenience sake I use complex notation; in particular $B_{t}$

is considered to be a complex Brownian motion, while the expression $xe$ is retained. Let
$\arg B_{t}\in R$ be the argument of $B_{t}(\in C)$ , which is a.s. uniquely determined by continuity
under the convention $\arg B_{0}\in(-\pi, \pi]$ . The following limits can be shown to exist.

$f_{v}( \theta) = \lim_{x/tarrow v}\frac{P_{xe}[\arg B_{t}\in d\theta|\sigma=t]}{d\theta} (-\infty<\theta<\infty, v>0)$ .

$\Phi_{v}(\lambda) = \int_{-\infty}^{\infty}e^{i\lambda\theta}f_{v}(\theta)d\theta=\lim_{x/tarrow v}E_{xe}[e^{i\lambda\arg B_{\sigma}}|\sigma=t] (\lambda\in R)$ .
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Proposition 2 $\Phi_{v}(\lambda)=\frac{K_{0}(av)}{K_{\lambda}(av)}$ $(v>0)$ .

FYom Proposition 2 it follows that

$\Phi_{0+}(\lambda)=0(\lambda\neq 0)$ and $\Phi_{+\infty}(\lambda)=1,$

which show that $f_{v}(\theta)d\theta$ concentrates in the limit at infinity as $v\downarrow 0$ and at zero as $varrow\infty,$

respectively. The latter result is made precise in Theorem 4 below. Since $lg\Phi_{v}(\lambda)\sim-\lambda lg\lambda$

$(\lambdaarrow\pm\infty),$ $f_{v}$ can be extended to an entire function, in particular its support (as a function
on $R$) is the whole real line. $K_{i\eta}(av)$ is an entire function of $\eta$ and has zeros on and only
on the real axis. If $\eta_{0}$ is the smallest positive zero, then

$\int_{0}^{\infty}f_{v}(\theta)e^{\eta\theta}d\theta$ is finite or infinity according as $\eta<\eta_{0}$ or $\eta\geq\eta_{0}$ ;

it can be shown that $0<\eta_{0}-av\leq Cv^{1/3}.$

Proposition 3 For $v>0$

$f_{v}( \theta)\geq\pi^{-1}avK_{0}(av)e^{av\cos\theta}\cos\theta (|\theta|\leq\frac{1}{2}\pi)$. (3)

Proposition 3 and Corollary 11 of the next section together show that the probability
$f_{v}(\theta)d\theta$ divided by $\pi^{-1}2avK_{0}(av)e^{av\cos\theta}$ weakly converges to the probability $\frac{1}{2}1(|\theta|\leq$

$\frac{1}{2}\pi)\cos\theta d\theta$ as $varrow\infty$ . In fact, the following stronger result holds true.

Theorem 4 Wnte $v$ for the mtio $x/t$ . Then, as $x/tarrow\infty$ and $tarrow\infty$

$\frac{1}{2}\sqrt{\frac{2\pi}{av}}e^{av(1-coe\theta)}P_{xe}[\arg B(\sigma)\in d\theta|\sigma=t]\Rightarrow\frac{1}{2}1(|\theta|<\pi/2)\cos\theta d\theta,$

where $\Rightarrow$
’ designates the weak convergence of finite measures and $1(A)$ the indicator

function of a statement $A.$

Proposition 2 follows from Theorem 1 and the next lemma, the latter of which in
turn is derived by the skew product representation of multi-dimensional Brownian motion
combined with Lemma 15 given in Section 6.

Lemma 5
$E_{xe}[e^{i\lambda\arg B_{\sigma}}| \sigma=t]=\frac{q^{(2|\lambda|+2)}(x,t)}{q^{(2)}(x,t)}x^{|\lambda|}.$

2.2. THE GENERAL CASE $d\geq 2$ . Let $\Theta\in[0, \pi)$ denote the colatitude of $B_{\sigma}$ when
$(a, 0, \ldots, 0)$ is chosen to be the north pole so that

$a$ $\cos\Theta=e\cdot B_{\sigma}.$

Results similar to those in the case $d=2$ hold but here we give only the following analogue
of Theorem 4.

