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1 Introduction
In Bertsch-DalPasso-Mimura [3] a mathematical model for two cell populations with
contact-inhibition $([1], [15])$ is proposed. Under a suitable rescaling, it is given by the
following parabolic system

$[Matrix]$ (1.1)

where $d,$ $\gamma$ and $k$ are positive numbers. Unknown functions $u(x, t)$ and $v(x, t)$ represents
the densities of normal and abnormal cells. The system (1.1) can be regarded as a simpli-
fied tumor growth model by Chaplain-Graziano-Presiozi [8], which describes an interaction
between normal/abnormal cells, extra cellular matrice generated by normall/abnormal
cells, and matrix degrading enzyme. See also Sherratt [14].

In the absence of $v$ , the first equation of (1.1) is simply reduced to

$u_{t}=div(u\nabla u)+(1-v)v$ , (1.2)

which is called the nonlinear degenerate Fisher-KPP equation ([2], [13] and [12], for
instance). If the initial function $u(x, 0)$ to (1.2) possesses a compact support in space,
the support of the solution $u(x, t)$ of (1.3) satisfying $0\leq u(x, 0)\leq 1$ expands with finite
propagation. Similarly, this property holds for the equation for $v$ in the absense of $u$

$v_{t}=d div(v\nabla v)+\gamma(1-\frac{v}{k})v$ . (1.3)

The existence of solutions of (1.1) in the framework of weak form and free boundary
problem are discussed in [3] and Bertsch-Hilhorst-Izuhara-Mimura [4]. In the case $N=1$
numerical simulations of the initial-boundary value problem to (1.1) (with a large spatial
domain) shows us the effect of contact-inhibition in macroscopic sense. Suppose that the
initial functions $u(x, 0)$ and $v(x, 0)$ are compactly supported and that their support are
segregated each other. In an initial stage of the simulation, $u$ and $v$ are governed by
(1.2) and (1.3) respectively; they behave independently each other. After their supports
contact with a point, the supports keep segregated along a new interface. Then $u$ and $v$

are discontinuous at the interfaces. Moreover, $u$ and $v$ behave like traveling wave with a
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constant velocity, and eventually they tends to $0$ and $k$ respectively. (Figs. 1 and 2). In
particular, it seems that $k>1$ implies that $(u, v)$ tends to $(0, k)$ as $tarrow\infty$ . That is, the
abnormal cells occupy the whole region.
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Figure 1: $A$ numerical result for the initial-boundary value problem of (1.1) (with the
homogeneous Neumann boundary condition): $d=1,$ $\gamma=1,$ $k=2.$

The above numerical simulation suggests that it is important to consider (segregated)
traveling wave solutions in order to understand the qualitative behavior of solutions of
(1.1). To do this, let us introduce the kinetic $ODE$ system of (1.1)

$\{\begin{array}{l}u_{t}=(1-(u+v))u, in (0, \infty) ,v_{t}=\gamma(1-\frac{u+v}{k})v, in (0, \infty) ,\end{array}$ (1.4)

It is so called competition system of Lotka-Volterra type. Assume $k\neq 1$ . Then the
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Figure 2: Numerical interfaces arising in Figure 1.1 in $(x, t)$-space.

equilibrium points are given by $(0,0),$ $(1,0),$ $(0, k)$ , and their stability is determined by $k.$

If $k>1$ , then $(0, k)$ is globally stable and the other are unstable, and if $0<k<1$ , then
$(1, 0)$ is globally stable and the other are unstable. We remark that (1.4) is monostable
system if $k\neq 1.$

The observation on (1.4) formally justify the numerical simulation above. In the case
$k>1,$ $(0, k)$ is stable state and $(1, 0)$ is unstable state. Then the traveling wave solution
connecting between $(0, k)$ and $(1, 0)$ may appear with a positive velocity. While (1.1)
possesses the effect of nonlinear diffusion, this conjecture is true in the case of some
semilinear parabolic systems. In addition, it is also expected that (1.1) possesses one
parameter family of traveling wave solutions since (1.4) is monostable system.

