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1 Summary of free probability theory

1.1 Noncommutative probability theory
Elements in a noncommutative operator algebra can be regarded as noncommutative
random variables from a probabilistic viewpoint. Such understanding has its origin in
quantum theory. Theory of operator algebras focusing on the probabihstic aspect is
called noncommutative probability theory.

Noncommutative probability theory is divided into several directions. Some groups
perform mathematical research, and others do physical research. The main focus of
this article is free probability, a mathematical aspect of noncommutative probability.
The name of free probability theory might sound strange for non-experts. This name
was chosen because free probability fits in the analysis of the free product of groups or
algebras. $\mathbb{R}ee$ probability has been developed in terms of operator algebras to solve prob-
lems related to von Neumann algebras generated by free groups [HPOO, VDN92]. From
a probabilistic aspect, when one considers random walks on free groups, free probability
is useful to analyze the recurrence/transience of the random walks [W86].1

In addition, Voiculescu [V91] found that free probabihty has application to the anal-
ysis of the eigenvalues of random matrices (see also [HPOO, VDN92]). Why eigenvalues
of random matrices interest researchers? The original motivation is to model the energy
levels of nucleons of nuclei. Then subsequent studies revealed many relations of random
matrices to other mathematics as well as physics, e.g. integrable systems (such as Pein-
lev\’e equations), the Riemann zeta function and representation theory [M04]. All these
applications are based on the analysis of eigenvalue distributions of random matrices.

In this article, we are going to present the basics of free probability, and then describe
the summary of results obtained so far on freely infinitely divisible distributions, the
author’s recent main subject. $A$ purpose of free probability is to analyze free convolution
which describes the eigenvalue distribution of the sum of independent large random
matrices. The set of freely infinitely divisible probability measures is the central subject
associated to free convolution.

*email: thasebe@math.kyotxu.ac.jp
lThe paper [W86] was written independently of Voiculescu’s pioneering papers [VS5, V86] on free

probability, but Woess also used the Voiculescu transform to analyze random walks.
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1.2 Algebraic probability space, random variable and probabil-
ity distribution

Let $\mathcal{A}$ be $a*$ -algebra over $\mathbb{C}$ with unit $1_{A}$ , that is, $\mathcal{A}$ is an algebra over $\mathbb{C}$ equipped with
an antilinear mapping $*:\mathcal{A}arrow \mathcal{A},$ $X\mapsto X^{*}$ , which satisfies $X^{**}=X(X\in \mathcal{A})$ . $A$

typical $*$-algebra is the set of bounded linear operators $\mathcal{A}:=\mathbb{B}(\mathcal{H})$ on a Hilbert space $\mathcal{H}.$

If its inner product is denoted by $\langle\cdot,$ $\cdot\rangle$ , the antilinear mapping $*$ is the usual conjugation
defined by

$\langle u, Xv\rangle=\langle X^{*}u, v\rangle, X\in B(\mathcal{H}) , u, v\in \mathcal{H}.$

A hnear functional $\varphi$ : $\mathcal{A}arrow \mathbb{C}$ is called a state on $\mathcal{A}$ if it satisfies $\varphi(1_{A})=1$ and
$\varphi(X^{*}X)\geq 0,$ $X\in \mathcal{A}.$ $A$ state plays the role of expectation in probability theory. $A$ pair
$(\mathcal{A}, \varphi)$ is called an algebraic probability space and elements $X\in \mathcal{A}$ are called random
variables.

The $*$-algebra $\mathbb{B}(\mathcal{H})$ is basic because any $*$-algebra $\mathcal{A}$ can be reahzed as a sub $*-$

algebra of $B(\mathcal{H})$ for some $\mathcal{H}.$ $A$ universal construction of such an $\mathcal{H}$ is known and is
called the $GNS$ construction. So, from now on $\mathcal{A}$ is aeshmed to be a $sub*$-algebra of a
$\mathbb{B}(\mathcal{H})$ , and moreover to be closed with respect to the strong topology (i.e., $\mathcal{A}$ is a von
Neumann algebra). We further assume that $\varphi$ is nQrmal, a certain continuity condition
on $\varphi.$

If $X$ is self-adjoint, i.e. $X=X^{*}$ , let $E_{X}$ denote the spectral decomposition of $X.$

Because $\varphi$ is normal, $\mu_{X}(B)$ $:=\varphi(E_{X}(B))$ for $B$ Borel sets of $\mathbb{R}$ becomes a probability
measure on $\mathbb{R}$ , and is called the probability distribution2 of $X.$

In the above, random variables are assume to be bounded, but unbounded operators
also fit in this probabilistic aspect. $A$ possibly unbounded self-adjoint operator X. on $\mathcal{H}$

is said to be affiliated to $\mathcal{A}$ if its spectral projections $E_{X}(B)(B$ is an arbitrary Borel
set) all belong to $\mathcal{A}$ . In this case, the probability distribution $\mu_{X}$ can be defined by
$\mu_{X}(B);=\varphi(E_{X}(B))$ similarly to the bounded case.