Theorem 6 As $v:=x/tarrow\infty$ and $tarrow\infty$

$\frac{1}{c_{d-1}}(\frac{2\pi}{av})^{(d-1)/2}e^{av(1-\cos\theta)}P_{xe}[\Theta\in d\theta|\sigma=t]\Rightarrow(d-1)1(0\leq\theta<\frac{1}{2}\pi)\sin^{d-2}\theta\cos\theta d\theta,$

where $c_{n}= \pi^{n/2}/n\Gamma(\frac{1}{2}n)$ , the volume of $n$ -dimensional ball of mdius 1.
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3. EXPECTED VOLUME OF WIENER SAUSAGE FOR BROWNIAN BRIDGE

Let $S_{t}$ be a Wiener sausage of length $t$ , namely, the region swept by the ball of radius
$a>0$ attached to $B_{s}$ at its center as $s$ runs from $0$ to $t$ :

$S_{t}=\{x\in R^{d}:|B_{s}-x|\leq a$ for some $s\in[0,$ $t]\}.$

The $d$-dimensional volume of a set $A\subset R^{d}$ is denoted by $Vo1_{d}(A)$ .

Theorem 7 Let $d\geq 3.$

$E_{0}[Vo1_{d}(S_{t})|B_{t}=x]\sim a^{d-2}t\Lambda_{\nu}(O)$ as $tarrow\infty,$ $x/tarrow 0$ . (4)

Theorem 8 Let $d=2$ . The asymptotic formula (4) (with $d=2$) holds if restricted to
the region $|x|>\sqrt{t}$ and $\Lambda_{\nu}(0)$ is replaced by $\Lambda_{0}(ax/t))$ , which is asymptotic to $\pi/lg(t/x)$ .

REMARK 3. In [11], it is shown that if $d=2$ , for each $M>1$ , uniformly for $|x|\leq M\sqrt{t},$

$E_{0}[ Vo1_{2}(S_{t})|B_{t}=x]=2\pi tN(\kappa t/a^{2})+\frac{\pi x^{2}}{(1gt)^{2}}[lg\frac{t}{x^{2}\vee 1}+O(1)]+O(1)$

as $tarrow\infty$ , where $\kappa=2e^{-2\gamma}$ and $N(\lambda),$ $\lambda\geq 0$ is given by

$N( \lambda)=\int_{0}^{\infty}\frac{e^{-\lambda u}du}{(lgu)^{2}+\pi^{2}u}=\frac{1}{lg\lambda}-\frac{\gamma}{(lg\lambda)^{2}}+\frac{\gamma^{2}-\frac{1}{6}\pi^{2}}{(1gt)^{3}}+\cdots (as \lambdaarrow\infty)$

(asymptotic expansion). Here $\gamma=-\int_{0}^{\infty}e^{-u}lgudu$ (Euler’s constant). The special func-
tion $N(\lambda)$ is called Ramanujan’s function by some authors.

Theorems 7 and 8 follow from the next proposition and Theorem 1.
Proposition 9 As $x^{2}/tarrow\infty,$ $tarrow\infty$

$E_{0}[ Vo1_{d}(S_{t})|B_{t}=x] \sim \frac{t}{p_{t}^{(d)}(x)}. \frac{E_{x}[e^{-B_{\sigma}x/t};\sigma\in dt]}{dt}$

$= \frac{tq^{(d)}(x,t)}{p_{t}^{(d)}(x)}\int_{\partial U}e^{-\xi x/t}P_{x}[B_{\sigma}\in d\xi|\sigma=t].$

Proposition 10 As $x/tarrow\infty,$ $E_{0}[Vo1_{d}(S_{t})|B_{t}=x]\sim c_{d-1}a^{d-1}x.$

Combining these two propositions yields

Corollary 11 For $d=2$ , as $v:=x/tarrow\infty,$

$E_{xe}[e^{av(1-\cos(\Theta))}1\sim\sqrt{\frac{av}{2\pi}}\cdot$

Proposition 12 As $x/t$ tends to a constant $v>0$ , the density $P_{xe}[\Theta\in d\theta|\sigma=t]/d\theta$

weakly converges to a probability density $g_{v}^{(d)}(\theta)$ on $0<\theta<\pi$ and for $d=2,3,$ $\ldots,$

