Quasi-Subdifferential Operators and Quasi-Subdifferential Evolution Equations

Masahiro Kubo¹ (Nagoya Institute of Technology, Japan)

1. INTRODUCTION

Based on our previous paper [13], we introduce some useful concepts for studying variational and quasi-variational problems associated with a general, i.e., not Euler–Lagrange, partial differential operator.

Consider the following elliptic variational inequality:

$$(\text{VI}) \begin{cases} u \in K, \\ \int_{\Omega} \left\{ \mathbf{a}(u, \nabla u) \cdot \nabla(u - z) + a_0(u)(u - z) \right\} dx \\ \leq (f, u - z) \quad \forall z \in K, \end{cases}$$

where $K \subset H^1(\Omega)$ is a closed convex set, $\Omega \subset \mathbb{R}^N (N \ge 1)$ is a bounded domain, $f \in L^2(\Omega)$ is a given function, (\cdot, \cdot) denotes the inner product in $L^2(\Omega)$, $\mathbf{a}(r, \mathbf{p}) = \partial_{\mathbf{p}} \hat{a}(r, \mathbf{p})$, $\hat{a} \in C^1(\mathbb{R} \times \mathbb{R}^N)$, and $a_0 \in C(\mathbb{R})$ with appropriate growth conditions.

If it holds that

 $\hat{a}(r, \mathbf{p})$ is convex jointly in $(r, \mathbf{p}) \in \mathbb{R} \times \mathbb{R}^N$ and $a_0 = \partial_r \hat{a}$, (1)

then we have

$$(\text{VI}) \iff (f, z - u) \le \psi(z) - \psi(u) \quad \forall z \in K, \\ \iff \qquad \partial \psi(u) \ni f,$$

where $\partial \psi$ is the subdifferential of a proper, lower-semicontinuous (l.s.c.), and convex function $\psi : L^2(\Omega) \to \mathbb{R} \cup$

¹This work was supported by JSPS KAKENHI Grant Number 21540173

 $\{+\infty\}$ defined by

$$\psi(z) := \begin{cases} \int_{\Omega} \hat{a}(z, \nabla z) dx, & \text{if } z \in K, \\ +\infty, & \text{otherwise.} \end{cases}$$

However, condition (1) is too restrictive for a general case. We have, in general:

$$\begin{array}{ll} (\mathrm{VI}) \iff & (f, z - u) \leq \varphi(u; z) - \varphi(u; u) & \forall z \in K \\ \\ \Longleftrightarrow & \partial \varphi(u; u) \ni f, \end{array}$$

where $\partial \varphi$ is the subdifferential with respect to the second variable of a parameterized convex function $\varphi : L^2(\Omega) \times L^2(\Omega) \to \mathbb{R} \cup \{+\infty\}$ given by

$$\varphi(v;z) := \begin{cases} \int_{\Omega} \hat{a}(v, \nabla z) dx + \int_{\Omega} a_0(v) z dx, \\ & \text{if } v \in H^1(\Omega) \text{ and } z \in K, \\ & +\infty, & \text{otherwise.} \end{cases}$$

Thus, we are led to the notion of a *quasi-subdifferential* operator, which we define in the next section.

2. QUASI-SUBDIFFERENTIAL OPERATORS (QSOS)

In the following, H denotes a real Hilbert space with norm $|\cdot|_H$ and inner product (\cdot, \cdot) .

Definition 2.1. ([13, Definition 2.1]) A (possibly multivalued) map $A : H \to H$ is called a *quasi-subdifferential operator* (QSO) if

$$Au = \partial \varphi(u; u) \quad \text{for } u \in D(A)$$

where $\varphi: H \times H \to \mathbb{R} \cup \{+\infty\}$ satisfies:

• $\varphi(v; \cdot) : H \to \mathbb{R} \cup \{+\infty\}$ is l.s.c. and convex $\forall v \in H$.

•
$$D(A) := \{ v \in H | \varphi(v; \cdot) \not\equiv +\infty, v \in D(\partial \varphi(v; \cdot)) \}$$

 $\neq \emptyset.$

We call φ the defining convex function of A, and write A^{φ} when this needs to be specified.

We have the following existence theorem for an equation with a quasi-subdifferential operator.

Theorem 2.2. ([13, Theorem 2.2]) Let A be a QSO defined by φ . Let X be a reflexive Banach space with compact embedding $X \subset H$, and K be a closed convex subset of X. Assume that $D(\varphi(v; \cdot)) \subset K$ for all $v \in K$, and that there exist $C_1, C_2, C_3 > 0$, $p > q \ge 1$ satisfying the following conditions.