Example 1.1. Let $(\Omega, \mathcal{F}, P)$ be a probabihty space and let $\mathcal{A}:=L^{\infty}(\Omega, \mathcal{F}, P)\otimes M_{n}(\mathbb{C})$

be the set of random matrices. The algebra $\mathcal{A}$ acts on the set of $\mathbb{C}^{n}$-valued square
integrable random vectors. The antihnear mapping $*$ is the conjugation of complex
matrices, and $\varphi$ is defined to be $E \otimes(\frac{1}{n}Tr_{n})$ , that is,

$\varphi(X):=\frac{1}{n}\sum_{j=1}^{n}E[X_{jj}]$

for random matrices $X=(X_{ij})_{1\leq i,j\leq n}$ . The set of self-adjoint operators affihated to $\mathcal{A}$ is
now equal to { $X\in \mathcal{A}$ : Hermitian, $\mathcal{F}$-measurable}. The distribution $\mu_{X}$ coincides with
the mean eigenvalue distribution of $X$ :

$\mu_{X}=E[\frac{1}{n}\sum_{j=1}^{n}\delta_{\lambda_{j}}],$

where $\lambda_{j}$ are random eigenvalues of $X$ . In other words, $\mu_{X}(B)=E[\frac{\#\{1\leq j\leq n:\lambda_{f}\in B\}}{n}]$ for
Borel sets $B\subset \mathbb{R}$ . When $n=1$ , the measure $\mu_{X}$ is the usual probability distribution of
$\mathbb{R}$-valued random variable $X.$

2Sometimes we say simply distribution or law instead of probability distribution.
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1.3 Tensor independence and free independence
Independence is a central concept in probability theory; almost all the concepts and
results in probabihty theory are based on independence. However, more than one inde-
pendences are known in noncommutative probability theory. Firom one aspect, indepen-
dences can be classified into four or five [M03], but now we consider two of them. For
$X\in \mathcal{A}$ , let $\mathbb{C}[X, 1_{\mathcal{A}}]$ denote the polynomials generated by $X$ and the unit $1_{\mathcal{A}}.$

First we are going to extend the usual independence to noncommutative random
variables; such an independence is called tensor independence.

Definition 1.2. Random variables $X\in \mathcal{A}$ and $Y\in \mathcal{A}$ are said to be tensor independent
if for any finite number of $X_{i}\in \mathbb{C}[X, 1_{\mathcal{A}}],$ $Y_{i}\in \mathbb{C}[Y, 1_{\mathcal{A}}]$ , it holds that

$\varphi(\cdots X_{1}Y_{1}X_{2}Y_{2}X_{3}Y_{3}\cdots)=\varphi(\prod_{i}X_{i})\varphi(\prod_{i}Y_{i})$ .

The product $\prod_{i}X_{i}$ is assumed to preserve the order of random variables.

This definition can easily be extended for more than two variables.
Because tensor independence is just an extension of the usual concept, it can appear

on commutative algebras. The following free independence, by contrast, cannot appear
on commutative algebras, so it is a purely noncommutative concept.

Definition 1.3 (Voiculescu [V85]). Random variables $X$ and $Y$ are free (or freely in-
dependent) if for any finite number of $X_{i}\in \mathbb{C}[X, 1_{A}],$ $Y_{i}\in \mathbb{C}[Y, 1_{\mathcal{A}}]$ satisfying $\varphi(X_{i})=$

$\varphi(Y_{i})=0$ , it holds that
$\varphi(\cdots X_{1}Y_{1}X_{2}Y_{2}X_{3}Y_{3}\cdots)=0.$

Fkee independence can be extended for more than two variables too.

Example 1.4. Let $X,$ $Y$ be free, then the following computations can be verified.

