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1 Introduction

Let U be a potential function on RN such that
(1) U(z) 20, liminf 4,0, U(z) >0
(2) Z={z | U(z) = 0} is a finite set and the Hessians of U at Z are non-degenerate.

Let us consider a Schrédinger operator —A + A2U on L?(R¥, dz). Here, )\ is a parameter
corresponding to the inverse of the Planck constant. Then for any R > 0, the spectral
subset o (A™! (=A 4+ A2U)) N [0, R] is discrete spectrum for large A and the eigenvalues
can be approximated by the eigenvalues of some harmonic oscillators. Moreover, If U -
is a symmetric double well type potential function, the gap between first two smallest
eigenvalues are exponentially small when A — oo. Also the exponential decay rate is given
by the Agmon distance between zero points. Note that by the unitary map f = f(z) —
AN/AF(AV25), X1 (—A + A2U) is unitarily equivalent to —A+\U (/\/X) on L*(RY dz).
In this sense, spatially cut-off P(¢)s-Hamiltonian is a self-adjoint operator —L + V3 on
L?(S'(R), du), where the probability measure x is formally given by using the “Lebesgue
measure” dw on L?(R, dz): .

1/2
N
du(w) = det (l——A) exp (—% (\/ m?2 — Aw, w)Lz(R)) dw

2

Hence —L + V) is formally unitarily equivalent to —Azzgy + AU(w/VA) — Ltr(m? = A)1/?
on L?(L%(R,dz), dw) where

Uw) = % /R (W (2)? + mPw(e)?)dz + V (1),
V(w) = /IR : P(w(z)) : g(z)dx

and Ayagn) is the “Laplacian” on L?(R) and P is a polynomial bounded below. Therefore
it is natural to expect that there are some relations between

(1) asyxﬁptotié behavior of low-lying spectrum of the operator —L + V) as A = oo
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(2) global minimum points of U.

In this nete, we discuss. the asymptotic behavior of the first eigenvalue of —L + Vi and
the gap of spectrum between the first and the second eigenvalue in terms of U based on
2] and [3]. The structure of this note is as follows. In Section 2, we recall semi-classical
results for Schrédinger operators on RY. In Section 3, we give a definition of the spatially
cut-off P(¢)-Hamiltonian. In Section 4 and 5, we state our main results. In Section 6,
we recall the proof of tunneling estimates for finite dimensional Schrodinger operators and
give a rough sketch of the proof in our case. In Section 7, we explain basic properties of
Agmon distance and the relation to instanton in our model.

2 Tunneling for Schrodinger operators on RN

Assume
(1) U e C®(RYN), U(z) > 0 for all z € RN and liminf|,_,o, U(z) > 0.
2) {z | U(z) =0} = {z1,...,2n}.
(3) Qi = 1DU(z;) > 0 for all 4.

Then the first éigenvalue E1()) of —A + \U(-/V/X) is simple and

,\ll’n;o Ei()\) = lxgiléln'mfa(—A + (Qiz, x)).

In addition to the assumptions above, we assume the symmetry of U:
(4) U(z) =U(-x),
(5) {z | U(z) =0} = {~=0,z0} (20 #0).

Let E3()) be the second eigenvalue. By Harrell, Jona-Lasinio, Martinelli and Scoppola,
Simon, Helffer and Sjéstrand ([17, 21, 32, 33, 19, 20]) and others

5 log(E2(A) — E1(A) _
Ao A -

A
_dUg(_mm mO)a

where dgg (—o, 7o) is the Agmon distance between —zo and xo (1, 25]) and

T .
dﬁg(—zo,xo) = inf{/ VU(z(2))|z(t)|dt l  is a smooth curve on RY with
z(-T) = —zo,z(T) = xo}.

Carmona and Simon([6] gave another representation d5° of d‘;}g using an action integral:

dgs(—xo, xp) = inf{/

o0

(}I|m’(t)|2 +‘U(z(t))>bdt ‘ t_lér_noox(t) = —xy, tll)r& z(t) = xo}.

—00
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Remark 1. The classical Newton’s equation corresponding to —A + U is
z”(t) = —2(VU)(z(t)).

The above action integral is euclidean action integral.
The minimizing path zp = xg(t) (—oo < t < 00) is called an instanton which satisfies

2"(t) = 2(VU)(z(t)).

