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1. INTRODUCTION
Based on our previous paper [13], we introduce some use-

ful concepts for studying variational and quasi-variational
problems associated with a general, i.e., not Euler Lagrange,
partial differential operator.

Consider the following elliptic variational inequality:

(VI) $\{u\in K,$

where $K\subset H^{1}(\zeta\})$ is a closed convex set, $\zeta$ } $\subset \mathbb{R}^{N}(N\geq 1)$

is a bounded domain, $f\in L^{2}(fl)$ is a given function, $(\cdot, \cdot)$

denotes the inner product in $L^{2}(\zeta l),$ $a(r, p)=\partial_{p}\hat{a}(r, p)$ ,
$\hat{a}\in C^{1}(\mathbb{R}\cross \mathbb{R}^{N})$ , and $a_{0}\in C(\mathbb{R})$ with appropriate growth
conditions.

If it holds that
$\hat{a}(r, p)$ is convex jointly in $(r, p)\in \mathbb{R}\cross \mathbb{R}^{N}$ and $a_{0}=\partial_{r}\hat{a},$

(1)

then we have
$(VI)\Leftrightarrow(f, z-u)\leq\psi(z)-\psi(u)\forall z\in K,$

$\Leftrightarrow$ $\partial\psi(u)\ni f,$

where $\partial\psi$ is the subdifferential of a proper, lower-serni-
continuous $(l.s.c.)$ , and convex function $\psi$ : $L^{2}(\zeta l)arrow \mathbb{R}\cup$
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$\{+\infty\}$ defined by

$\psi(z):=\{\begin{array}{ll}\int_{fl}\hat{a}(z, \nabla z)dx, if z\in K,+\infty, otherwise.\end{array}$

However, condition (1) is too restrictive for a general case.
We have, in general:

(VI) $=(f, z-u)\leq\varphi(u;z)-\varphi(u;u)\forall z\in K$

$\Leftrightarrow$ $\partial\varphi(u;u)\ni f,$

where $\partial\varphi$ is the subdifferential with respect to the second
variable of a parameterized convex function $\varphi$ : $L^{2}(fl)\cross$

$L^{2}(\zeta])arrow \mathbb{R}\cup\{+\infty\}\cdot$given by

$\varphi(v;z):=\{\begin{array}{l}\int_{fl}\hat{a}(v, \nabla z)dx+\int_{fl}a_{0}(v)zdx,if v\in H^{1}(\zeta l) and z\in K,+\infty, otherwise.\end{array}$

Thus, we are led to the notion of a quasi-subdifferential
opemtor, which we define in the next section.

2. QUASI-SUBDIFFERENTIAL OPERATORS $($ QSOs $)$

In the following, $H$ denotes a real Hilbert space with
norm $|\cdot|_{H}$ and inner product $(\cdot, \cdot)$ .

Definition 2.1. ([13, Definition 2.1]) $A$ (possibly multi-
valued) map $A$ : $Harrow H$ is called a quasi-subdifferential
opemtor ($QSO$) if

$Au=\partial\varphi(u;u)$ for $u\in D(A)$

where $\varphi$ : $H\cross Harrow \mathbb{R}\cup\{+\infty\}$ satisfies:
$\bullet$ $\varphi(v;\cdot)$ : $Harrow \mathbb{R}\cup\{+\infty\}$ is l.s. $c$ . and convex $\forall v\in H.$
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$\bullet$ $D(A)$ $:=\{v\in H|\varphi(v;\cdot)\not\equiv+\infty, v\in D(\partial\varphi(v;\cdot))\}$

$\neq\emptyset.$

We call $\varphi$ the defining convex function of $A$ , and write
$A^{\varphi}$ when this needs to be specified.

We have the following existence theorem for an equation
with a quasi-subdifferential operator.

Theorem 2.2. ([13, Theorem 2.2]) Let $A$ be a $QSO$ de-
fined by $\varphi$ . Let $X$ be a reflexive Banach space with compact
embedding $X\subset H$ , and $K$ be a closed convex subset of $X.$

$A_{\mathcal{S}}sume$ that $D(\varphi(v;\cdot))\subset K$ for all $v\in K$ , and that there
exist $C_{1},$ $C_{2},$ $C_{3}>0,$ $p>q\geq 1$ satisfying the following
conditions.

(Al) There exists $z_{0}\in H$ such that for all $v\in K$

$\varphi(v;z_{0})\leq C_{1}(|v|_{X}^{q}+1)$ .
(A2) For all $v\in K$ and $z\in X$

$\varphi(v;z)\geq C_{2}|z|_{X}^{p}-C_{3}(|v|_{X}^{q}+1)$ .