$\varphi(XY)=\varphi(X)\varphi(Y) , \varphi(XYX)=\prime\varphi(X^{2})\varphi(Y)$,
$\varphi(XYXY)=\varphi(X^{2})\varphi(Y)^{2}+\varphi(X)^{2}\varphi(Y^{2})-\varphi(X)^{2}\varphi(Y)^{2}.$

Let us prove the first identity. Set $X_{1}$ $:=X-\varphi(X)1_{\mathcal{A}}\in \mathbb{C}[X, 1_{\mathcal{A}}],$ $Y_{1}$ $:=Y-\varphi(Y)1_{\mathcal{A}}\in$

$\mathbb{C}[Y, 1_{A}]$ . These random variables are centered, i.e., $\varphi(X_{1})=\varphi(Y_{1})=0$ , and so
$\varphi(X_{1}Y_{1})=0$ by definition, or equivalently $\varphi((X-\varphi(X)1_{\mathcal{A}})(Y-\varphi(Y)1_{\mathcal{A}}))=0$ . Af-
ter some calculations, this leads to $\varphi(XY)=\varphi(X)\varphi(Y)$ . The other identities are proved
similarly.

Thus independence gives calculation rule for random variables.

1.4 Fhree convolution
If $X,$ $Y\in \mathcal{A}$ are free self-adjoint random variables, the distribution $\mu_{X+Y}$ is called the
free convolution of $\mu_{X}$ and $\mu_{Y}$ , and is denoted by $\mu_{X}$ ffl $\mu_{Y}$ . Moreover if $X\geq 0(Y\geq 0)$ ,
then the distribution $\mu_{X^{1/2}}YX^{1/2}$ $(\mu_{Y^{1/2}}XY^{1/2},$ respectively) is called the free multiplicative
convolution of $\mu_{X}$ and $\mu_{Y}$ , and it is denoted by $\mu_{X}\otimes\mu_{Y}$ . It is known that $\mu_{X^{1/2}}YX^{1/2}=$
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$\mu_{Y^{1/2}}XY^{1/2}$ when both $X\geq 0,$ $Y\geq 0$ hold. Because the random variable $XY$ is not
self-adjoint in general, the random variable $X^{1/2}YX^{i/2}$ or $Y^{1/2}XY^{1/2}$ is used instead.

How can we calculate free convolution? While classical convolution can be calculated
in terms of the characteristic function (or the Fourier transform), free convolution is
calculated with the Stieltjes transform. Given a probability distribution $\mu$ on $\mathbb{R}$ , its
Stieltjes transform is defined by

$G_{\mu}(z):= \int_{R}\frac{1}{z-x}\mu(dx) , z\in \mathbb{C}^{+}:=\{z\in \mathbb{C}:{\rm Im} z>0\},$

and its reciprocal is by
$F_{\mu}(z):= \frac{1}{G_{\mu}(z)}z\in \mathbb{C}^{+}.$

Moreover, we define the Voiculescu transform
$\phi_{\mu}(z):=F_{\mu}^{-1}(z)-z$

in a suitable domain.

Theorem 1.5 (Voiculescu-Bercovici [BV93]). For probability measures $\mu,$ $\nu$ on $\mathbb{R},$

$\phi_{\mu ffl\nu}(z)=\phi_{\mu}(z)+\phi_{\nu}(z)$ .

The domain can be taken as $\{z\in \mathbb{C}^{+}:{\rm Im} z>\beta, \alpha|{\rm Re} z|\leq{\rm Im} z\}$ for some $\alpha,$ $\beta>0.$

Free multiplicative convolution has a similar characterization, but we omit it because
free multiphcative convolution is not the main subject of this article. The interested
readers can refer to [VDN92]. Research on free multiphcative convolution is still on
progress, and the author thinks it will be developed more in future.

1.5 Random matrix and free probability
Free convolution and free multiphcative convolution are investigated partially because
they have application to random matrices. Such apphcation is based on the following
result of Voiculescu. Note that recently this result has been extended to rectangular
matrices by Benaych-Georges [B09] and more generally to random matrices divided into
sub blocks by Lenczewski [L].

Theorem 1.6 (Voiculescu [V91]). Suppose $A_{n},$ $B_{n}$ are (tensor) independent $n\cross n$ Her-
mitian matrices $(n\geq 1)$ , and moreover, suppose:

(1) For any $n\geq 1$ , the distribution of $A_{n}$ is rotationally invariant, $i.e$ . for any $n\cross n$

unitary $U$ , the distributions of $A_{n}$ and $U^{*}A_{n}U$ on $M_{n}(\mathbb{C})$ are the same; 3

(2) The mean eigenvalue distributions of $A_{n},$ $B_{n}$ weakly converge to $\mu,$ $\nu$ , respectively, $as$

$narrow\infty.$

3Since the random matrix $\mathcal{A}_{n}$ is regarded as a $M_{n}(\mathbb{C})$ -valued random variable, it induces a probability
measure on the vector space $M_{n}(\mathbb{C})$ .
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Then the mean eigenvalue distributions of $A_{n}+B_{n}$ weakly converge to $\mu$ ffl $\nu$ as $narrow\infty.$

Moreover, if $A_{n}\geq 0(B_{n}\geq 0)$ , then the mean eigenvalue distributions of $\sqrt{A_{n}}B_{n}\sqrt{A_{n}}$

(of $\sqrt{B_{n}}A_{n}\sqrt{B_{n}}$ respectively) weakly converge to $\mu\otimes v.$

Thus free probability can describe the eigenvalues of large random matrices, and
hence, understanding of the convolutions $ffl,$ $\otimes$ becomes the main problem in free prob-
ability. In the next section, we state limit theorems on ffl to get a better understanding
of $M.$

2 Infinitely divisible distributions
The concept of infinitely divisible distributions are introduced by extending the well
known central hmit theorem.