3 Definition of spatially cut-off P(¢),-Hamiltonian

Let m > 0. Let u be the Gaussian measure on the space of tempered distributions &'(R)
such that

2 .= (2 _ AY—1/2
| st uidgdut) = ((n* - 2) 2, 0)
Let & be the Dirichlet form defined by
£6.N = [ IVS@Iagandut) 1 € DE)
where V f(w) is the unique element in L?(R, dz) such that
ACks 6<P) f(w)

s—+0

= (Vf(w),9) 2z, ) |

The generator —L(> 0) of £ is one of expressions of a free Hamlltoman Let P(z) =
S 2M arxk, where agps > 0. Let g € C§°(R) with g(z) > O for all  and define for
h € HY(= H'(R)),

V(= [ P(hiz))g(a)ds
Uh) = % /R ((2)? + m?h(@)?) de + V(B)

We want to consider an operator like
| —L+AV(w/VX) on L(S'(R),dp).

The difﬁculty is in the definition of w(z)* because w is an element of the Schwartz distri-
bution. Instead of w(x)¥, we use Wick power : w(z)* : which requires renormalizations for
which we refer the readers to [12, 31, 34, 7]. For P = P(z) = Eifoakxk with agpr > 0,

define
[ (59) -3 (22 s

() foo(59) o

We write
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Definition 2. The spatially cut-off P(¢)2-Hamiltonian —L+V), is defined to be the unique
self-adjoint extension operator of (—L + Vi, FCg°(S'(R))).

It is known that —L + V3 is bounded from below and the first eigenvalue Ey(}) is
simple and the corresponding positive eigenfunction {2;,x exists. See [12, 31, 34)].

4 Semi-classical limit of the first eigenvalue

Assumption 3. (A1) U(h) >0 for all h € H' and
Z={he H |UM)=0}={h1,...,hn}

is a ﬁhite set.
(A2) The Hessian V2U (ki) (1 < i < n) is strictly positive.

Remark 4. Since for any h € H?,

: 2
VU (hi)(h, h) = % / K (z)*dz + f (%h(m)z +P”(h,-(a:))g(x)h(a:)2) dz,
R R
the non-degeneracy is equivalent to
inf o (—A +m? + 2P"(hi(z))g(z)) > 0.
Theorem 5. Assume (Al) and (A2) and let E1(\) = info(—L +Vy). Then
i B = g, B
where
1
Bi=info(-L+Q), Qlw)=3 /  w(@)? : P (hi(e))g(z)de. @1)
R
Let H*(R) be the Sobolev space with the norm:
el zery = Il(m? = AY"20| L2(g a2)-

Let H = HY2(R). Then H is the Cameron-Martin subspace of p and p exists on W C
S'(R):

W ={weS® | lully = [ 10+ - &) w(@)ds < oo}

R :

The triple (W, H, p1) is an abstract Wiener space [15]. The proof of Theorem 5 is done by
using

(1) IMS localization argument(32]

(2) Lower bound estimate for the bottom of the spectrum of —L + Vj which follows from
logarithmic Sobolev ineqaulities [16]

(3) Large deviation and Laplace method for Wick polynomials (Wiener chaos)(5, 23, 24]
See (2, 3] for the detail of the proof.



5 Tunneling for spatially cut-off P(¢);-Hamiltonians

Let
B3 (\) = inf {o(=L+ V) \ {EL(N)}}

It is known that Ea(\) > E1()) (due to [34]). We prove that FE2(A\)— E1()) is exponentially
small when A — oo in the case where the potential function is double well type.

Assumption 6. (A3) For all z, P(z) = P(—=z) and Z = {ho, —ho}, where ho # 0.
Theorem 7. Assume (Al), (A2), (A3). Then

i sup 8 (B2(Y) = B3 (3)
A—00 A

< —df9(ho, —ho).

It is still'an open problem to obtain more precise asymptotics of the gap of the spec-
trum.

Example 8. Fiz g € C§°(R). Let n € N. For sufficiently large a > 0, the polynomial
P(z)=a(z*-1)"~C
satisfies (A1), (A2), (A3). Here C is a positive constant which depends on a,g.
We define the Agmon distance dgg (—h(j, ho).
Assumption 9. In the definition below, we always assume U(h) > 0 for all h.

Note that hg, —ho € H*(R). Hence it suffices to define the Agmon distance on H'(R).
Let 0 < T < oo and h,k € HY(R). Let ACrpi(H!(R)) be the set of all absolutely
‘continuous paths c: [0, 7] = H(R) satisfying c(0) = h, c(T) = k.