(A3) For all $v\in K$

$D(\varphi(v;\cdot))\ni z\mapsto\varphi(v;z)$ is strictly convex.
(A4) If $K\ni v_{n}arrow v$ weakly in $X_{f}$ then $\varphi(v_{n};\cdot)arrow\varphi(v;\cdot)$

in the sense of Mosco.
Then, for each $f\in H$ , there exists $u\in K$ satisfying

$Au\ni f.$

The idea of the proof of this theorem is as follows. For
each $v\in K$ , assumptions (A2) and (A3) mean that there
exists a unique $z_{v}\in K$ minimizing $\varphi(v;z)-(f, z)(z\in$

$H)$ . By (Al) and (A2), the map $v\mapsto z_{v}$ , if restricted to
an appropriate compact and convex set $\tilde{K}\subset K$ , maps to
itself. By (A4), this map is continuous with respect to
the topology of $H$ . Therefore, from Schauder’s fixed point
theorem, it follows that there is a fixed point $u$ that is a
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solution of the desired equation. We refer to [13] for the
detail.

We note that, under different assumptions, we can use
another type of fixed point theorem to obtain an existence
theorem of a differerlt type. In the next section, we intro-
duce a concept based on such an argument.

This theorem can be applied to (VI) as well as to the
following quasi-variational inequality (cf. [13, Section 3]):

(QVI) $\{\begin{array}{l}u\in K(u) ,\int_{\Omega}\{a(u, \nabla u)\cdot\nabla(u-z)+a_{0}(u)(u-z)\}dx\leq(f, u-z) \forall z\in K(u)\end{array}$

Here, $K(v)\subset H^{1}(\zeta l)$ is a closed convex set depending on
$v$ . We have

$(QVI)\Leftrightarrow Au\ni f,$

where $A$ is a $QSO$ defined by

$\varphi(v;z):=\{\begin{array}{l}\int_{fl}\hat{a}(v, \nabla z)dx+\int_{fl}a_{0}(v)zdx,if v\in H^{1}(f2) and z\in K(v) ,+\infty, otherwise.\end{array}$

For a pseudo-monotone operator approach to (VI) and
(QVI), we refer to Kenmochi et al. [10, 5]. For an earlier
study of elliptic quasi-variational inequalities, see Joly and
Mosco [4].
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3. QUASI-VARIATIONAL PRINCIPLES

A variational principle is expressed using a proper, l.s. $c.,$

and convex function $\psi$ and its subdifferential as follows:

$\partial\psi(u)\ni 0\Leftrightarrow\psi(u)=\min_{z}\psi(z)$ .

Here, the equation (or inclusion) $\partial\psi(u)\ni 0$ represents
a variational inequality or a differential equation with a
boundary condition according to the constraint posed by
the function $\psi$ . This principle has played an important role
in mathematical physics and related fields. However, there
is a simple limitation to the principle, since it can only
be applied to problems associated with Euler-Lagrange-
type differential operators. Problems associated with norl-

Euler Lagrange-type differential operators, e.g., the Navier-
Stokes equations, the diffusion equation with a convection
term and so on, are not derived directly from the variational
principle.

Let us consider the following idea:

$\partial\varphi(u;u)\ni 0\Leftrightarrow\{\begin{array}{l}u is a fixed point of v\mapsto z_{v} :(2)\varphi(v;z_{v})=\min_{z}\varphi(v;z) .\end{array}$

Here, we have a function $\varphi$ : $H\cross Harrow \mathbb{R}\cup\{+\infty\}$ such
that $\varphi(v;\cdot)$ : $Harrow \mathbb{R}\cup\{+\infty\}$ is l.s. $c$ . and convex for each
$v\in H$ and proper for some $v\in H$ . In (2), $\partial\varphi$ denotes the
subdifferential with respect to the second variable. Hence,
we have

$\partial\varphi(u;u)\ni 0\Leftrightarrow A^{\varphi}\ni 0,$

where $A^{\varphi}$ is the $QSO$ defined by $\varphi$ . We call the idea in (2)
a quasi-variational principle (QVP). Thus, QVP is closely
related to QSOs. $A$ similar concept to this (2) was used by
Joly and Mosco [4] to study quasi-variational inequalities,
that is, variational inequalities with constraints depend-
ing on the unknown functions. However, the idea can be
applied to various problems with non-Euler-Lagrange-type
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differential operators. In fact, the proof of Theorem 2.2 is
based on QVP and can be applied to variational and quasi-
variational inequalities with non-Euler-Lagrange-type dif-
ferential operators.

In addition to this, QVP plays an essential role in a
standard proof of the existence theorem for the station-
ary $Navier-Stokes$ equations. These are stated below in a
slightly abstract form.