Definition 2.1 ([S99, SH03]). $A$ probability measure $\mu$ on $\mathbb{R}$ is said to be infinitely
divisible $(ID)$ if for any $n\geq 1$ there exist identically distributed, (tensor) independent
$(i.i.d.)$ $\mathbb{R}$-valued random variables $X_{1}^{(n)},$

$\cdots,$
$X_{n}^{(n)}$ such that the distribution of $X_{1}^{(n)}+$

$+X_{n}^{(n)}$ weakly converge to $\mu.$

Example 2.2. (1) Suppose $(X_{i})_{i\geq 1}$ be i.i. $d$ . random variables and $\varphi(X_{i})=0,$ $\varphi(X_{i}^{2})=$

$1$ . By defining $X_{t}^{(n)}$
$:=f_{n}^{X}$ , the situation is the central limit theorem, so the distri-

bution of $X_{1}^{(n)}+\cdots+X_{n}^{(n)}$ converge to the standard Gaussian

$g(dx)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}1_{\mathbb{R}}(x)dx.$

The Gaussian is the most important $ID$ law.

(2) Let $\lambda>0$ be real and $n>\lambda$ be natural numbers. Assume $\mathbb{R}$-valued random
variables $X_{i}^{(n)}$ take $0$ at probability $1- \frac{\lambda}{n}$ , and take 1 at probabihty $\frac{\lambda}{n}$ , and they are
independent with respect to $i$ for each $n$ . Then the distribution of $X_{1}^{(n)}+\cdots+X_{n}^{(n)}$

weakly converge to the Poisson distribution4

$p_{\lambda}=\sum_{n=0}^{\infty}\frac{\lambda^{n}e^{-\lambda}}{n!}\delta_{n}.$

In terms of convolution,

$((1- \frac{\lambda}{n})\delta_{0}+\frac{\lambda}{n}\delta_{1})^{*n}arrow p_{\lambda} (narrow\infty)$.

Hence the Poisson distribution is $ID$ for any parameter $\lambda>0.$

The above definition emphasizes on the aspect of the limit theorem, but it coincides
with the usual definition of $ID$ distributions.

4This limit theorem is called Poisson’s law of small numbers.
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Proposition 2.3. $A$ probability measure $\mu$ on $\mathbb{R}$ is $ID$ if and only if for each $n\in$

$\{1,2,3, \cdots\}$ there exists a probability measure $\mu_{n}$ such that

Every $ID$ distribution appears as the distribution of a L\’evy process. This extends the
fact that the Gaussian is the distribution of a Brownian motion. The reader can consult
[S99] for L\’evy processes.

Now we are going to define a free version of $ID$ distributions. This concept is hopefully
useful for a better understand of free convolution ffl and the sum of random matrices.

Definition 2.4 ([BV93]). $A$ probability measure $\mu$ on $\mathbb{R}$ is said to be freely infinitely
divisible $(FID)$ if for any $n\geq 1$ there exist identically distributed, free random variables
$X_{1}^{(n)},$

$\cdots,$
$X_{n}^{(n)}$ such that the distribution of $X_{1}^{(n)}+\cdots+X_{n}^{(n)}$ weaMy converge to $\mu.$

The free analogue of Proposition2.3 is also the case. This fact was proved by Bercovici
and Pata [BP99]. Note that a more general hmit theorem was proved by Chistyakov and
G\"otze [CG08].

Figure 1: Probabihty density of the stan- Figure 2: Probabihty density of Wigner’s
dard Gaussian $g$ semicircle law $w$

Figure 4: Probability density of free PoissonFigure 3: Poisson distribution $p_{1}$ distribution $\pi_{1}$
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Example 2.5. (1) Suppose $(X_{i})_{i\geq 1}$ be identically distributed, free random variables and
$\varphi(X_{i})=0,$ $\varphi(X_{i}^{2})=1$ . Define $X_{i}^{(n)}$

$:=\pi_{n}^{X}$ , then as $narrow\infty$ , the distributions of
random variables $X_{1}^{(n)}+\cdots+X_{n}^{(n)}$ weakly converge to Wigner’s semicircle law

$w(dx)=\frac{1}{2\pi}\sqrt{4-x^{2}}dx.$

Therefore Wigner’s semicircle law is FID. This measure appears as the limiting
eigenvalue distribution of GUE ensemble. This distribution was found by Wigner in
his approach to modeling statistics of energy levels of nucleons in nuclei. Recently
Wigner’s result has been refined by some research groups. Tao and Wu wrote a
summary on this subject [TV].