Definition 10. We define the Agmon distance between h, k by
di (h, k) = inf {€y(c) | ¢ € ACTai(H'(R))},
where

T
o) = [ VIEDIE it

Agmon metric is conformal to L2-metric. However the function U is defined on H1.
So it is natural to consider on which space the Agmon distance is defined. The following

classical result gives a suggestion for this problem:
For any h,k € HY/2(R), there exists u(= u(t, z)) € H((0,T) x R) such that

(1) u(0,z) = h(z) and (T, z) = k(z),

T ’ :
@ /0 VI ()l gadt < oo

Thus we extend the definition of the Agmon distance to the space H/2.
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Definition 11 ([3]).
(1) Let h,k € H'Y2, Let Prpxu be all continuous paths ¢ = c(t) (0<t<T)on H/2
such that

@) ce ACT,h,k(Lz(R)), c(0) = h,c(T) =k,
(ii) c(t) € HY(R) for || (t))|2dt -a.e. t € [0,T] and the length of c is finite:

T
tu(c) = /0 VIE@IC @)l adt < oo.

(2) Let0 < T < oco. We define the Agmon distance between h,k € H 1/2(R) by
dgg(h, k) = inf {eu(c) I cE PT,h,k,U} .

It is not difficult to see the two definitions above of dﬁg coincides with each other on
H!. ‘

Now let us recall some idea of the proof in [33] of the tunneling estimate in finite
dimensional cases. Assume the assumptions (1), (2), (3), (4), (5) in Section 2. Then for
the ground state ¥, ) of —A + A2U, we have

1 ) (A A
)\l-l—>nolo 3 log ¥y »(z) = — min (dUg(a:,xo), dyg(a:, ——:co)) .

This and estimates on the second eigenfunction implies

lim 08 (Ea(A) = E1(N) _
oo A -

—d29 (0, —0).

Now let us consider the spatially cut-off P(¢);-Hamiltonian as an infinite dimensional
Schrédinger operator. Assume (Al), (A2), (A3). Let

duay =B adp, gy = (S2)strv, (5.1)
where Q) x is the ground state of —L+V) and Syw = % Formally dp,ﬁ(w) =V, a(w)idw,

where ¥ ) is the ground state for
2 A 2 1/2
—Apg) + AU (w) - Etr(m aAY R

It is natural to conjecture that ,ub satisfies the large deviation principle with good rate
function Iy:

Iy (k) = 2min (dg‘,g(ho, h), d29 (—ho, h)).

We prove a version of the upper bound estimate of this large deviation result which is
sufficient for the proof of Theorem 7.



6 Proof of Theorem 7

Assume U satisfies (A1), (A2). Let FY/ be the set of non-negative bounded globally
Lipschitz continuous functions u on W such that

(i) 0<u(h) <U(h) for all h € H! and |
{he H'| U(h)‘——’u(h) =0} = {h1,...,hn} = {U = 0}.

(ii). u is C? in U2, Bs, (h;) for some & > 0, where Bs(h) = {w € W | ||w — h||w < 6}.
(iii) The Hessians V2 (U —u) (h;) (1 <i<n) are strictly positive.
Let u € J-‘g;V. For wy,ws € W, we define pu (’w]_,'U)2) by
(i) if w; —wp € L3(R),

, T
oY (w1, ws) = inf { / Vu(wy + c(t)) || (t)|| g2dt ‘ c is an absolutely continuous path
! -

on L3(R) with c(0) = 0, e(T) = wz — wl}.

(i) ifwr —wy  LA(R),  pl (wy,w) =
Further define

o (w1, wg) = lim inf{pz" (w,n) | w € Ba(wn),n € Be(wz)}-

In the case where W = H = RN for any. wi, ws, clearly,

sup P, (wl,wz) = dU (w1, w2).
ue]-'

Lemma 12. Assume (Al), (A2) and Z consists two points {h,k}. Then

djf(h,k) = sup p¥(h k).
uer

We proved the above in the case of h = hg, k = —ho, where hg are the zero points of
U in [3]. But I think the equality holds for all points in H'/2 under the assumptions (A1)
and (A2).

Lemma 13. Let u € FY .
(1) Let O be a non-empty open subset ofW and set py (O, w) = inf{p} (¢, w) | € O}.
Then

 (0,-) €D(),
IVor (0, w)| 2R azy < Vu(w) p-a.saw.