$E_{0}[ Vo1_{d}(S_{t})|B_{t}=x]\sim a^{d-2}t\Lambda_{v}(av)\int_{0}^{\pi}e^{-av\cos\theta}g_{v}^{(d)}(\theta)d\theta$ . (5)

$(Note that for d=2, g_{v}^{(2)}( \theta)=2\sum_{n=0}^{\infty}f_{v}(\theta+2n\pi).$ )
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4. BROWNIAN MOTION WlTH A CONSTANT DRIFT $-ve$

The Brownian bridge $P_{0}[\cdot|B_{t}=xe]$ with $v:=x/t$ kept away from zero may be compa-
rable or similar to the process $B_{t}-vet$ in significant respects and here are given the results
for the latter that are readily derived from those given above for the bridge. We label the
objects defined with $B_{t}-vet$ in place of $B_{t}$ by the superscript (v) like $\sigma^{(v)},$ $\Theta^{(v)}$ , etc. The
translation is made by using the transformation of drift, which in particular shows that for
every positive $v,$ $x,$ $t,$

$P_{xe}[\Theta^{(v)}\in d\theta, \sigma^{(v)}\in dt]=e^{-av\cos\theta+vx-\frac{1}{2}v^{2}}tP_{xe}[\Theta\in d\theta, \sigma\in dt].$

In the following three statements, the limit is taken as $x/tarrow v$ (with $v>0$ fixed) and
$tarrow\infty$ :

(i) $P_{xe}[\sigma^{(v)}\in dt]/dt\sim\Lambda_{\nu}(av)/2\pi t$ ;

(ii) $P_{xe}[\Theta^{(v)}\in d\theta|\sigma^{(v)}=t]\sim e^{-av\cos\theta}g_{v}^{(d)}(\theta)/\Xi,$ $\Xi:=\int_{-\infty}^{\infty}e^{-av\cos\theta}g_{v}^{(d)}(\theta)d\theta$ ;

(iii) $P_{0}[ Vo1_{d}(S_{t}^{(v)})]=\int_{R^{d}}P_{0}[Vo1_{d}(S_{t})|B_{t}=x]p_{t}^{(d)}(|x-vet|)dx$

$\sim a^{d-2}t\Lambda_{\nu}(av)\int_{0}^{\pi}e^{-av\cos\theta}g_{v}^{(d)}(\theta)d\theta,$

where the equality in (iii) may follow from the fact that the law of the Brownian bridge
does not depends on the strength of drift. Similarly, Theorem 6 may translate into the
statement that as $v:=x/tarrow\infty$ and $tarrow\infty$

$P_{xe}[ \Theta^{(v)}\in d\theta|\sigma^{(v)}=t]\Rightarrow(d-1)1(0\leq\theta<\frac{1}{2}\pi)\sin^{d-2}\theta\cos\theta d\theta,$

which may be intuitively understandable if one notices that the right-hand side is the law
of the colatitude of a random variable taking values in the right half of the sphere $|x|=1$

whose projection on the $d-1$ dimensional plane perpendicular to the first coordinate axis
is uniformly distributed on the “hyper unit disc” on the plane.

5. RANGE OF PINNED RANDOM WALK.
Let $S_{n}=X_{1}+\cdots+X_{n}$ be a random walk on $Z^{2}$ that is irreducible and of mean zero.

For $\lambda\in R^{2}$ , put $\phi(\lambda)=lgE[e^{\lambda\cdot X_{1}}]$ and $\Xi=\{\lambda : E[|X_{1}|e^{\lambda\cdot X_{1}}]<\infty\}$ , and for $\mu\in R^{2}$ let
$c(\mu)$ be the value of $\lambda$ determined by

$\nabla\phi(\lambda)|_{\lambda=c(\mu)}=\mu$ . (6)

$c(\mu)$ is well defined if $\mu$ is in the image set of an interior of $\Xi$ under $\nabla\phi$ . Let $Q$ be the
covariance matrix of $X_{1}$ and $f_{0}(n)$ the probability that the walk retums to the origin for
the first time at the n-th step $(n\geq 1)$ . Put