(2) What should be called the free Poisson distribution is defined as follows:

$\pi_{\lambda}:=\lim_{narrow\infty}((1-\frac{\lambda}{n})\delta_{0}+\frac{\lambda}{n}\delta_{1})^{ffln} \lambda>0.$

When $\lambda=1^{\backslash }$, the probabihty density function of $\pi_{1}$ can be written as

$\frac{1}{2\pi}\sqrt{\frac{4-x}{x}}1_{[0,4]}(x)dx.$

This distribution is also called the Marchenko-Pastur distribution that is known to
appear as the eigenvalue distribution of the square of GUE; one can check that if a
random variable $X$ follows $w$ , then $X^{2}$ follows $\pi_{1}.$

Because free convolution is linearized by the Voiculescu transform, it is expected that
FID distributions can be characterized by the Voiculescu transform, and it is indeed the
case.

Theorem 2.6 (Bercovici-Voiculescu [BV93]). The following are equivalent.

(1) $\mu$ is $FID.$

$(2)-\phi_{\mu}$ analytically continues to $\mathbb{C}^{+}$ and it maps $\mathbb{C}^{+}$ into $\mathbb{C}^{+}\cup \mathbb{R}^{5}$

(3) Constants $\eta\in \mathbb{R},$ $a\geq 0$ and nonnegative measure $\nu$ exist satisfying $\nu(\{0\})=0,$
$\int_{\mathbb{R}}\min\{1, x^{2}\}\nu(dx)<\infty$ , and

$z \phi_{\mu}(z^{-1})=\eta z+az^{2}+\int_{R}(\frac{1}{1-xz}-1-xz1_{[-1,1]}(x))\nu(dx)$ , $z\in i(-\infty, 0)$ . $(2.1)$

The integral representation in (3) corresponds to the L\’evy-Khintchine representation
in probability theory [S99]. The measure $v$ is called the free L\’evy measure of $\mu$ . In the
classical case, a probabihty measure $\mu$ is $ID$ if and only if

$\log\hat{\mu}(z)=\log(\int_{\mathbb{R}}e^{izx}\mu(dx))$

(2.2)
$=i \eta z-\frac{1}{2}az^{2}+\int_{\mathbb{R}}(e^{ixz}-1-ixz1_{[-1,1]}(x))v(dx) , z\in \mathbb{R},$

5Such a function is called a Pick-Nevanlinna function.
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where $\eta,$ $a,$ $\nu$ satisfy the same conditions as in (2.1). If we replace $e^{z}$ by $\frac{1}{1-z}$ and then $iz$

by $z$ in (2.2), we obtain (2.1) except the difference of the coefficient of $z^{2}$ . Thus the two
representations are quite similar, but the proofs are totally different. This similarity was
investigated in [BP99] from a viewpoint of limit theorems. The correspondence between
$\frac{1}{1-z}$ and $e^{z}$ was discussed in [BT06].

What kind of distributions are FID? In probability theory, a lot of $ID$ distributions
are known and they appear in many applications. There are several sufficient conditions
for a measure to be $ID$ . If a measure has a probability density function that is completely
monotone or $\log$ convex, then the measure is $ID$ . Note that a function $f$ : $(0, \infty)arrow \mathbb{R}$ is
completely monotone if there exists a Borel measure $\sigma$ such that

$f(x)= \int_{0}^{\infty}e^{-xt}\sigma(dt)$ .

Or if the density function is HCM (hyperbohc completely monotone), the measure is $ID.$

The book [SH03] contains the summary of past results, including the sufficient conditions
explained in the above.

By contrast, existing FID distributions with concrete density functions are not so
many in free probability, nor useful sufficient conditions. The author’s recent work is
mainly on finding examples of FID distributions, which hopefully leads to sufficient
conditions for a probabihty measure to be FID.