(2) Assume (A1) and (A2). Set up(w) = Mu(w/VN), Ei(), u) mfa( =L +Vy — uy).
Then limy_,o0 E1(A, u) converges.
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Lemma 14. Assume (A1), (A2). Let duyy(w) = Q% )\(w)d,u, where Q4 ) is the ground
state of —L + V. Letr >k and 0 < ¢ < 1. Let Be(Z) = Uj; Be(hs). For large A,

C —2gA\(r—kK) o
HAU ({w ew ZV (%,Be(Z)> > r}) < /c?(l)\e(l — q2)52"1i”02)’ (6.1)

where C; are positive constants independent of A\, 7, k.

Proof of Theorem 7. Note that

Jw 1V £ (w)[32dpau (w)
fW f(m)2dNA,U(w)

Ex(\) — By(\) = inf{
feDE)NL®(W,pu), f#0,f L1lin Lz(u,\,v)},

where duyuy = Q2 1 xdu Note that the ground state measure puy y concentrate on {ﬂ:\/_ ho}
by Lemma 14. So we introduce a function f such that f = +1 in a neighborhood of
+vAho. Then f L 1 approximately in L%(pyy). This f can be constructed by using

ol (w/\/x, Bs(ho)), oY (w/\/x, BE(—ho)). Using the proﬁerty

oy (\/)—\ BE(Z)) 5

and calculating the the ratio of the integrals of |V f| and f and applying Lemma 14, the
proof is completed. . O

ho, —h
IV fllo < 00, supp|Vf|C {w P_(O____(_)_)_}

7 Properties of Agmon distance and instanton

We already defined the Agmon distance dgg on H/2. Actually this is a continuous distance
function on H'/? and the topology is the same as the one defined by the Sobolev norm.
Also we can prove the existence of the geodesics between two zero points and the existence
of instanton. The readers find these results in [3]. I do not prove the uniqueness of them
yet.

Theorem 15 (Existence of geodesic). Assume (A1), (A2) and Z consists of two points
{h,k}. There ezists a continuous curve c, on HY2(R) such that c. € ACThx(L*(R)) and
dAg (h, k) = Ly(cs). Moreover c,. satisfies the following.

(1) cx(0) = h, cx(1) = k and c.(t) # h,k for0 <t < 1.

(2) cx = cu(t, z) is a C™ function of (t,z) € (0,1) X R and c. € H((e,1—¢) X R) for all
0<e<l.

(3) For almost every t in the Lebesgue measure, we have

VU @)l t)llzz = di? (h, k).

4) J5 Iu®)l32dt = fi_, llck()l|32dt = +00 for all e > 0.



. :
The instanton equation %ﬁ(t, z) = 2(VU)(u(t, z)) reads

d%u &%

s b I+ 5 = (t,2) = m?u(t, ) + 2P (u(t, 2))g (). (7.1)

2
) ditdx

+ //(_T,T)XR <m;10(t,w)2 + P(u(t, :L‘))g(;z:)) dtdz

Let T > 0 and define the action integral

1 {|0u
Ir,plu) = 4 .//(—T,T)XIR (

2 .
ou

at

and
Lopw) = 7 [ 100l + [ Utu(o)at

Theorem 16 (Existence of instanton). There ezists a solution u, = us(t,z) ((t,z) € R?)
to the instanton equation which satisfies the following.
(1) For any T > 0, us|(—r,r)yxr € H' ((-T,T) x R)NC®((-T, T) x R) and

i (s (8) = Bllgas = 0, lim fue(t) = kll sz = 0.

(2) Ioo,p(us) = d‘g‘g(h, k).

(3) The function u, is a minimizer of the functzonal Io,p in the set of functions u
satisfying the following conditions:

() ul-zz)xr € HY(~T,T),R) for all T > 0,
(it) t_l)ix_noo |u(t) = hllg12 =0, tl—lglo lu(t) — k|l g1/2 = 0.

Now we explain the relation between c, and u,. Let
'p(t) -1 /t I (8)l|2.ds 0<t<1
2459 (h, k) J1/2 e ’
L /t | ! 2
o(t) = ——— u'(s ds teR.
0= s | WO

Then p~1(t) = o(t) (t € R) and

u*(ta .’17) = c*(a(t),a:) te R,
us(p(t),z) = cult,z) 0<t<1.
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