In this article, we would like to introduce the structure of traveling wave solutions for
(1.1). In particular, we will give some mathematical and numerical results for traveling
wave solutions of (1.1), which are obtained in [5] and [6].

2 Main results
Suppose $N=1$ . Let us consider the traveling wave solution $(u, v)=(U(x-ct), V(x-ct))$
with velocity $c$ of (1.1). Fix $c\in R$ arbitrarily, and set the moving coordinate $z=x-ct.$
Taking an account of the nonnegativity of the boundary conditions, we are led to

$\{\begin{array}{ll}(U(U+V)’)’+cU’+U(1-U-V)=0 in R,d(V(U+V)’)’+cV’+\gamma V(1-\frac{U+V}{k})=0 in R,(U, V)(-\infty)=(0, k) , (U, V)(\infty)=(1,0) , U(z)\geq 0, V(z)\geq 0 in R. \end{array}$ (2.1)

The boundary conditions at $z=\pm\infty$ comes from (stable and unstable) equilibrium points
of (1.4),

We also consider the semi-trivial traveling wave solution $(U, 0)$ and $(0, V)$ , which cor-
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respond to the traveling wave solutions of (1.2) and (1.3):

$\{\begin{array}{ll}(UU’)’+cU’+(1-U)U=0, in (-\infty, \infty) ,U(z)\geq 0, in (-\infty, \infty) ,U(-\infty)=0, U(\infty)=1, \end{array}$ (2.2)

$\{\begin{array}{ll}d(VV’)’+cV’+\gamma(1-\frac{V}{k})V=0, in (-\infty, oo) ,V(z)\geq 0, in (-\infty, \infty) ,V(-\infty)=k, V(\infty)=0. \end{array}$ (2.3)

The monostability of the degenerate Fisher-KPP equations leads us to the existence
of one parameter family of traveling wave solutions.

Proposition 2.1 (Aronson [2]). Let $d>0,$ $\gamma>0$ and $k>0.$

(i) There exists a unique $c_{*}<0$ such that (2.2) has (weak) solution $U(z)$ if and only if
$c\leq c^{*}.$

(ii) There exists a unique $c^{*}=c^{*}(d\gamma, k)>0$ such that (2.3) has (weak) solution $V(z)$ if
and only if $c\geq c^{*}.$

Remark 2.1. The minimal velocity $c_{*}$ and $c^{*}$ of (2.2) and (2.3) is characterized by the
concept of $sha\gamma p$ traveling wave solutions. $T1_{1}e$ sharp traveling wave profile $V$ satisfies
(2.3) in the following sense:

$\{\begin{array}{ll}d(VV’)’+c^{*}V’+\gamma(1-\frac{V}{k})V=0, in (-\infty, 0) ,V(z)>0 in (-\infty, 0) , V(z)=0 in[0, +\infty) , V(-\infty)=k, V(0^{-})=0, dV_{z}(0^{-})=-c^{*}. \end{array}$

Indeed,

$V(z)=k[1-\exp(\sqrt{\frac{\gamma}{2dk}}z)]_{+}$ and $c^{*}=\sqrt{\frac{d\gamma k}{2}}.$

On the other hand, if $c>c^{*}$ , then the traveling wave solution is smooth, positive and
monotone decreasing with respect to $z$ . The same characteriaztion holds for the weak
solution of (2.2) with $c<c_{*}$ $(by a$ reflection $z\mapsto-z, we see c_{*}=-c^{*}(1,1)$ ). For the
similar results on the degenerate Fisher-KPP equations with more general degenerate
diffusion, see [13] (arld [6]). The stability of traveling wave solutions are discussed in [7],
[11] and [12]. See also [10].

