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1 Introduction

It is well-known that a nonparametric regression estimator does not produce constant
estimator variance over domain. To obtain a homoscedastic nonparametric regression
estimators especially for a kernel regression estimator, a bandwidth matrix that is designed
to stabilize variance should be introduced. In this paper, we give an overview of the
homoscedastic nonparametric regression estimators and make a comparison between the
two possible variance-stabilizing (henceforth VS) bandwidth matrices.

The locally linear estimator (henceforth the LL estimator) as presented by Ruppert
and Wand (1994) is one of the well-known nonparametric regression estimators to explore
the association between a set of stochastic covariates X = (X, ..., X,,) and the response Y.
Let us consider a p+ 1-row vector (X,.,Y;) of random variables, where X;. = (X;1, ..., X;;)
is 1.i.d. with respect to ¢ and its joint density function fx(x) is away from zero on compact
support I? € RP. The vector X;. = (z:1, ..., Tip), 7 = 1, ..., n, is the realization of X;.. The n
sample realizations of (X1, ..., X;;) can be written as the covariate matrix (X.1,X.2, ...y X.p ),
where x.; = (x1j, 225, ..., ¥n;)7, 1 = 1,...,n. Then, the response Y;, i = 1,...,n, is written
as

Y, = -m(Xz-.)-I—L",‘,

where m(-) is m : R — R function of the X;. The U;|X;’s, i = 1,...,n, are random
variables independent with respect to 7 and are assumed to be independent of X., ¢ # 7,
with their means and variances to be zero and o?(x;.) respectively. Let Kx(t) be the non-
negative real-valued p-dimensional kernel function, where t = (ty,...,%,), satisfying the
assumption of second order kernel in Ruppert and Wand (1994). Let H be a p-dimensional
symmetric positive definite-bandwidth matrix. All the entries k;; in H converge to 0 as
n — oo and n|H| — oo as n — oo. Then, the LL estimator of m() is given by the
solution for p minimizing,

n ¥4 2
ﬁo,lgf,i.?,ﬁp izli Yi=fo- ;;:ﬁi(mij — ;)| Kx ((xi— X)H_l)
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where
1 Tl — 2y Ti2— T2 ... T1p— Tp
1 Ty —Tp T2 — T2 ... T2p—Tp
D(X) = . . . . . 3
1 Tp1 =Ty T2 — T2 ... Tpp — Tp

(x) = diag (Kx((x;. — x)H™1), ..., Kx((x,. — x)H™')) is the weight matrix, 8 = (5, f1, ...,

is the coefficient vector, Y = (Y1,..., ¥;)T is the vector of responses with length n. Solving
the minimization problem (1) with respect to 8o, we obtain the LL estimator,

ml(x) = & [DT(x)W(x)D(x)] " [DT(x)W(x)Y],

where €; is a 1 X (p+ 1) row vector with 1 as the first entry 0 for all other entries. Then,
the theoretical conditional variance of the LL estimator is written as

1 o¥(x)
n[H] fx(
where R(Kx) = [--- [ K%(t)dt. The term o(x)/fx(x) in the leading term of (2) rep-

resents the heteroscedasticity of the LL estimator. Similarly, the theoretical conditional
bias for the LL estimator at x is known to be

Ex, v, [n/’tﬁ*(x)‘ X1 = X1y ooy Xy = xn.] — m(x)

Vx,v. [ I (x )’X1.=x1.,...,X".:xn.] = 2% p(Kx)(op(1) + 1), (2)

— /‘2(;‘ )tra(‘(" [HTV2m( )H] + 0, (trace (HTH)) ,

where po(Kx) is the variance of the kernel and V2m(x) is the Hessian matrix,

Vim(x) = : : =
I?m(x) O2m(x)

drpdry  *°°  Owpdrp

92 (x) 32 [ )
axzna; axTa:,, (au(x) alp(x))

al,,'(x) . a,,,,.(x)

To obtain homoscedastic LL estimator, it is necessary to set the determinant of the local
variable bandwidth matrix |H(x)| to be o%(x)/ fx(x) at every locational point x. One such
bandwidth estimator appears in Fan and Gijbels (1992). In the paper, they employ the
global variable bandwidth 0%(X;)ho/ fx (X;) for the univariate LL estimator and assign dif-
ferent weight to each observation in the kernel by K ((z—X;) fx(X:)/(c*(X:)ho)). The pa-
rameter hg is a global parameter that should be determined to minimize AMISE (Asymp-
totic Mean Integrated Squared Error). Nishida and Kanazawa (2011) also proposes the
variance-stabilizing local variable bandwidth for the univariate Nadaraya-Watson esti-
mator (Nadaraya 1964, 1965, 1970; Watson, 1964; Watson and Leadbetter, 1963) and
make a comparison with the Mean Integrated Squared Error (MISE) nnnumzmg fixed
bandwidth. Since the two VS bandwidths are so designed as to minimize MISE (Mean
Integrated Squared Error) among the class of VS bandwidths, they cannot, by its defini-
tion, outperform the MSE minimizing local variable bandwidth in terms of MISE. In this
sense, Fan and Gijibels (1992) are critical to the VS bandwidth.
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In multivariate setting, Nishida and Kanazawa (2013) proposes the VS diagonal band-
width matrix for the p-variate LL estimator. The proposed VS bandwidth matrix is of

the form
2(x)] 15y 9 (x) [az(x) ] T 9 (x)
Hygs(x) = hy - diag ([jx(X) yees _—fx(x) ,