3 Research achievements on FID distributions

3.1 Explicit probability density and explicit Voiculescu trans-
form

When $\phi_{\mu}$ is computable, Theorem 2.6(2) is useful to see whether $\mu$ is FID or not.
Wigner’s semicircle law has the Voiculescu transform $\phi_{w}(z)=\frac{1}{z}$ , and the free Poisson law
$h_{\mathfrak{B}}\phi_{\pi_{\lambda}}(z)=\frac{\lambda z}{z-1}$ , but there are not many examples. Recently, Arizmendi, Bamdorff-
Nielsen and P\’erez-Abreu [ABP10] found that the symmetrized beta distribution with
parameters $\frac{1}{2},$ $\frac{3}{2}$

$b_{s}(dx) :=\frac{1}{\pi\sqrt{s}}|x|^{-1/2}(\sqrt{s}-|x|)^{1/2}dx, -\sqrt{s}\leq x\leq\sqrt{s}$

has explicit Stieltjes and Voiculescu transforms:

$G_{b_{s}}(z)=-2^{1/2}( \frac{1-(1-\mathcal{S}(-\frac{1}{z})^{2})^{1/2}}{S}1^{1/2}$

(3.1)

$\phi_{b_{s}}(z)=-(\frac{1-(1-\frac{s}{2}(-\frac{1}{z})^{2})^{2}}{s})^{-1/2}-z.$

It is then easy to see that $b_{s}$ is a FID distribution from Theorem 2.6.
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We can see many powers in (3.1), and so we try to extend these powers following the
paper [AHb].

Definition 3.1. For $0<\alpha\leq 2,$ $r>0,$ $\mathcal{S}\in \mathbb{C}\backslash \{0\}$ , define the function $G_{s,r}^{\alpha}$ as follows:

$G_{s,r}^{\alpha}(z)=-r^{1/\alpha}( \frac{1-(1-s(-\frac{1}{z})^{\alpha})^{1/r}}{s})^{1/\alpha}$

Also we denote its reciprocal by $F_{s,r}^{\alpha}(z)$ $:= \frac{1}{G_{s,r}^{\alpha}(z)}$ . It tums out easily that $F_{s,1}^{\alpha}(z)=z.$

The reader probably wonders why such a deformation appears. The reason is sum-
marized in the following relation.

Theorem 3.2 (Arizmendi-Hasebe [AHb]). For $r,$ $u>0,2\geq\alpha>0,$ $s\in \mathbb{C}\backslash \{0\}$ , we
obtain

$F_{s,r}^{\alpha}\circ F_{us,u}^{\alpha}=F_{us,ur}^{\alpha}.$

In the particular case $u= \frac{1}{r}$ , this relation reads $(F_{s,r}^{\alpha})^{-1}=F_{s/r,1/r}^{\alpha}.$

This deformation is considered so that the above relation holds. $A$ remarkable point
is that the inverse function $(F_{s,r}^{\alpha})^{-1}$ is contained in the original family, so that the com-
putation of $\phi_{\mu}$ is possible.

We have deformed the Stieltjes transform of $b_{S}$ , but we have to show that the de-
formed family still corresponds to probability measures.
Theorem 3.3. Let $1\leq r<\infty,$ $0<\alpha\leq 2$ . Assume one of the following conditions:

(i) $0<\alpha\leq 1,$ $(1-\alpha)\pi\leq\arg s\leq\pi$;

(ii) $1<\alpha\leq 2,0\leq\arg s\leq(2-\alpha)\pi.$

Then $G_{s,r}^{\alpha}$ is the Stieltjes tmnsform of a probability measure $\mu_{s,r}^{\alpha}.$

The measures $\mu_{s,r}^{\alpha}$ contain some well known distributions. When $(\alpha, s, r)=(2, s, 2)$ ,
the measure $\mu_{s,2}^{2}$ is the symmetrized beta $b_{s}$ , and when $( \alpha, s, r)=(1, -1, \frac{1}{a})$ , the beta
distribution

$\beta_{1-a,1+a}(dx)=\frac{\sin(\pi a)}{\pi a}x^{-a}(1-x)^{a}dx, 0<x<1$

$1aw\pi_{1}$ uptoscaling. $UsingtheexphcitVoicu1$escutransform $\phi_{\mu_{s,r}^{\alpha}}$ andTheorem 2 $.6,$
weappears.$Intheparticularcasea=\frac{1}{2},$ themeasure $\beta_{1/2’ 3/2}coincideswiththefreePoisson$

can prove the following.

Theorem 3.4. Assume that $(\alpha, s, r)$ satisfies the assumption of Theorem 3.3. Then
(1) $\mu_{s,2}^{\alpha}$ is $FID.$

(2) $\mu_{s,r}^{\alpha}$ is $FID$ if $0<\alpha\leq 1$ and $1\leq r\leq 2.$

(3) $\mu_{s,r}^{\alpha}$ is $FID$ if $1\leq\alpha\leq 2$ and $1 \leq r\leq\frac{2}{\alpha}.$

(4) $\mu_{s,3}^{1}$ is $FID$ if and only if $s$ is purely imaginary.