We first give the results on the segregated travehng wave solutions of (1.1) for arly

positive $d,$ $\gamma$ and $k.$
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Theorem 1 (Segregated traveling wave solutions [6]). Let $d,$ $\gamma$ and $k$ be positive constants.
Then there exists a unique $c_{0}=c_{0}(d\gamma, k)$ and $h_{0}=h_{0}(c_{0})$ such that (2.1) has the unique
week solution $(U, V)$ in the following sense:

$\{\begin{array}{l}(UU’)’+c:_{0}U’+(1-U)U=0 in (O, \infty)U(0^{+})=h_{0}, U’(0^{+})=-c_{0}U(\infty)=1, U>0 in (0, \infty) ,\end{array}$ (2.4)

$\{\begin{array}{l}(VV’)’+qV’+\gamma(1-\frac{V}{k})V=0 in (-\infty, O)V(0^{-})=h_{0}, dV_{z}(0^{-})=-Cj0V(-\infty)=k, V>0 in (-\infty, 0) .\end{array}$ (2.5)

Moreover,

(i) $c_{*}<c_{0}<c^{*}$ , where $c^{*}$ and $c_{*}$ are defined by (i) and (ii) of Proposition 2.1;

(ii) $c_{0}>0$ if $k>1,$ $c_{0}<0$ if $0<k<1$ and $c=0$ if $k=1.$

Theorem 1 shows us that $k$ determine the propagation of the segregated traveling wave
solution. Moreover, this is consistent with the numerical result shown in the introduction.

Now we assume $d=1$ and $k>1$ . For one parameter family of traveling wave solutions
of (1.1) due to the monostability of (1.4), we have a partial result: it assures the existence
of traveling wave solution for $c>c_{0}.$

Theorem 2 (Overlapping traveling wave solutions [5]). Consider (2.1) with $d=1$ and
$k>1$ . Let $c:_{0}>0$ be the speed of the segregated tmveling wave. Then for any $c>c_{0}$

problem (2.1) has a smooth solution $(U_{c}, V_{c})$ satisfying

$U_{c}(z)>0,$ $V_{c}(z)>0,$ $-c<(U_{c}+V_{c})’(z)<0$ for all $z.$

Theorems 1 and 2 suggest that the monostable kinetic system provide the structure
of travehng wave solutions of (1.1). $A$ numerical results on segregated and overlapping
traveling wave solutions are displayed in Fig. 3.

3 Sketch of Proofs
In this section we will give a sketch of proofs for Theorems 1 and 2. Here we always
assume that $d=1$ for simplicity.

3.1 Sketch of proofs of Theorem 1
We begin with the basic proposition for positivity of $c$ when $k>1$ (and negativity of $c$

when $0<k<1$ , respectively). Suppose that $U$ and $V$ of (2.4) and (2.5) exist for some
$c\in R$ and $h>0$ . Then $U$ and $V$ can be obtained independently by solving (2.4) and
(2.5). $A$ standard argument shows us the following proposition.
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Figure 3: Profiles of overlapping traveling wave solution of (1.1) for each speed $c>c_{0}.$

The solid arld dashed curves in the figures mean $u$ and $v$ , respectively. The parameter
values are $d=1,$ $k=2$ and $\gamma=1$ , where the speed of segregated traveling wave solution
is $c_{0}=0.4094\cdots.$

Proposition 3.1. Assume that there exists a pair $(U(z), V(z), h, c)$ satisfying (2.4) and
(2.5) for some $\gamma,$ $k>0$ . Then, the following properties hold true:

(i) If $k>1$ , then $h\in(1, k),$ $U_{z}<0,$ $V_{z}<0$ $andc>0.$

(ii) If $0<k<1$ , then $h\in(k, 1),$ $U_{z}>0,$ $V_{z}>0$ and $c<0.$

(iii) If $k=1$ , then $(U(z), V(z), h, c)=(1,1,1,0)$ .