Zni"“"”’ 3)

—00 < niitag(x) < 00, (4)

and the global parameter ko and the local parameters 7;;(x)’s, i = 1, ..., p, are optimized
to minimize AMISE under the constraints (3) and (4). Then, if we denote wx(x) to be a

weighting function, the optimal Aj and ang’ (x), 7 = 1,...,p, are respectively given by

1
K- P+
hs = [ 2/ 17 Dﬁg:X) Diag,» ; ]p 'p;ivi : n_Flﬁa
p3(Ex)Tvs(my 7 (%), oo o 07 (X))
where
Di Di o?(x) M9t (x)]?

T (Uuwg’ (X)’ ’T’ppmg,*(x) / / wx X) {Z au [ :l dX,
and

Diag,* .
M (X -

if 0;(x) > 0,i=1,...,p,0r a5(x) < 0, ¢ = 1,...,p. f s(x) =0, ¢ =1,...,p, any set of
values n5"*"™ (x) satlsfymg SF_ 1% (x) = 1 are available. If ai(x)’s, i = 1,...,p, are
not of the same sign when p > 3, the optimal set of parameters nD %), 1 =1,...,p, is

given by any set of values satisfying

}”: o2(x) 2 ") Z N
(%) [——] =0, subject to M 9 (x) = 1.
i=1 fX(x)

i=1

If agy(x) =0, a_is(x)’s, ¢ = 1,...,p,1 # g, are non-zero, we consider the p — 1 dimensional
minimization problem with the g-th variable left out of the AMISE minimization problem.
This proposed VS bandwidth matrix is called the VS diagonal bandwidth matrix.

The VS diagonal bandwidth matrix has an advantage that, under a sufficient condition,

y B fx(x)
Y (x [Z ax(x } Const., ~v(x)= az(x)dx/fp Fx(x)dx ’
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our proposed VS bandwidth outperforms the MSE minimizing local variable scalar band-
width matrix (henceforth the MSE-minimizing scalar bandwidth matrix),

1
\ 2 Fres
Hvar(X) = R(Kx (X) p# . n_F-lﬁ . Ip, (5)

H3(Kx) fx (%) [0y (3]

which minimizes AMSE at every x among the class of local variable scalar bandwidth
matrices Hyay(x) = hoo(x)-I,. This result reveals that the VS bandwidth can outperform
the MSE-minimizing bandwidth matrix if the dimensionality p is greater than one.

However, the proposed VS diagonal bandwidth matrix may be inadequate under a
complex data structure. It is because we put a zero value at each off-diagonal element
of the VS matrix instead of the terms that would be necessary to estimate a complex
regression function. If we employ a full-bandwidth matrix Hy in bivariate setting, the
leading term of the squared bias is written as

p3(Kx)
4

2

If hy; = 0, the term that contains a;y(z;, ;) in (6) disappears and information about the
term is overlooked.

We also expect that the term hy; reflects the correlation between X.; and X.;. This is
conceivable from that the squared of the bandwidth matrix H? crresponds to the variance-
covariance matrix of the data X.; when Gaussian kernel is employed. In bivariate setting,
for example, the off-diagonal elements of H2 are hy;(hyy + hy3), and H2 has no correlation
lf h12 = 0.

In this sense, under the data such as the mixed derivative functions of n(x) are not zero
and / or the correlations between explanatory variables are observed, more flexible VS
bandwidth matrix such as a full-bandwidth matrix is motivated. The VS full-bandwidth
matrix in multivariate setting is of the form

- Full(x) oo nF"‘“(x) T)Full(x)
Full [ 22" Full | 02(x) |12 Full )| e
hi™ | ] o i | o hip [fx(X)}
Full [ o200 ] M2 ) pEull | 2(")]772 =
Hys++(x) = 12 rx(x) ] 2 x) , (7)
pFuil [ 22(x) ] ) pFull [ 226 i p Pl [ 22(x) T (%)
1p | fx(x) ] 2 | fx(x) o e | ()
14
Z sgn(sl) H hf‘::ll >0, hFulI }Liull’ (8)
sESp i=1
Z nf;f” =1, forall s €S, n5*(x)= nﬁ“”( x), 9)

hf;“” >0, —oo<ni(x)< o0, fori, j=1,. (10)
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where S, is the set of all permutations s = {sy, 59, ..., 8, } of the set {1,2,...,p} and sgn(s)
denotes the signature of each s; it is +1 for even s and —1 for odd s. The conditions (8),
(9) and (10) assure us the posmve definiteness of the bandwidth matrix by Sylvester’s
criterion.

In bivariate setting, the matrix (7) is written as

1

Full | o2 i) Full a3(x) |2
I = ] hy [fx(X%] -
Hys++(x) = Full [ 63(x) 2 Full [ o2(x) ™2 SN (1)
his [fx(x)] by [fx(x):I

where
hFulI hgull > 0’ hﬁull/l‘}*jull (hFull > 0’
Full - Full
7’15“”(") + e (x) =1, —oo < nyy"(x) < oo.