$H( \mu)=\sum_{k=1}^{\infty}f_{0}(k)(1-e^{-k\phi(c(\mu))}) , Z_{n}=\#\{S_{1}, S_{2}, \ldots, S_{n}\}.$
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Theorem 13 Suppose that $\phi(\lambda)<\infty$ in a neighborhood of the origin and let $K$ be a
compact set contained in the interior of $\Xi$ . Then,

$H( \mu)=\frac{2\pi|Q|^{1/2}}{-lg[\frac{1}{8}\mu\cdot Q^{-1}\mu]}+O(\frac{1}{(lg|\mu|)^{2}})$ as $|\mu|arrow 0$

and, uniformly for $x\in Z^{2}$ satisfying $x/n\in K$ and $|x|\geq\sqrt{n},$

$E_{0}[Z_{n}|S_{n}= x]=nH(x/n)+O(\frac{n}{(lgn)\vee(lg|x/n|)^{2}})$ as $narrow\infty$ . (7)

The case $|x|<\sqrt{n}$ is studied in [8], where one finds the asymptotic form quite similar
to that for Brownian motion presented in Remark 3.

6. PROOF OF THEOREM 1 IN THE CASE $x/tarrow\infty.$

Here we give a proof of the following result which slightly refines the estimate in the
case $x/tarrow\infty$ of Theorem 1.

Proposition 14 For each $v\geq 0$ , uniformly for $x>1$ and $t>0,$

$q^{(d)}(x, t)= \frac{x-a}{\sqrt{2\pi t^{3}}}\exp(-\frac{(x-a)^{2}}{2t})(\frac{a}{x})^{(d-1)/2}[1+O(\frac{t}{x})]$ . (8)

The estimate of (8) determine the exact asymptotic form of $q^{(d)}$ only when either
$t$ is small or $x/t$ is large. In [2] a more precise estimate is obtained, where the error
term expressed by $O$ in (8) is identified with $\beta t/x$ apart from the smaller error of order
$O( \frac{t}{x}[\sqrt{t}\wedge\frac{t}{x-a}])$ . Here and in below

$\beta=(1-4v^{2})/8=(d-1)(3-d)/8$ . (9)

6.1. Let $P_{x}^{BM}$ designate the probability measure of a linear Brownian motion $B_{t}$ started
at $x,$ $E_{x}^{BM}$ the expectation w.r. $t$ . and $\sigma_{a}$ the first passage time of $a$ for $B_{t}.$

Lemma 15

$q^{(d)}(x, t)= \frac{x-a}{\sqrt{2\pi t^{3}}}e^{-(x-a)^{2}/2t}(\frac{a}{x})^{(d-1)/2}E_{x}^{BM}[\exp\{\beta\int_{0}^{t}\frac{ds}{B_{s}^{2}}\}|\sigma_{a}=t]$ . (10)

Pmof. Put $\gamma(x)=(d-1)/2x$ and $Z(t)=e^{\int_{0}^{t}\gamma(B_{s})dB_{S}-\frac{1}{2}\int_{0}^{t}\gamma^{2}(B_{s})ds}$ where $B_{t}$ is the linear
Brownian motion. Then by the Cameron-Martin-Girsanov formula

$\int_{t-h}^{t}q^{(d)}(x, s)ds=P_{x}[t-h\leq\sigma<t]=E_{x}^{BM}[Z(\sigma_{a});t-h\leq\sigma_{a}<t]$ (11)

for $0<h<t$ . By Ito’s formula we have $\int_{0}^{t}dB_{s}/B_{s}=lg(B_{t}/B_{0})+\frac{1}{2}\int_{0}^{t}ds/B_{s}^{2}(t<\sigma_{0})$ .
Hence

$Z( \sigma_{a})=(\frac{a}{B_{0}})^{(d-1)/2}\exp[\frac{(d-1)(3-d)}{8}\int_{0}^{\sigma_{a}}\frac{d_{\mathcal{S}}}{B_{s}^{2}}],$
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which together with (11) leads to the identity (10).