Theorem 3.1. (abstmct $Navier-$Stokes equations) Let $V\subset$

$H\subset V^{*}$ be a Hilbert tWiplet with compact embeddings, $\langle\cdot,$

$\cdot,$

$\rangle$

be the duality pairing, and $F:Varrow V^{*}$ be the duality map.
Let $B$ : $Varrow V^{*}$ be a compact map satisfying $\langle B(z),$ $z\rangle=0$

for all $z\in V$ . Let $A:Harrow H$ be a $QSO$ defined by

$\varphi(v;z):=\{\begin{array}{ll}\frac{1}{2}|z|_{V}^{2}+\langle B(v), z\rangle, if v, z\in V,+\infty, otherwi\mathcal{S}e.\end{array}$

Then, for each $f\in H_{f}$ there exists a $u\in H$ such that

$Au=f.$

This theorem can be proved as follows. For each $v\in V,$

there exists a unique $z_{v}\in V$ such that

$\Phi_{\lambda,f}(v;z_{v})=\min_{z}\Phi_{\lambda,f}(v;z)$ ,

where, for $\lambda\in[0,1]$ , we define

$\Phi_{\lambda,f}(v;z):=\{\begin{array}{l}\frac{1}{2}|z|_{V}^{2}+\lambda(\langle B(v), z\rangle-(f, z)) , if v, z\in V,+\infty, otherwise.\end{array}$

That is, we have
$z_{v}+\lambda F^{-1}(B(v)-f)=0.$

By Leray-Schauder’s fixed point theorem, we can show that
there exists a fixed point $u$ of the map $v\mapsto z_{v}$ that is a
desired solution to the equation.
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4. QUASI-SUBDIFFERENTIAL EVOLUTION EQUATIONS

In this section, we study quasi-sublifferential evolution
equations (QSEs), which are evolution equations related to
QSOs. We consider two types of QSE. The first is given as
follows:

(QSEI) $u’(t)+A(t)u(t)\ni O$ a.e. $t\in(O, T)$ .

Here, $A(t)(0\leq t\leq T)$ is a $QSO$ defined by $\varphi^{t}:H\cross Harrow$

$\mathbb{R}\cup\{+\infty\}$ . Consider the following conditions:
$(\Phi 1)\varphi^{t}(v;z)\geq G(|z|_{X})\forall(v, z)\in H\cross H$ , where $X$

is a Banach space with compact embedding $X\subset H$ and
$\lim_{rarrow+\infty}G(r)=+\infty.$

$(\Phi 2)$ There are two functions $\alpha\in W^{1,2}(0, T)$ and $\beta\in$

$W^{1,1}(0, T)$ such that, for all $v,$ $w\in H,$ $0\leq s\leq t\leq T$ and
$z\in D(\varphi^{s}(v;\cdot))$ , there exists $\tilde{z}\in D(\varphi^{t}(v;\cdot))$ satisfying the
following inequalities:

$|\tilde{z}-z|_{H}\leq|\alpha(t)-\alpha(s)|(\varphi^{s}(v;z))^{1/2},$

$\varphi^{t}(w;\tilde{z})-\varphi^{8}(v;z)$

$\leq|\beta(t)-\beta(s)|\varphi^{s}(v;z)+|w-v|_{H}(\varphi^{s}(v;z))^{1/2}$

Put $K(t)$ $:=\{z\in H|\varphi^{t}(z;z)<+\infty\}.$

Theorem 4.1. ([13, Theorem 4.1]) Assume $(\Phi 1)$ and $(\Phi 2)$ .
Then, for each $u_{0}\in K(O)$ , there evists a solution $u\in$

$W^{1,2}(0, T;H)$ of (QSEI) satisfying $u(O)=u_{0}.$

The idea of this theorem has been developed by Ken-
mochi, Kubo, Yamazaki, Shirakawa and Fukao [12, 16,
20, 17, 18, 2, 15, 3] and is based on the theory of time-
dependent subdifferential evolution equations (TSEs). In
fact, by assumption $(\Phi 2)$ , for each $v\in W^{1,2}(0, T;H)$ the
function

$t\mapsto\Phi(t):=\varphi^{t}(v(t);\cdot)$
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satisfies the condition of the standard theory of TSEs de-
veloped by Kenmochi [8, 9] and Yamada [19]. Hence, there
exists a unique solution of the problem:

$\{\begin{array}{l}u’(t)+\varphi^{t}(v(t);u(t))\ni O ae. t\in(O, T) ,u(0)=u_{0}.\end{array}$

Using assumption $(\Phi 1)$ and the energy inequality derived
by TSE theory, we can show that there is a fixed point of
the map $v\mapsto u$ that gives a desired solution of (QSEI).

The second type of QSE is given as follows:

(QSE2) $\mathcal{L}_{u_{0}}u+\mathcal{A}u\ni O$ in $\mathcal{H}.$

Here, $\mathcal{H}$ $:=L^{2}(0, T;H),$ $\mathcal{A}$ : $\mathcal{H}arrow \mathcal{H}$ is a $QSO,$ $\mathcal{L}_{u_{0}}u$ $:=u’,$

and $D(\mathcal{L}_{u_{0}})$ $:=\{w\in W^{1,2}(0, T;H)|w(O)=u_{0}\}.$

This type of problem arises in hysteresis models, non-
local obstacle problems, and so on (cf. [11, 1, 14, 6]). In
particular, Kano, Murase and Kenmochi [7] studied this
type of abstract problem by employing the theory of TSEs.
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