To make the problem simpler, we additionally assume Al = AL in (11) and obtain
AMISE written as

AMISE (?n($1,$2),m+ (x))
R(Kx) Full 3 Full , Full

—_ cTra(hi ™, by * ,T2)), 12

n [h% — h%z] 4 Fu(hiy 12 T (xl,l’z)), (12)

where

TFull h'l Full hFull’ T]ﬁu”(h,m))
Full az(w T )
7 p 1,42
+ (hl)? [———-—)H o (21, 22)

// (hF)2 [ oz, 23) ]zn“
le,Xz(iElah) fX1.X2(-T1w7:2

Pullfg roypl 3_pFull(g,

rutt | ppan [ O (w1,m2) ™ (o2t rai | 0 @,a) TR (1,22)

+2h5 | F —_— h _—

(31 231 + Ay a2, 22)
le,Xg(l'l,mz) le,Xz("El"mZ)

(z1,22)

2(1—nf ¥ (z1,22))
fX1,X2(‘T17x2):! leTXZ(xl,.'ITg
X le,Xg(xh‘,UZ)dwld‘rZ' (13)

" {(hﬁull)Z l: o?(z1,22) + (hF? [MSH azz(xl,xz)}

Even in a bivariate setting, it is hard to obtain the optimal parameters AFu>, hﬁ“”’*
i (1, 24) explicitly in terms of AMISE, so we have to resort to numerical calculation.
If the domain is large, it is also practically inevitable to employ universal parameters /!,
: = 1,2, instead of local ones, to reduce computational burden. In section 2, we menmon
under what situation the VS full-bandwidth matrix is advisable in terms of AMISE in
bivariate setting.

Although the two VS bandwidth matrices are so designed as to stabilize the asymptotic
variance of the LL estimator, we do not know to what degree they stabilize the variance
when they are practically used for a complex data. Especially, we are interested in the

cases where the mixed derivative of the true regression function is nonzero and/or the
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explanatory variables are correlated. We are also interested in the case where the sphering
approach is not applicable, e.g. a multimodal density setting. To validate this, we run
Monte-Clarlo simulations with the theoretical VS bandwidth matrices in bivariate setting
and present the results in Section 3. In the simulation, the MSE-minimizing local variable
bandwidth in (5) is employed as a competitor for the heteroscedastic LL estimator. In
section 2, we give some remarks on the VS-full bandwidth matrix and its estimator. In
Section 4, we give Discussion.

2 On the VS full-bandwidth matrix

It is impossible to obtain the VS-full bandwidth matrix explicitly even in bivariate
setting. To compute the VS-full bandwidth matrix numerically, we need to know the
AMISE function has minimum values with respect to AF*! and AFM, as well as nfi.
The following two remarks give us a sketch about the ex1stence of minimum value of

AMISE function when the VS full-bandwidth matrix is employed.

Remark 1. The function AMISE(RFp hEs# pFull) has at least one minimum value
with respect to hf## and R, To know this, we expand (13) and obtain,

Full F U, Full
Tru(hiy" hyg s my™)

Pty
- ’ // {/M“ (21, 22)0d) (21, 22) + VA~ ) (g, z2)ay (1, 72)
I2

+V3(21, 22) 001 (21, T2) 22 (1, Tz)} Fx1,x: (21, 22)dz 1 dy
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+ Fu” // v Il,Ta)[au(Tlaﬂfz)+an($1,3‘2 +al1(11,12)022 9«1,1‘2)}]()(, xz(Thxz)dlcxd»’M

+ Z(hffdl)g(hf;"”)/Lalz(fl,fz)[vn“u +7($1,$2)+V5_"““ (131,1’2)]

I o Full 21— Full
x [ V2 ($1,1'2)011($1’I2)+1/2(1 Gty )(1‘1,562)022(331,552)] fxy x, (21, 2p)dx dizy

+ 2(h11“" F“” 3// a12(z1, 22)V (21, 22) [V"U +3 (zy,29) + V §-nf (.'L'l,]lg)jl

x| oy (21, z2) + 022(-’31, 902)] fx ,Xg(zh $2)d£1d‘$2

n 2
+ (hf'lull 2 Full)2// [4012 21,12)[‘/’711 +2(,r,1,.1;2)-}-‘/'2""'11 1,1 .1'2):'

] 33—
+a11($x,$2)0¢22($1s$2)IiVQ"“u 2y, )+ V2 iy (301,1"2)]

Full o, Full
F2VETH (), 35 )0k (21, 22) + 2V AT ($1a1’2)a§2(“'1»$2)} Ixix, (%1, 2)dwdzs,

(14)



where V(21,23) = 0%(2y1,2)/ fx, x,(21,73). From A > FEU we know that the first
term is of the greatest order of magnitude in terms of Af" and h*#. We also know

hl “”)4// [VMH xl’“ a11(11v~”2)+ V- "F“l)(xhﬂfz)a%z(fb’lsxz)
+V¥ (21, v5) ey (21, x3)oge(1, 172)} fx,.%, (%1, 22)dz1day

> (RFH 1// V3 (21, x2) [2[011 «‘!71,902)022(11,’62)?+a11(5€1,f2)a22(r1,$2)J
XfXI’Xz(.Tl,JV'z)dJJld‘Z?Q 2 0.