6.2. THE CASE $\nu\geq 1/2$ . In view of (10) the case $\nu=0$ is essential, but we at first
deal with the easier case $\nu>1/2$ . Let $\nu>1/2$ so that $\beta<0$ . Owing to Lemma 15 it
suffices to show

$E_{x}^{BM}[e^{\beta\int_{0}^{t}B_{\delta}^{-2}ds1\sigma_{a}}=t]=1+O(t/x)$ (12)

as $x/tarrow\infty$ . Put

$v=x/t$ and $J_{t}(x)=E_{x}^{BM}[e^{\beta\int_{0}^{t}B_{s}^{-2}ds}|\sigma_{a}=t].$

Then, by the strong Markov property of Brownian motion

$J_{t}(x)= \int_{a}^{\infty}J_{1/v}(y)E_{x}^{BM}[e^{\beta\int_{0}^{t-1/v}B_{s}^{-2}ds};\sigma_{a}>t-\frac{1}{v},$ $B_{t-1/v} \in dy]\frac{q^{(1)}(y-a,1/v)}{q^{(1)}(x-a,t)}.$

By bringing in the measure

$\mu(dy)=\mu_{t,v}(dy)=\frac{q^{(1)}(y-a,1/v)}{q^{(1)}(x-a,t)}P_{x}^{BM}[B_{t-1/v}\in dy],$

this may be written as

$J_{t}(x)= \int_{a}^{\infty}J_{1/v}(y)E_{y}^{BM}[e^{\beta\int_{0}^{t-1/v}B_{s}^{-2}ds};\sigma_{a}>t-\frac{1}{v}|B_{t-1/v}=x]\mu(dy)$. (13)

An elementary (but careful) computation shows that

$\mu(dy)=\frac{y-a}{\sqrt{2\pi/v}}\exp(-\frac{1}{2}[y-(a+1)]^{2}v-\frac{y^{2}}{2t}(1+o(1)))(1+o(1))dy$ (14)

with $o(1)arrow 0$ as $varrow\infty$ uniformly in $y>a$ , entailing that $\mu$ converges to the unit measure
concentrated at $y=a+1$ in the limit as $varrow\infty.$

For each non-random $t_{0}>0$ the conditional law $P_{y}^{BM}[\cdot|B_{t_{0}}=x]$ is the same as the law
under $P_{y}^{BM}$ of

$(s(x-B_{t_{0}})/t_{0}+B_{s})_{0\leq s\leq t_{0}}$ (15)

Combining this with the well known fact that may read

$P_{a+1}^{BM}[B_{t}+vs<a+2^{-1}vs$ for some $s>0]=e^{-v},$

we infer that

$E_{a+1}^{BM}[B_{s}+v\mathcal{S}>a+2^{-1}vs$ for $0<s<t- \frac{1}{v};\sigma_{a}>t-\frac{1}{v}|B_{t-1/v}=x]=1+O(1/v)$ .

If the event in this conditional probability occurs, we have $\int_{0}^{t-1/v}B_{s}^{-2}ds\leq 2/av$ . Hence

$E_{a+1}^{BM}[e^{\beta\int_{0}^{t-1/v}B_{s}^{-2}ds}; \sigma_{a}>t-\frac{1}{v}|B_{t-1/v}=x]=1+O(1/v)$ .

This remains true if the initial position $a+1$ is replaced by any $y>1+a/2$ . Therefore,
with the help of (14) and the trivial relation $J_{1/v}(y)=1+O(1/v)$ valid uniformly in $y>a$
we conclude (12) from (13).
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6.3. THE CASE $0\leq v<1/2$ . Here we have $\beta>0$ and we must evaluate the conditional
expectation appearing in (12) from above, the lower bound being trivial. To this end we
apply the Kac formula and resort to the exact solution of a certain differential equation. In
view of (13) and the result mentioned right after (14) it suffices to show that for all $y>a$

$W:=E_{y}^{BM}[ \exp\{\beta\int_{0}^{t-1/v}\frac{ds}{B_{s}^{2}}\};\sigma_{a}>t-\frac{1}{v}|B_{t-1/v}=x]\leq 1+\frac{C_{0}}{v}$

provided $v$ is large enough, where $v=x/t$ as in 5.2.
In order to obtain a tractable upper bound of $W$ we discard the condition for non-

absorption up to time $t-1/v$ and at the same time replace $B_{s}$ by $(B_{s}\vee a)$ in the integral
in the exponent: also, we express the conditional expectation by means of the uncondi-
tional realization of Brownian bridge given in (15) and thereafter restrict the range of the
expectation to the event