From now we focus on only the case that $k>1$ and $c>0$ . In the case $0<k<1$ with
$c<0$ Theorem 1 can be proved in similarly. Also, in the case $k=1$ the proof of Theorem
1 can be easily done. Let us consider the equation

$( \varphi\varphi_{z})_{z}+c\varphi_{z}+\gamma f(\frac{\varphi}{k})\varphi=0$ , (3.1)

where $f(s)=1-s$ . Additionally, set

$\psi(z);=\frac{\varphi_{z}(z)}{c}$
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for any solution of (3.1). Then (3.1) defines a dynamical system for $(\varphi(z), \psi(z))$

$\frac{d}{dz}\{\begin{array}{l}\varphi\psi\end{array}\}=[-\frac{1}{c\varphi}(c^{2}\psi(1+^{c\psi}\psi)+\gamma\varphi f(\frac{\varphi}{k}))]$ (3.2)

The following Lemmas 3.1-3.4 are proved.

Lemma 3.1. Suppose $k>1$ and $\gamma>0$ . If $0<c<c^{+}$ , there exist a unique solution
$(\varphi, \psi, h)=(\varphi_{k,\gamma,c}^{+}(z), \psi_{k,\gamma,c}^{+}(z), h_{k,\gamma,c}^{+})$ of (3.2) and

$[\psi(+\infty)\varphi(+\infty)]=\{\begin{array}{l}k0\end{array}\}, \{\begin{array}{l}\varphi(0)\psi(0)\end{array}\}=\{\begin{array}{l}h-1\end{array}\}$ . (3.3)

Lemma 3.2. Assume Lemma 3.1 holds. Define the function $h_{k,\gamma}^{+}$ : $(0, +\infty)arrow(k, +\infty)$

$by$

$h_{k,\gamma}^{+}(c):=h_{k,\gamma,c}^{+}.$

Then, $h_{k,\gamma}^{+}$ is continuous and monotone increasing with respect to $c\in(O, +\infty)$ . Moreover,
$\lim_{carrow 0}h_{k,\gamma}^{+}(c)=k$ and $\lim_{carrow\infty}h_{k,\gamma}^{+}(c)=+\infty.$

Lemma 3.3. Suppose the same assumptions as the one in Lemma 3.1. Let $c^{*}=c^{*}(k, \gamma)>$

$0$ be the number as in Proposition 2.1. Then the following (i) and (ii) hold:
(i) if $0<c<c^{*}$ , there exists a unique solution $(\varphi, \psi, h)=(\varphi_{k,\gamma,c}^{-}(z), \psi_{k,\gamma,c}^{-}(z), h_{k,\gamma,c}^{-})$ of

(3.2) and

$[\psi(-\infty)\varphi(-\infty)]=\{\begin{array}{l}k0\end{array}\}, \{\begin{array}{l}\varphi(0)\psi(0)\end{array}\}=\{\begin{array}{l}h-1\end{array}\}$ . (3.4)

(ii) if $c\geq c^{*}$ , then for any $h>0$ , there exists no solution of (3.2) and (3.4).

Lemma 3.4. Assume Lemma 3.3 holds. Define the function $h_{k,\gamma}^{-}$ : $(0, c^{*})arrow(O, k)$ by
$h_{k,\gamma}^{-}(c):=h_{k,\gamma,c}^{-}.$

Then, $h_{k,\gamma}^{-}$ is continuous and monotone decreasing with respect to $c\in(0, c^{*})$ . Moreover,
$\lim_{carrow 0}h_{k,\gamma}^{-}(c)=k$ and $\lim_{carrow c^{4}-0}h_{k,\gamma}^{+}(c)=0.$

Lemmas 3.1-3.4 are proved by a standard phase plane method with use of linearizations
and invariant manifolds (see Fig. 4). Note that (3.2) admit a singularity at $\psi=0.$

To remove the singularity, we apply the regularlization by Aronson [2] to (3.2). Set
$\tilde{\varphi}(\tau)$ $:=\varphi(z^{-1}(\tau)),\tilde{\psi}(\tau)$ $:=\psi(z^{-1}(\tau))$ where