Thus, we know hnll;llhﬂ_,oo Truu(REp pEw F“”) = oo and limyp)j-0 Tpuu(hF“” REHL pFuty =
0, Where h = NN /zFf‘” > th"” > 0. On the other hand, it is verified that
lim”h“_,m R(I(x)/ [ [(hFull)? (/IFUH) ]] = 0 and 1]11’1“[1”_.,0 R(Ax)/ [ [ /21 u”)2 hru”) ]] =
co. Since AMISE(RIM, hEx nF#l) is bounded below by zero, there exists at least one
minimum value with respect to A and AF¥,

Remark 2. There exists the optimal 7;; that minimizes Tpyu(hI2H, R pF ey, With-
out loss of generality, we assume [0?(xy,2,)/ fx, x,(21,22)] > 1. Then, we can choose a
constant term vy that satisfies

Full

o¥(z1,22) J"“
Uy | —— 2R < TFu hO hO Full , 15
0 l:fxl,Xz(xhiFﬁ u(hips Aoy mi™) (15)

where hY; and kY, are arbltrary constants. Since lim,_,c, vo [02(21,22)/ fx, x, (21, 12)]"“ =
00, Truu(hiy, his, nfi") also goes to oo, as 77" — co. On the other hand, we can choose
another constant term v; that sahsﬁes

Full

2 . ~Mi

o%(zy,2,) 0 10 Full

&t [ - < Trai(hyy, iz mit™). (16)
Fx1.x,(21,22)
Pull

. . 2 | N 0
Since limy— oo v1 [0%(21, 22)/ fx, x, (21, 22)] 7™ = 00, Trau(hdy, h, n#) also goes to
00, as i — —oo. Since the term Ty (hFH, hEM, 7;{'1“”) is bounded below, we notice

that there exists at least one r]Fu” "



We also present a sufficient condition under which the bandwidth parameter AI!
should be zero in terms of AMISE in bivariate setting. This condition claims that the
VS diagonal bandwidth matrix is advisable over the VS full-bandwidth matrix in terms
of AMISE under the situation.

Proposition 1. In bivariate setting, the parameter hI" in (11) should be zero to mini-
mize AMISE under a sufficient condition,

oy (21, 22) >0, aa(21,22) 20, gz, 22) >0,
or  an(e,22) <0, aip(r1,22) 0, an(z,22) <0, (17)

over the domain.

Proof. Let Al be fixed. The AMISE(RIM AT pFul) is minimized at Af3 = 0 if

0AMISE(hfZ“")
0, 18
a(hipzw, R =0 g 18)
and
o2 o b Full
O*AMISE(h{;*) (19)

0(hﬂu11)2 >4,
on the support 0 < AI#! < hfl. Since the first and the second derivatives with re-
spect to Ai3¥ of the variance part in (12) are always positive, the signs of (18) and
(19) are determined by all the signs of aj;(21, z2)e12(21,72), i2(71,22)a22(21,x2) and
ay1(ry, x3)ag2(21, £2), all of which appear in the first and the second partial derivatives
with respect to AT of the function (14). As long as the condition (17) is satisfied, all the
signs of ayy (21, 22) (71, T2), @12( 21, T2)00z(1, 2) and ayy (21, 72)az (), T2) are positive

and the AMISE(hf7") is minimized at A7 = 0. O
A sketch on the estimator of the VS full-bandwidth matrix

Nishida and Kanazawa (2013) proposes an estimator of the VS diagonal bandwidth
matrix. The idea is to estimate fx(x), o%(x), 9*m(x)/0x? and plug these estimators
into the original VS diagonal bandwidth matrix. Nishida and Kanazawa (2013) employs
the residual based estimator in Fan and Yao (1998) as an estimator of o%(x), kernel
density estimator as an estimator of fx(x) and quartic polinomial fit for a;;(x). For the
bandwidths of these estimators, cross-validation statistics are employed. Since quartic
polinomial fit for a;;(x) is inconsistent estimator unless the true regression function is
polynomial function, this estimator is ROT (Rule of Thumb). Although Nishida and
Kanazawa (2013) points out that the VS regression estimation is a difficult task because
of the difficulty in estimating 0%(x) and a;;(x), some pieces of evidence that the proposed
estimator produces homoscedastic nonparametric regression estimator is presented.

The problem is even more difficult when it comes to estimating the VS full-bandwidth
matrix. Since it is impossible to obtain a theoretical bandwidth matrix explicitly, either
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plug-in (PI) approach or ROT is no longer accessible. Yang and Tschernig (1999) en-
counters the same difficulty to propose the estimator of the MISE-minimizing diagonal
bandwidth matrix for the multivariate LL estimator. In their paper, the optimal band-
width matrix in multlvarlate setting cannnot be obtained explicitly so they estimate the

AMISE that depends on A(o2(-)) and B;;(m(- )), where
Ao?(- / / wx (x)o?(x)dx
Ir

B;j(m(+)) = //Ip wx (X)og(X)ay;(x)dx, 1,7 =1,...,p,

and minimize the AMISE estimated by numerical calculation in terms of Ay;,hag, .., App.