(A1) There exists $z_0 \in H$ such that for all $v \in K$

$$\varphi(v; z_0) \le C_1 \left(|v|_X^q + 1 \right).$$

(A2) For all $v \in K$ and $z \in X$

$$\varphi(v;z) \ge C_2 |z|_X^p - C_3 \left(|v|_X^q + 1 \right).$$

(A3) For all $v \in K$

 $D(\varphi(v; \cdot)) \ni z \mapsto \varphi(v; z)$ is strictly convex.

(A4) If $K \ni v_n \to v$ weakly in X, then $\varphi(v_n; \cdot) \to \varphi(v; \cdot)$ in the sense of Mosco.

Then, for each $f \in H$, there exists $u \in K$ satisfying $Au \ni f$.

The idea of the proof of this theorem is as follows. For each $v \in K$, assumptions (A2) and (A3) mean that there exists a unique $z_v \in K$ minimizing $\varphi(v; z) - (f, z)$ ($z \in$ H). By (A1) and (A2), the map $v \mapsto z_v$, if restricted to an appropriate compact and convex set $\tilde{K} \subset K$, maps to itself. By (A4), this map is continuous with respect to the topology of H. Therefore, from Schauder's fixed point theorem, it follows that there is a fixed point u that is a solution of the desired equation. We refer to [13] for the detail.

We note that, under different assumptions, we can use another type of fixed point theorem to obtain an existence theorem of a different type. In the next section, we introduce a concept based on such an argument.

This theorem can be applied to (VI) as well as to the following quasi-variational inequality (cf. [13, Section 3]):

$$(\text{QVI}) \begin{cases} u \in K(u), \\ \int_{\Omega} \left\{ \mathbf{a}(u, \nabla u) \cdot \nabla(u - z) + a_0(u)(u - z) \right\} dx \\ \leq (f, u - z) \quad \forall z \in K(u) \end{cases}$$

Here, $K(v) \subset H^1(\Omega)$ is a closed convex set depending on v. We have

$$(\text{QVI}) \iff Au \ni f,$$

where A is a QSO defined by

$$arphi(v;z) := \left\{ egin{array}{ll} \int_{\Omega} \hat{a}(v,
abla z) dx + \int_{\Omega} a_0(v) z dx, \ & ext{if } v \in H^1(\Omega) ext{ and } z \in K(v), \ & ext{+}\infty, & ext{otherwise.} \end{array}
ight.$$

For a pseudo-monotone operator approach to (VI) and (QVI), we refer to Kenmochi et al. [10, 5]. For an earlier study of elliptic quasi-variational inequalities, see Joly and Mosco [4].

3. QUASI-VARIATIONAL PRINCIPLES

A variational principle is expressed using a proper, l.s.c., and convex function ψ and its subdifferential as follows:

$$\partial \psi(u) \ni 0 \iff \psi(u) = \min_{z} \psi(z).$$

Here, the equation (or inclusion) $\partial \psi(u) \ni 0$ represents a variational inequality or a differential equation with a boundary condition according to the constraint posed by the function ψ . This principle has played an important role in mathematical physics and related fields. However, there is a simple limitation to the principle, since it can only be applied to problems associated with Euler-Lagrangetype differential operators. Problems associated with non-Euler-Lagrange-type differential operators, e.g., the Navier-Stokes equations, the diffusion equation with a convection term and so on, are not derived directly from the variational principle.

Let us consider the following idea:

$$\partial \varphi(u; u) \ni 0 \iff \begin{cases} u \text{ is a fixed point of } v \mapsto z_v :\\ \varphi(v; z_v) = \min_z \varphi(v; z). \end{cases}$$
 (2)

Here, we have a function $\varphi : H \times H \to \mathbb{R} \cup \{+\infty\}$ such that $\varphi(v; \cdot) : H \to \mathbb{R} \cup \{+\infty\}$ is l.s.c. and convex for each $v \in H$ and proper for some $v \in H$. In (2), $\partial \varphi$ denotes the subdifferential with respect to the second variable. Hence, we have

$$\partial arphi(u;u)
i 0 \iff A^{arphi}
i 0,$$

where A^{φ} is the QSO defined by φ . We call the idea in (2) a quasi-variational principle (QVP). Thus, QVP is closely related to QSOs. A similar concept to this (2) was used by Joly and Mosco [4] to study quasi-variational inequalities, that is, variational inequalities with constraints depending on the unknown functions. However, the idea can be applied to various problems with non-Euler-Lagrange-type differential operators. In fact, the proof of Theorem 2.2 is based on QVP and can be applied to variational and quasivariational inequalities with non-Euler–Lagrange-type differential operators.