$\tau(z)=\int_{0}^{z}\frac{1}{\sigma\varphi(s)\chi(\varphi(s))}ds.$

Then, we obtain

$\frac{d}{d\tau}\{\begin{array}{l}\sim\varphi\sim\psi\end{array}\}=[_{-c^{2}\tilde{\psi}(1+\tilde{\psi})-\gamma\tilde{\varphi}f(\frac{\tilde{\varphi}}{k})}c^{2}\tilde{\varphi}\tilde{\psi}]$ . (3.5)

137



Figure 4: $(\varphi,\psi)$-phase planes for (3.5) with $\chi(s)=s,$ $\gamma=1,$ $k=2$ : (0) $c=0,$ $(i)$

$c=0.8(<c^{*})$ , (ii) $c=1(=c^{*})$ , (iii) $c=1.2(>c^{*})$ .

Proof of Theorem 1. We only prove the case $k>1$ ; so that $c$ should be positive by Propo-
sition 3.1. By Lemma 3.1, there exists a unique $(\varphi_{1,1,c}^{+}(z), \psi_{1,1,c}^{+}(z))$ of (3.2) and (3.3) for
$c>0$ . Similarly, it follows from Lemma 3.3 that there exists a unique $(\varphi_{k,\gamma,c}^{-}(z), \psi_{k,\gamma,c}^{-}(z))$

of (3.2) and (3.4), if and only if $c\in(O, c^{*}(k, \gamma))$ .
From Lemmas 3.2 and 3.4, the intermediate theorem for continuous functions leads us

to that the equation
$h_{1,1}^{+}(c)=h_{k/\alpha,d\gamma}^{-}(c)$

has a unique solution $(\dot{4}=c_{0}(k, \gamma)\in(0, c^{*}(k, \gamma))$ . Therefore,

$(U(z), V(z), c)=(\varphi_{1,1,c_{0}}^{+}(z), \varphi_{k,\gamma,c0}^{-}(z), c_{0})$

is a desired solution of (2.4) and (2.5) with $h_{0}=h_{1,1}^{+}(c\mathfrak{v})=h_{k,\gamma}^{-}(c_{0})$.
Thus, we arrive at the complete proof. $\square$

3.2 Sketch of proof of Theorem 2
In this subsection we give a sketch of prove Theorem 2. For $(U(z), V(z), c)$ of (2.1), set

$W=U+V, R=W( \frac{W’}{c}+1) , q=v(\frac{W’}{c}+1)$ .
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Then,
$U= \frac{W(R-q)}{R}$ and $V= \frac{Wq}{R}.$

and we obtain from (2.1) that

$\{\begin{array}{ll}R’=\frac{W}{c}(W-1-(W-1+\frac{\gamma}{k}(k-W))\frac{q}{R}) for z\in Rq’=-\frac{\gamma W(k-W)q}{kcR} for z\in RW’=-\frac{c}{W}(W-R) for z\in RR(\infty)=W(\infty)=1, q(\infty)=0 R(-\infty)=q(-\infty)=w(-\infty)=k. \end{array}$ (3.6)

The proof consists of three steps:

$\bullet$ linearization of the system for $R(z),$ $q(z)$ and $W(z)$ near $z=\infty$ ;

$\bullet$ introduction of $W$ as an independent variable;

$\bullet$ a topological argument applied to the system for $R(W)$ and $q(W)$ .

In Figures 5, 6 we have drawn the typical local phase portraits in the $(R, W)$ and the
$(q, W)$-planes.

$\mathbb{R}om$ Linearization of (2.1) around $(R, q, W)=(1,0,1)$ , we can use $W$ as an inde-
pendent variable: as long as $W’\neq 0$ , the curves in the 2-dimensional phase portraits
correspond to a 1-parameter family of local solutions $(R_{\tau}(W), q_{\eta}(W))$ with $\eta\in[0,1]$ , of
the singular initial value problem

$\{\begin{array}{l}R_{W}=\frac{-kW^{2}(W-1)R+W^{2}(k(W-1)+\gamma(k-W))q}{c^{2}kR(W-R)}q_{W}=\frac{\gamma W^{2}(k-W)q}{c^{2}kR(W-R)}R(1)=1, q(1)=0.\end{array}$ (3.7)

We define that $W_{\eta}\in(0, k] is the$ maximal number $such that the$ local solution $(R_{\eta}(W), q_{\eta}(W))$

is defined in $W\in[O, W_{\eta})$ .
We summarize the results on from a phase space argument for (3.6) together with

some invariant manifolds.