To obtain /:1\(02(-)) and /BZJ(m()), they employ two ways, ROT and PI approahes. For
ROT approach, the use of a quartic Taylor expansion is employed as in Ruppert et.al.
(1995). They separate the data into equalized blocks and use a quartic Taylor expansion
on each block. If we denote the number of blocks in one direction, say j, to be N;, the
total number of blocks in the domain is N = []’_; N;. To determine the optimal N*,
they employ Mallow’s C, criterion,

RSS(N)n = k(o) 5]}

C =
o(N miny RSS(N)

(n = 2k(p)N),

where RSS(IN) denotes the residual sum of squares based on the quartic fit with blocking
N = (N, Ny, .o, N,

p)*1+Z( H_l)

is the maximum number of parameters in one block. Then, the corresponding estimator
of BL, (m(-)) is the estimate of error variance: residual sum of squares of the function
MproT,N+(X), a function estimated by a quartic Taylor expansion, divided by the number
of degrees of freedom. The estimator of ];/?,\J( m(-)) is the sample average of
[0*FiiRor.Ne (x)/027) [*iRoT R+ (X)/D22] weighted by fx(x).

For PI approach, Yang and Tschernig (1999) estimates the second derivative of the
true regression function via partial local cubic estimator, with most cross terms left-out
of full local cubic estimator, given by

&5;(x) = (2)e; [DF (x)W(x)D;j(x)] ™" [Df (x)W(x)Y] ,

where

Dj(x) = (Dj,1(x), Dj2(x), Dj 3(x), Dj 4(x), Dj5(x), Dje(x), Dj,7(x)) 5
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Dji(x) = { }, (n x 1),
Dj2(x) = { (@is — @5 } ,
1,en, s=1,.p
Djs(x) = { (@is — @s)(ij — wj)} ;
=1y, $=1,..p, $#j
Djv4(x) = { Tis — s, } ’
i=1,..m, s=1,..,p
) = {(ram sty o) |
1=1,...,n, s=1,...,p, $#J
D;e(x) = {(mzs— zo)X( I‘J_‘r])} ’
t=1,...,n, s=1,...,p, 3#J

Djs(x) = {(fﬂij—f”j)s} ;
=1,..,n

and e; is a 1 x (5p— 1) row vector with 1 as the 2p+j (= 1+ p+p—1+j)-th entry 0 for
the other entries. To estimate the bandwidths for partial local cubic regression estimator,
they derive the asymptotic bias and variance of the estimator and employ ROT approach.

In our setting, the similar approaches to estimate AMISE directly in Yang and Tsch-
ernig (1999) may be applicable. To estimate Tru(hi, hE3M, nfi*!), we need to estimate
the mixed derivative function of m(x) that appears in (13). If we employ partial local
cubic estimator, the estimator of the mixed derivative function of m(x) with respect to

the variables z; and zj is given by
k(%) = e [D5T (X)W(x)D;(x)] ™" [D () W(x) Y], (20)

where ey is a 1 x (5p — 1) row vector of 0s whose (1 + p + k) element is 1. To obtain
the bandwidth matrix of the estimator (20), further study on the asymptotic bias and
variance of (20) is needed.

3 Monte-Carlo Simulations with theoretical bandwidth matri-
ces

Wand and Jones (1993) gives an extensive study about the choice of bandwidth ma-
trix in bivariate density estimation. In the study, they employ scalar, diagonal and full
bandwidth matrices for kernel density estimator. Then, they set up extensive numbers
of simulation cases and calculate AMISE’s theoretically for each simulation case. Fol-
lowing the practice in Wand and Jones (1993), we set up several simulation cases and
run Monte-Carlo Simulations with theoretical bandwidth matrices in bivariate setting to
know performances of the two VS bandwidth matrices. The procedure is as follows.

1. Generate (X;;, X;7) of sample size n distributed as fx, x,(z1,22). Generate U;[{X;. =
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x;.} of sample size n distributed as N(0,0%(z;;,2:3)). Obtain (X,.,Y;) of sample size
n, where Y; = m(z;, z;5) + U;{X; = x;}.

2. Construct LL estimators myg(X), MH,.,, (x) and fmn,..(X) at every grid point
defined on the domain. The number of grid points in the domain is G = 10,000.

3. Repeat 1 ~ 3 M = 100 times.

4. Obtain the estimator of MISE given by

WE(771(’m1, Z2), mu(T1,22))

M
1 — 2
= 3 E [// fx(zy,22) [7’71(:[.’1,([32) ~inH(t)(x1,x2)J dxldng ,
¥ =1 12

where g (t)(:cl, ) is the LL estimator calculated (t) th generated sample of size n.

. At every grid point, calculate the sample variances of Mmpyg(X), MH gy (X) and
MH,m (X) that are respectively calculated M = 100 times in 1 ~ 3 for n = 5, 000.

6. As measures to check if the variance is stabilized, we calculate the means, the

standard deviations and the Gini-coeflicients of the sample variances of Mmpyg(X),

e r—

MH ., (X) and g, (x) calculated at every grid point in 5.