In addition to this, QVP plays an essential role in a standard proof of the existence theorem for the stationary Navier–Stokes equations. These are stated below in a slightly abstract form.

Theorem 3.1. (abstract Navier–Stokes equations) Let $V \subset H \subset V^*$ be a Hilbert triplet with compact embeddings, $\langle \cdot, \cdot, \rangle$ be the duality pairing, and $F : V \to V^*$ be the duality map. Let $B : V \to V^*$ be a compact map satisfying $\langle B(z), z \rangle = 0$ for all $z \in V$. Let $A : H \to H$ be a QSO defined by

$$\varphi(v;z) := \begin{cases} \frac{1}{2} |z|_V^2 + \langle B(v), z \rangle, & \text{if } v, z \in V, \\ +\infty, & \text{otherwise.} \end{cases}$$

Then, for each $f \in H$, there exists a $u \in H$ such that

$$Au = f.$$

This theorem can be proved as follows. For each $v \in V$, there exists a unique $z_v \in V$ such that

$$\Phi_{\lambda,f}(v;z_v) = \min_z \Phi_{\lambda,f}(v;z),$$

where, for $\lambda \in [0, 1]$, we define

$$\Phi_{\lambda,f}(v;z) := \begin{cases} \frac{1}{2} |z|_V^2 + \lambda \big(\langle B(v), z \rangle - (f,z) \big), & \text{if } v, z \in V, \\ +\infty, & \text{otherwise.} \end{cases}$$

That is, we have

$$z_v + \lambda F^{-1} \big(B(v) - f \big) = 0.$$

By Leray-Schauder's fixed point theorem, we can show that there exists a fixed point u of the map $v \mapsto z_v$ that is a desired solution to the equation.

4. QUASI-SUBDIFFERENTIAL EVOLUTION EQUATIONS

In this section, we study *quasi-subdifferential evolution* equations (QSEs), which are evolution equations related to QSOs. We consider two types of QSE. The first is given as follows:

$$(ext{QSE1}) \qquad u'(t)+A(t)u(t)
eq 0 \quad ext{a.e.} \ t\in(0,T).$$

Here, A(t) $(0 \le t \le T)$ is a QSO defined by $\varphi^t : H \times H \to \mathbb{R} \cup \{+\infty\}$. Consider the following conditions:

 $(\Phi 1) \varphi^t(v; z) \geq G(|z|_X) \forall (v, z) \in H \times H$, where X is a Banach space with compact embedding $X \subset H$ and $\lim_{r \to +\infty} G(r) = +\infty$.

($\Phi 2$) There are two functions $\alpha \in W^{1,2}(0,T)$ and $\beta \in W^{1,1}(0,T)$ such that, for all $v, w \in H, 0 \leq s \leq t \leq T$ and $z \in D(\varphi^s(v; \cdot))$, there exists $\tilde{z} \in D(\varphi^t(v; \cdot))$ satisfying the following inequalities:

$$\begin{split} &|\tilde{z} - z|_H \le |\alpha(t) - \alpha(s)| \left(\varphi^s(v;z)\right)^{1/2}, \\ &\varphi^t(w;\tilde{z}) - \varphi^s(v;z) \\ &\le |\beta(t) - \beta(s)|\varphi^s(v;z) + |w - v|_H \left(\varphi^s(v;z)\right)^{1/2}. \end{split}$$

Put $K(t) := \{z \in H | \varphi^t(z; z) < +\infty\}.$

Theorem 4.1. ([13, Theorem 4.1]) Assume $(\Phi 1)$ and $(\Phi 2)$. Then, for each $u_0 \in K(0)$, there exists a solution $u \in W^{1,2}(0,T;H)$ of (QSE1) satisfying $u(0) = u_0$.

The idea of this theorem has been developed by Kenmochi, Kubo, Yamazaki, Shirakawa and Fukao [12, 16, 20, 17, 18, 2, 15, 3] and is based on the theory of timedependent subdifferential evolution equations (TSEs). In fact, by assumption ($\Phi 2$), for each $v \in W^{1,2}(0,T;H)$ the function

$$t \mapsto \Phi(t) := \varphi^t(v(t); \cdot)$$

satisfies the condition of the standard theory of TSEs developed by Kenmochi [8, 9] and Yamada [19]. Hence, there exists a unique solution of the problem:

$$\begin{cases} u'(t) + \varphi^t(v(t); u(t)) \ni 0 & \text{a.e. } t \in (0, T), \\ u(0) = u_0. \end{cases}$$

Using assumption (Φ 1) and the energy inequality derived by TSE theory, we can show that there is a fixed point of the map $v \mapsto u$ that gives a desired solution of (QSE1).