Lemma 3.5. There exists $a$ 1-pammeter family $\{(R_{\eta}(W), q_{\eta}(W));\eta\in[0,1]\}$ of local
solutions of problem (3.2) defined on a maximal interval [1, $W_{\eta})\subseteq[1, k)$ such that

(i) $q_{0}=0$ and $R_{0}$ is decreasing and positive in $(1, w_{0})$ , and $R_{0}(W)arrow 0$ as $Warrow W_{0}^{-}$

if $w_{0}<k$ ;

(ii) $0<q_{1}<R_{1}<1$ in $(1, w_{1}),$ $w_{1}<k$ , and $R_{1}(W)arrow W_{1}$ as $Warrow W_{1}^{-}$ ;

(iii) if $\eta\in(0,1)$ , then $0<q_{\eta}<R_{\eta}<w,$ $q_{\eta}$ is increasing in $(1, W_{\eta})$ , and $R_{\eta}(w)-Warrow 0$

as $Warrow W_{\eta}^{-}$ if $w_{\eta}<k$ ;
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(iv) $R_{\tau}(W)$ and $q_{\eta}(W)$ depend continuously on $\eta\in[0,1]$ if $1<W<W_{\eta}$ ; in addition,
$w_{\eta}$ depends continuously on $\eta\in[0,1].$

Figure 5: Projection of curves on the local stable manifold onto $(R, W)$-space (with $\gamma=1,$

$k=1.2);$ (left) the case $c=0.3$, (right) the case $c=0.5$ . The dashed curve corresponds
to a unstable manifold.

Figure 6: Projection of curves on the local stable manifold onto $(q, W)$-space (with $\gamma=1,$

$k=1.2);$ (left) the case $c=0.3$ , (right) the case $c=0.5.$

Sketch of proof of Theorem 2. We define

$E_{-}:=\{\eta\in(0,1);W_{\eta}=k\}$

and
$E_{+}:=\{\eta\in(0,1);W_{\eta}\in(1, k] and R_{\tau}(W)-Warrow 0$ as $Warrow W_{\eta}^{-}\}.$

It follows from properties (ii) and (iv) of Lemma 3.5 that $E+\neq\emptyset$ . Moreover, it can be
proved by a contradiction that if $c>c_{0}$ , then $E_{-}\neq\emptyset$ . In addition they are closed in the
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relative topology of $(0,1)$ : the complementary sets in $(0,1)$ are open, since $R_{\dagger}$ depends
continuously on $\eta$ . Since $E_{+}\cup E_{-}=(0,1)$ , there exists $\overline{\eta}\in E_{+}\cap E_{-}$ . It follows from the
definition of $E_{\pm}$ that

$w-R_{\overline{\eta}}(w)>0$ in $[1, k)$ and $R_{\overline{\eta}}(w)arrow kaswarrow k^{-}$

Finally, it is proved that $(R_{\overline{\eta}}, q_{\overline{\eta}})$ is a solution of the problem We will prove that for $c>c_{0}$

there exists solution of the problem

$\{\begin{array}{l}R_{W}=\frac{-kW^{2}(W-1)R+W^{2}(k(W-1)+\gamma(k-W))q}{c^{2}kR(W-R)}R(1)=,R(k)=q(k)=kq_{W}=\frac{\gamma W^{2}(k-W)q}{\mathcal{C}^{2}1,q(1)=0kR(W-R)}\end{array}$

and
$q(W)>0$ in $(1, k)$ .

Thus it completes a proof.
$\square$
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