[

In the simulation cases to be presented, the domain and the grid points are re-
spectively defined to be [—0.5,0.5] x [—0.5,0.5] and (—0.495 + 0.01 x (i — 1), —0.495 +
001 x(j—1)), ¢ = 1,..,100, 5 = 1,...,100. The conditional variance function is
oz, 29) = 0.5 + 0.25z% + 0.25z2% as illustrated in Figure 2. As densities, we employ
a normal density fx(z1,x2;p1 = 0.0,u, = 0.0,0? = 0.252,02 = 0.25%,p) truncated on
[—0.5,0.5]> with its correlation coefficient p = 0.0, 0.25, 0.5 and 0.75. We also employ a
bimodal density, a mixture of the two normal densities N((0.25,0), diag(0.152,0.15%)) and
N((-0.25,0.0), diag(0.15%,0.15?)) with its mixing ratio even. Figure 1 illustrates the five
distributions of the sample (X1, Xi2), ¢ = 1,...,5,000. Then, we suppose the following
three true regression functions denoted as simulation 1, 2 and 3 respectively. The per-
spective plots and contour plots of the simulation cases are given in Figure 3 and Figure 4
respectively. As kernel, we employ bivariate Gaussian kernel.

In general, VS nonparameteric regression estimation requires a large sample size data
as stated in Nishida and Kanazawa (2013). We consider that the sample size 5,000 is
enough to know the behavior of the VS bandwidth matrices.

Simulation 1. The true regression function is m(zy,z2) = —2z3 — z3. In this setup, we
intend that ayz(z1,2;) is zero over the domain.

Simulation 2. The true regression function is m(z;,2,) = —22% + 1.5z 2, — 22. In this
gress 1,22 Y 122 2
setup, we intend that a5(z;,z3) is nonzero constant over the domain.

Simulation 3. The true regression function is m(zy, ;) = sin(3x;) cos(3z,). In this
setup, we intend that ay3(zy, z2), which is —9 cos(3z,) sin(3x2), varies over the domain.

We show the result. The theoretical values of the parameteres in the two VS band-
width matrices are given in Table 1. The result of the simulations, Gini-coefficients, MISE
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Figure 4: Contour plots : Left=Simulation 1, Center=Simulation 2, Right=Simulation 3.
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estimated and standard deviation of sample variances, are given in Table 2. Figure 5 sum-
marizes Table 2. Although it is natural that the three simulation cases do not represent
all the data to happen, the result gives us some points of interest.

First, we examine the result of the theoretical bandwidth matrices. From Table 1,
we notice that the size of bandwidth tends to diminish as the correlation coefficient p
increases from 0.0 to 0.75. It seems that the smaller bandwidth is assigned when the
data is highly correlated. The comparison between simulation 1 and 2 also gives us an
interesting point of view. In simulation 1, the sign of the second derivative functions are
a11(z1,72) < 0 and ag(xy, 72) < 0, whereas in simulation 2, ay;(z;,z3) < 0, az(z,22) <
0 and ayz(zy,z2) > 0. As a result, hf;‘”’* comes out to be zero in simulation 1 whereas
nonzero in simulation 2. It seems that the parameter hﬂ””’* serves as an adjustment to
control the impact of the mixed derivetive on AMISE. We also notice that the size of h%
and hﬁ"”’* are similar each other in simulation 1 whereas in simulation 2 dissimilar. It
is because the mixed derivative of m(-) is zero in simulation 1 so there is no difference
between the VS diagonal and the VS full-bandwidth. As for the bimodal density setting,
we cannot find clear-cut features in the theoretical bandwidth matrices.

Second, we examine the achevement of variance-stabilization. From Table 2 as well
as Figure 5, we find a clear result that either the VS diagonal or the VS full-bandwidth
matrix outperforms the MSE-minimizing bandwidth matrix in terms of Gini-coefficients
when p ranges from 0 to 0.75. This is a convincing evidence that either of the two VS
bandwidth matrices can attain the variance-stabilization if the parameters in bandwidth
are well-estimated. We also notice that the Gini-coefficients of the VS bandwidth matrices
tend to increase as p increases form 0 to 0.75. The Gini-coefficients of the MSE-minimizing
bandwidth matrix, on the other hand, tends to diminish as p increases. It seems that the
MSE-minimizing bandwidth matrix tends to perform better than the two VS bandwidth
matrices in terms of Gini-coefficient when the data is highly correlated. Similarly, we also
notice that the VS diagonal bandwidth matrix tends to perform better than the VS-full
bandwidth matrix in terms of Gini-coeff.. It is because the VS diagonal bandwidth matrix
adjusts the size of n;’f“”’*(x) locally whereas the VS full-bandwidth matrix in our setting
does 5™ globally. As for the bimodal density setting, the VS full-bandwidth matrix
shows a good performance in simulation 3 in terms of Gini coeff., a piece of evidence
that the VS-full bandwidth matrix is advisable in a multimodal density setting to achieve
homoscedasticity.