(5) If $\alpha>1$ , there exists $r_{0}=r_{0}(\alpha, s)>1$ such that $\mu_{s,r}^{\alpha}is$ not $FID$ for $r>r_{0}.$
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3.2 Explicit probability density but implicit Voiculescu trans-
form

Recent work has found many other examples of FID distributions. In most cases, the
Voiculescu transform $\phi_{\mu}$ cannot be expressed exphcitly, so that the proofs become more
techmical.

Theorem 3.5. The following probability distributions are $FID.$

(1) (Belinschi et al. [BBLSl $1J$) The Gaussian

$g(dx)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}1_{R}(x)dx.$

(2) (Anshelevich et al. [ABBLIOJ) The $q$ -Gaussian distribution

$g_{q}(d_{X})=\frac{\sqrt{1-q}}{\pi}\sin\theta(x)\prod_{n=1}^{\infty}(1-q^{n})|1-q^{n}e^{2i\theta(x)}|^{2}1[-\frac{2}{\sqrt{}1-q},\frac{2}{\sqrt{}1-q}]^{(x)d_{X}}$

for $q\in[O, 1)$ , where $\theta(x)$ is the solution $ofx= \frac{2}{\sqrt{1-q}}\cos\theta,$ $\theta\in[0,\pi]$ . When $qarrow 1,$ $g_{q}$

converges weakly to $g$ , and $g_{0}$ coincides with $w$ . For $q\in(O, 1)$ , the density function
of $g_{q}$ can be written as $[LM95J$

$\frac{1}{2\pi}q^{-\frac{1}{8}}(1-q)^{\frac{1}{2}}\Theta_{1}(\frac{\theta(x)}{\pi}, \frac{1}{2\pi i}\log q)$ ,

where $\Theta_{1}(z, \tau);=2\sum_{n=0}^{\infty}(-1)^{n}(e^{i\pi\tau})^{(n+\frac{1}{2})^{2}}\sin(2n+1)\pi z$ is a Jacobi theta function.

(3) ($A$ rtzmendi-Belinschi $[ABJ)$ The ultraspherical distribution

$\frac{1}{16^{n}B(n+\frac{1}{2},n+\frac{1}{2})}(4-x^{2})^{n-\frac{1}{2}}1_{[-2,2]}(x)dx$

for $n=1,2,3,$ $\cdots.$

(4) (Arizmendi-Hasebe-Sakuma [AHSJ) Let $X$ be a mndom variable foltowing Wigner’s
semicircle law. Then $X^{4}$ also follows a $FID$ law.

(5) (Arizmendi-Hasebe-Sakuma [AHSJ) The chi-square distribution

$\frac{1}{\sqrt{\pi x}}e^{-x}1_{[0,\infty)}(x)dx.$

(6) (Arizmendi-Hasebe $[AHaJ)$ The Boolean stable law $b_{\alpha}^{\rho}$ is defined by

(i) $F_{b_{\alpha}^{\rho}}(z)=z+e^{i\pi\rho\alpha}z^{-\alpha+1}$ for $\alpha\in(0,1)$ and $\rho\in[0,1]$ ;

(ii) $F_{b_{\alpha}^{\rho}}(z)=z+2 \dot{\mu}-\frac{2(2\rho-1)}{\pi}\log z$ for $\alpha=1$ and $\rho\in[0,1]$ ;

(iii) $F_{b_{\alpha}^{\rho}}(z)=z-e^{i(\alpha-2)\rho\pi}z^{-\alpha+1}$ for $\alpha\in(1,2]$ and $\rho\in[0,1].$
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$b_{\alpha}^{\rho}$ is $FID$ if and only if.$\cdot$

$(a)0< \alpha\leq\frac{1}{2}$ and $\rho\in[0,1];(b)\frac{1}{2}\leq\alpha\leq\frac{2}{3}$ and
$2- \frac{1}{\alpha}\leq\rho\leq\frac{1}{\alpha}-1;(c)\alpha=1$ and $\rho=\frac{1}{2}$ . For $\alpha<1$ , the probability density function
can be written in the form

$\frac{db_{\alpha}^{\rho}}{dx}=\{\begin{array}{ll}\sin(\pi\rho\alpha) \pi \frac{x^{\alpha-1}}{x^{2\alpha}+2x^{\alpha}\cos(\pi\rho\alpha)+1}, x>0,\sin(\pi(1-\rho)\alpha) \pi \end{array}$