The second type of QSE is given as follows:

$$(QSE2) \qquad \mathcal{L}_{u_0}u + \mathcal{A}u \ni 0 \quad \text{in } \mathcal{H}.$$

Here, $\mathcal{H} := L^2(0,T;H), \mathcal{A} : \mathcal{H} \to \mathcal{H}$ is a QSO, $\mathcal{L}_{u_0}u := u'$, and $D(\mathcal{L}_{u_0}) := \{ w \in W^{1,2}(0,T;H) | w(0) = u_0 \}.$

This type of problem arises in hysteresis models, nonlocal obstacle problems, and so on (cf. [11, 1, 14, 6]). In particular, Kano, Murase and Kenmochi [7] studied this type of abstract problem by employing the theory of TSEs.

References

- P. Colli, N. Kenmochi and M. Kubo, A phase-field model with temperature dependent constraint, J. Math. Anal. Appl., 256 (2001), 668–685.
- [2] T. Fukao and N. Kenmochi, Variational inequality for the Navier-Stokes equations with time-dependent constraint, in "International Symposium on Computational Sciences 2011" Gakuto Internat. Ser. Math. Sci. Appl., 34 (2011), 87–102.
- [3] T. Fukao and N. Kenmochi, Weak variational formulation for the constraint Navier-Stokes equations, 数理解 析研究所講究録, 1792 (2012), 57-81.
- [4] J.-L. Joly and U. Mosco, A propos de l'existence et de la régularité des solutions de certaines inéquations quasivariationnelles, J. Funct. Anal., 34 (1979), 107–137.

- [5] R. Kano, N. Kenmochi and Y. Murase, *Elliptic quasi-variational inequalities and applications*, Discrete Contin. Dyn. Syst., **2009** Suppl. (2009), 583–591.
- [6] R. Kano, N. Kenmochi and Y. Murase, Parabolic quasivariational inequalities with nonlocal constraints, Adv. Math. Sci. Appl., 19 (2009), 565–583.
- [7] R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints Banach Center Publ., 86, Warsaw, 2009, 175–194.
- [8] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304–331.
- [9] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Educ., Chiba Univ. Part II, 30 (1981), 1–87.
- [10] N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities in "Handbook of Differential Equations" Stationary Partial Differential Equations, Vol. IV (ed. M. Chipot), Elsevier/North Holland, Amsterdam, (2007).
- [11] N. Kenmochi, T. Koyama and G.H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities, Nonlinear Anal., 34 (1998), 665–686.
- [12] N. Kenmochi and M. Kubo, Periodic stability of flow in partially saturated porous media, in "Free Boundary Value Problems, Proc. Conf., Oberwolfach/FRG 1989", Int. Ser. Numer. Math., 95 (1990), 127–152.
- [13] M. Kubo, Quasi-subdifferential operators and evolution equations, to appear in Discrete Contin. Dyn. Syst. Suppl.
- [14] M. Kubo, A filtration model with hysteresis, J. Differ. Equations, 201 (2004), 75–98.

- [15] M. Kubo, K. Shirakawa and N. Yamazaki, Variational inequalities for a system of elliptic-parabolic equations, J. Math. Anal. Appl., 387 (2012), 490–511.
- [16] M. Kubo and N. Yamazaki, Quasilinear parabolic variational inequalities with time-dependent constraints, Adv. Math. Sci. Appl., 15 (2005), 60–68.
- [17] M. Kubo and N. Yamazaki, Elliptic-parabolic variational inequalities with time-dependent constraints, Discrete Contin. Dyn. Syst., 19 (2007), 335–354.
- [18] K. Shirakawa, M. Kubo and N. Yamazaki, Wellposedness and periodic stability for quasilinear parabolic variational inequalities with time-dependent constraints, in: M. Chipot et al (eds.), "Recent Advances in Nonlinear Analysis", World Scientific, (2008), 181–196.
- [19] Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci., Univ. Tokyo, Sect. IA, 23 (1976), 491–515.
- [20] N. Yamazaki, Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems, Discrete Contin. Dyn. Syst., 2005 Suppl. (2005), 920– 920.