Third, we examine the MISE estimated. From Table 2, we observe that the MISE’s
estimated diminishes as the correlation coefficient p increases from 0.0 to 0.75 in sim-
ulation 2 and 3 for all the three bandwidth matrices. On the other hand, the MISE’s
estimated tends to increase as the correlation coefficient p increases from 0.0 to 0.75 in
simulation 1. It seems that the MISE tends to diminish as the correlation p increases
from 0.0 to 0.75 when the mixed derivative of m(-) is nonzero over the domain. We also
observe that the VS diagonal and full-bandwidth matrices can, in many cases, outperform
the MSE-minimizing bandwidth matrix in terms of MISE estimated. This result supports
the assertion in Nishida and Kanazawa (2013). As for the bimodal setting, it seems that
the VS bandwidth matrices do not produce good results for all the simulation cases.
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p=000 p=035 p=050 p=075 Bimode
Simulation 1. hg 05049 04782 03719  0.1303  0.3736
RF#* 04966 04726 03705 0.1302 03725
REshe 00 0.0 0.0 0.0 0.0
niwht 04433 04391 0.4621 0.4855  0.4492
Simulation 2. hg 0.5049 04782 03719  0.1303  0.3736
RF#* 05417 05168 04093  0.1447  0.4093
REBU* 01447 01405 01157  0.0413  0.1157
pfh* 04407 04350 04590  0.4844  0.4451
Simulation 3. h; 04522 0.4370  0.3686  0.1537  0.4244
RFbe 04523 04391 03791  0.1674  0.0980
BB 0.0 00231 00475  0.0372 00
it 05 0.5 0.5 0.5 0.5

Table 1: Theoretical values of the parameters in the two VS bandwidth matrices.

to be unity in this table.

The sample size is set

p=000 p=025 p=050 p=0.75 Bimode
Simulation 1.
VS.Diag. Gini coefl. 03155 03105 03502  0.4098 09511
Var. Std.  0.0013  0.0014 00026  0.0125  31.0829
MISE 01497  0.1500  0.1498  0.1765 14.1006
VS.Full. Gini coeff.  0.3444  0.3467  0.3674  0.4105  0.9262
Var. Std.  0.0012  0.0014  0.0025  0.0133  1.5859
MISE 0.1514  0.517 01503  0.1774  1.5550
MSE-min. Gini coeff.  0.5847  0.5741  0.5377  0.4371  0.8134
Var. Std.  0.0041  0.0039  0.0035  0.0020  0.1358
MISE 0.1549  0.1551  0.1524  0.1585  0.3505
Simulation 2.
VS.Diag. Gini coefl.  0.3238  0.3333 03609 03826  0.9343
Var. Std.  0.0013  0.0016  0.0026  0.0098  68.1049
MISE  0.1710 01307  0.0941  0.0846  30.2487
VS.Full. Gini coeff.  0.3205  0.3380  0.3524  0.4025  0.9268
Var. Std.  0.0008  0.0009  0.0015  0.0072  0.7523
MISE  0.1686  0.1283  0.0921 0.0747 0.8726
MSE-min. Gini coeff.  0.5820  0.5809  0.5366  0.4198  0.8222
Var. Std.  0.0040  0.0043  0.0035  0.0020  0.1399
MISE 01770  0.1364  0.0967  0.0630  0.3694
Simulation 3.
VS.Diag. Gini coeff.  0.2872 03388  0.2833  0.3209  0.4115
Var. Std.  0.0012  0.0236  0.0018  0.0020  0.0020
MISE 04276 04217  0.4042  0.3695  0.0404
VS.Full. Gini coeff.  0.2832  0.2570  0.2837  0.3346  0.4000
Var. Std.  0.0012  0.0009  0.0016  0.0056  0.1399
MISE 04276 04217  0.4039  0.3657  0.0532
MSE-min. Gini coeffl.  0.5730  0.5899  0.6138  0.5384  0.5083
Var. Std.  0.0036  0.0039  0.0052  0.0032  0.0034
MISE  0.4228  0.4159  0.3971  0.3500  0.0122

Table 2: The result of Monte-Carlo simulation with theoretical bandwidth matrices.
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Figure 5: Summary of the simulation results.
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4 Discussion

In this paper, we propose the VS full-bandwidth matrix for the multivariate LL estima-
tor to complement the VS diagonal bandwidth matrix proposed by Nishida and Kanazawa
(2013). The derivation of the optimal VS full-bandwidth matrix in multivariate setting is
so intensive that we consider the problem in bivariate setting with an additional assump-
tion hF# = pFull. However, even in this tempered setting, it is impossible to explicitly

ul pEull and nfell (2, 2,), so we resort to numerical

obtain the optimal parameters, hf}

calculation. Although the parameter nf1*!(z,,z,), which is arranged to negate the vari-
ance term, should be locally determined by nature, we are obliged to use it as an universal
parameter over the domain to ease the computational burden.

Our main concern in this paper is to make a comparison between the two VS band-
width matrices in terms of MISE and the stability of the variance. To validate this, we run
Monte-Carlo simulations with theoretical bandwidth matrices, Hys(z1, z2), Hyvs++ (21, 22)
and Hyar(z1, x2). Through the simulation, we confirm that either Hvs(z;,x2) or Hys++ (21, x2)
is superior to Hyar(2;,22) in terms of stability of variance over the domain. We also no-
tice that the mixed derivative of m(z,, ;) surely influences the result in terms of MISE.
As for the correlation between covariates, we observe that the theoretical parameters, hj,
hﬁ““”’ and hfzuu‘* as well as MISE tend to diminish as p increases by the presented sim-
ulation cases. We also observe that variance-stabilization is difficult for both of the two
VS bandwidth matrices when covariates are highly correlated. As for the multimodality
of the density function, we obtain neither a tendency nor clear-cut explanations.