$\frac{|x|^{\alpha-1}}{|x|^{2\alpha}+2|x|^{\alpha}\cos(\pi(1-\rho)\alpha)+1},$ $x<0,$

(7) $(Bo\dot{z}ejko$-Hasebe $[BHJ)$ The Meixner distribution

$\frac{4^{t}}{2\pi\Gamma(2t)}|\Gamma(t+ix)|^{2}1_{\mathbb{R}}(x)dx$

for $0<t \leq\frac{1}{2}.$

(8) $(Bo\dot{z}ejko$-Hasebe $[BHJ)$ The logistic distribution

$\frac{\pi}{2}(\frac{1}{\cosh\pi x})^{2}1_{\mathbb{R}}(x)dx.$

(9) (Hasebe $[HJ)$ The beta distribution

$\sqrt{}p,q(dx)=\frac{1}{B(p,q)}x^{p-1}(1-x)^{q-1}1_{[0,1]}(x)dx$

for $(p, q)\in D$ . The region $D$ is shown in Fig. 5. This result extends (3).

(10) (Hasebe $[HJ)$ The beta prime distribution

$\frac{1x^{p-1}}{B(p,q)(1+x)^{p+q}}1_{[0,\infty)}(x)dx$

for $(p, q)\in D’$ . The region $D’$ is shown in Fig. 6.

(11) (Hasebe $[HJ)$ The $t$-distribution

$\frac{11}{B(\frac{1}{2},q-\frac{1}{2})(1+x^{2})^{q}}1_{\mathbb{R}}(x)dx$

for $q \in(\frac{1}{2},2]\cup[2+\frac{1}{4},4]\cup[4+\frac{1}{4},6]\cup\cdots$

(12) (Hasebe $[HJ)$ The gamma distribution

$\frac{1}{\Gamma(p)}x^{p-1}e^{-x}1_{[0,\infty)}(x)dx$

for $p \in(0, \frac{1}{2}]\cup[\frac{3}{2}, \frac{5}{2}]\cup[\frac{7}{2}, \frac{9}{2}]\cup\cdots.$
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(13) (Hasebe $[HJ)$ The inverse gamma distribution

$\frac{1}{\Gamma(p)}x^{-p-1}e^{-1/x}1_{[0,\infty)}(x)dx$

for $p_{-} \in(0, \frac{1}{2}]\cup[\frac{3}{2}, \frac{5}{2}]\cup[\frac{7}{2}, \frac{9}{2}]\cup\cdots.$

Remark 3.6. We mention some remarks on the above results.

(4) It is not known whether $|X|^{q}(q\in \mathbb{R})$ is FID or not, except $q=2,4$ . For $q=2,$ $X^{2}$

follows the free Poisson law $\pi_{1}$ which is FID.

(6) The Boolean stable law is characterized by some stability, but not with respect to
classical convolution, but Boolean convolution which appears as the sum of Boolean
independent random variables [SW97].

(7) The Meixner distributions $($ for $t>0)$ are laws of a L\’evy process, called a Meixner

process [ST98], since they have the characteristic functions $( \frac{1}{\cosh(z/2)})^{2t}$ When $t= \frac{1}{2},$

the Meixner distribution coincides, with

$\frac{1}{\cosh\pi x}1_{\mathbb{R}}(x)dx,$

which is called the hyperbohc secant distribution. It is known as the law of L\’evy’s
stochastic area [L51].

It is unknown whether the Meixner distributions are FID for $t> \frac{1}{2}$ or not.

(9,10) The beta distributions contain the affine transformations of Wigner’s semicircle law
and the free Poisson law. The beta prime distributions contain the affine transfor-
mation of a free $\frac{1}{2}$-stable law [BP99].

Some parameters $(p, q)$ outside the regions $D,$ $D’$ correspond to non FID distribu-
tions, but some still remain to be unknown whether they are FID or not.

(12,13) The gamma distributions and inverse gamma distributions are limits of beta and
prime beta distributions, so that they are FID as consequences of Theorem 3.5(9),
(10). The result (12) extends (5).

The probability measures above are $ID$ too except (3), (4), (9) and part of (6) The
proofs can be found in Bondesson’s bo$ok$ [B92].

In the same book, the class of GGCs (generalized gamma convolutions) is studied
in details as a subclass of $ID$ distributions. The main tool in the analysis of GGCs is
Pick-Nevanlinna functions, the same tool as used in free probability. The author is now
focusing on this similarity in two probabilities and hoping to discover a general theory
behind them.

$6The$ Boolean stable law is $ID$ when positive, i.e. $\rho=1$ . If $\rho\neq 1$ , the author does not know if the
measure is $ID$ or not.
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Figure 5: Region $D$ Figure 6: Region $D’$
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