$|B_{t-1/v}|\leq\sqrt{v}t,$

which occurs with probability greater than $1-e^{-vt/2}$ . Then, using the monotonicity of the
function $x\vee a$ we obtain

$W \leq E_{y}^{BM}[\exp\{\beta\int_{0}^{t}\frac{ds}{[(B_{S}+(v-\sqrt{v})s)\vee a]^{2}}\}]+e^{(\beta/a^{2})t-vt/2}$

for all sufficiently large $v$ . For a positive number $v_{*}$ put

$U(y, t;v_{*})=E_{y}^{BM}[ \exp\{\beta\int_{0}^{t}\frac{ds}{[(B_{s}+v_{*}s)\vee a]^{2}}\}] (t\geq 0, y\in R)$ .

Then $W\leq U(y, t;v_{*})+e^{-x/4}$ if $v*\leq v-\sqrt{v}$ and we have only to show that $U(y, t;v_{*})=$
$1+O(1/v_{*})$ uniformly for $y>a.$

For each $v_{*}$ fixed, the function $U(y, t)=U(y, t;v_{*})$ is a unique solution of the parabohc
equation

$\frac{\partial}{\partial t}U=\frac{1}{2}\frac{\partial^{2}}{\partial y^{2}}U+v_{*}\frac{\partial}{\partial y}U+\frac{\beta}{(y\vee a)^{2}}U (t>0, y\in R)$

that is uniformly bounded on each finite $t$-interval and satisfying the initial condition
$U(y, +0)=1$ . It also satisfies the boundary condition $U(+\infty, t)=1$ . In view of this, we
consider a stationary solution $S(y)=S(y;v_{*})$ that satisfies $S(+\infty)=1$ . For $y\geq a$ , on the
one hand, it is given by

$S(y;v_{*})=\sqrt{2\pi v_{*}y}e^{-v_{*}y}[I_{\nu}(v_{*}y)+\theta K_{\nu}(v_{*}y)],$

for some constant $\theta\in$ R. On the other hand we have two independent solutions $e^{\alpha+(y-a)}$

and $e^{\alpha-(y-a)}$ on $(-\infty, a] (for v_{*}>\sqrt{2\beta}/a)$ , where $\alpha\pm=-v_{*}\pm\sqrt{v_{*}^{2}-2\beta/a^{2}}$, so that for
some constants $A_{+}$ and $A_{-},$

$S(y;v_{*})=A_{+}e^{\alpha+(y-a)}+A_{-}e^{\alpha-(y-a)}.$

For the present purpose we have only to consider, as it turns out shortly, a solution with
$\theta=0$ , for which the continuity of $S(y)$ and $S’(y)$ at the joint $a$ enforces

$A_{+}= \frac{\alpha_{-}S(a+)-S’(a+)}{\alpha_{-}-\alpha_{+}}$ and $A_{-}= \frac{-\alpha_{+}S(a+)+S’(a+)}{\alpha_{-}-\alpha_{+}}.$
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We have the asymptotic formula

$\sqrt{2\pi z}e^{-z}I_{\nu}(z)=1+\beta z^{-1}+2^{-1}(1+\beta)\beta z^{-2}+O(z^{-3}) (zarrow+\infty)$ ;

we need to have the asymptotic form of the derivative, for which however we may simply
differentiate term-wise ([3], p.21). Hence, uniformly for $y\geq a$ , as $v_{*}arrow\infty$

$S(y)=1+ \frac{\beta}{yv_{*}}+O((yv_{*})^{-2})$ and $S’(y)=- \frac{\beta}{y^{2}v_{*}}-\frac{(1+\beta)\beta}{y^{3}v_{*}^{2}}+O(v_{*}^{-3})$ .

From this as well as $\alpha_{+}=-\beta/a^{2}v^{*}+O(1/v_{*}^{3})$ we can readily infer that both of $A_{\pm}$ are
positive and in particular $S(y;v_{*})>1$ for all $y$ , provided that $v_{*}$ is large enough. By
a simple comparison argument we conclude that $U(y, t)\leq S(y)$ ; in particular, $U(y, t)=$

$1+O(1/v)$ as desired. The proof of Proposition 14 is finished.
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