In our Monte-Carlo simulation study, we present two measures, the Gini-coeflicient and
the MISE estimated. Since these two measures are two different things, we can choose
the type of the bandwidth matrix that optimizes, for example, the following performance
function,

¢ - Gini-coefficient + (1 — () - MISE, (21)

where ( denotes the ratio representing the level of importance between the stability of
variance and Error. In Table 3, we revalue simulation 2 by the performance function (21).
From Table 3, we notice that the VS full-bandwidth matrix is well-balanced between
stability of variance and error in this simulation setting.

To obtain the estimator of the VS full-bandwidth matrix, we need to obtain the estima-
tor of the mixed derivative function of m(-), as well as fx, x,(-) and o*(-). The estimation
of the mixed derivative function of m(-) employing partial local cubic estimator is difficult
in general and requires us to estimate its pilot bandwidth beforehand via ROT approach
or cross-validation. After that, we resort to numerical calculation to obtain AF¥! REM!

and nF*!. Tt is expected that the calculation is far more intensive.



p=000 p=025 p=050 p=0.75 Bimode

Simulation 2.

¢=0.00 VS.Diag. 0.1711 0.1308 0.0942 0.0846 30.2488
VS.Full. 0.1687 0.1284 0.0921 0.0747 0.8726
MSE-min. 0.1770 0.1365 0.0967 0.0630 0.3694

¢=0.25 VS.Diag. 0.2093 0.1814 0.1615 0.1591 22.9202
VS.Full. 0.2066 0.1808 0.1572 0.1567 0.8862
MSE-min. 0.2783 0.2476 0.2067 0.1522 0.4826

{=0.50 VS.Diag. 0.2475 0.2321 0.2289 0.2337 15.5916
VS.Full. 0.2446 0.2332 0.2223 0.2386 0.8998
MSE-min. 0.3795 0.3587 0.3167 0.2414 0.5958

(=075 VS.Diag. 0.2857 0.2827 0.2962 0.3082 8.2630
VS.Full. 0.2826 0.2857 0.2874 0.3206 0.9133
MSE-min.  0.4808 0.4698 0.4267 0.3306 0.7091

¢ =1.00 VS.Diag. 0.3239 0.3334 0.3636 0.3827 0.9344
VS.Full. 0.3206 0.3381 0.3525 0.4025 0.9269
MSE-min. 0.5820 0.5809 0.5367 0.4199 0.8223

Table 3: The result of Simulation 2 revalued by the performance function (21).

Acknowledgements

The author thanks Professor Yuichiro KANAZAWA at University of Tsukuba and Visiting
Associate Professor Kazuaki NAKANE at Osaka university for their helpful comments.
The author also thanks the financial support from the Japan Society for the Promotion
of Science under Grant-in-Aid for Research Activity Start-up 24830048.

References

[1] Fan, J. and Gijbels, I. (1992). Variable Bandwidth and Local Linear Regression
Smoothers. The Annals of Statistics 20:2008-2036.

[2] Fan, J. and Yao, Q. (1998). Efficient Estimation of Conditional Variance Functions
in Stochastic Regression. Biometrika 85:645-660.

[3] Nadaraya, E.A. (1964) On Estimating Regression. Theory of Probability and Its
Applications. 9:141-142.

[4] Nadaraya, E.A. (1965). On Nonparametric Estimation of Density Functions and Re-
gression Curves. Theory of Probability and Its Applications 10:186-190.

[5] Nadaraya, E.A. (1970). Remarks on Nonparametric Estimates for Density Functions
and Regression Curves. Theory of Probability and Its Applications 15:134-137.

89



[6] Nishida, K. and Kanazawa, Y. (2011). Introduction to the Variance-Stabilizing Band-
width for the Nadaraya-Watson Regression Estimator. Bulletin of Informatics and
Cybernetics 43:53-66.

[7] Nishida, K. and Kanazawa, Y. (2013). On Variance-Stabilizing Multivariate Nonpara-
metric Regression Estimation. Communications in Statistics — Theory and Methods,
in press.

[8] Ruppert, D. and Wand, M.P. (1994). Multivariate Locally Weighted Least Squares
Regression. The Annals of Statistics 22:1346-1370.

[9] Ruppert, D., Sheather, S.J. and Wand, M.P. (1995). An Effective Bandwidth Selector
for Local Least Squares Regression. Journal of the American Statistical Association
90:1257-1270.

[10] Wand, M.P. and Jones, M.C. (1993). Comparison of Smoothing Parametrizations in
Bivariate Kernel Density Estimation. Journal of the American Statistical Association
88:520-528.

[11] Watson, G.S. (1964). Smooth Regression Analysis. Sankhya Series A 26:359-372.

[12] Watson, G.S. and Leadbetter, M.R. (1963). On the Estimation of Probability Density,
1. Annals of Mathematical Statistics 34:480-491.

[13] Yang, L. and Tschernig, R. (1999). Multivariate Bandwidth Selection for Local Linear
Regression. Journal of Royal Statistical Society, Series B 61:793-815.

General Education Center,

Hyogo University of Health Sciences,

1-3-6, Minatojima, Chuo-ku, Kobe, Hyogo, 650-8530, JAPAN.
E-mail address: kiheiji.nishida@gmail.com

REERAE, Al BFX

90



