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1 Introduction

It is well-known that a nonparametric regression estimator does not produce constant
estimator variance over domain. To obtain a homoscedastic nonparametric regression
cstimators especially for a kernel regression estimator, a bandwidth matrix that is designed
to stabilize variance should be introduced. In this papcr, we give an overview of the
homoscedastic nonparametric regression estimators and make a comparison between the
two possible variance-stabilizing (henceforth $VS$ ) bandwidth matriceb.

Thc locallv linear estimator (henceforth the LL estimator) as presented by Ruppert
and Wand (1994) is one of thc well-known nonparamctric regression cstimators to cxplore
the association between a set of stochastic covariates $X=(X_{1}, \ldots, X_{p})$ and the response $Y.$

Let us consider a $p+1$-row vector $(X_{i}., Y_{i})$ of random variables, where $X_{i}.$ $=(X_{i1}, \ldots, X_{ip})$

is i.i. $d$ . with respect to $i$ and itsjoint density function $f_{X}(x)$ is away from zero on compact
support $I^{p}\in R^{p}$ . The vector $x_{i}.$ $=(x_{i1}, \ldots, x_{ip}),$ $i=1,\cdot\cdots,$ $7l$ , is the realization of $X_{i}.$ . The $n$

sample $realization_{c}^{\wedge}\backslash$ of $(X_{r1}, \ldots,X_{ip})$ can be written as the covaliate matrix $(x_{1},x_{2}, \ldots,x_{p})$ ,
where $x_{j}=(x_{1j}, x_{2j}, \ldots, x_{nj})^{T}.$ $i=1,$ $\ldots,$

$n$ . Then, thc responsc $\}_{i}’,$ $i=1_{i}\ldots,$ $n$ . is written
as

$Y_{i}’ = m(X_{i}.)+[/^{\tau_{i}},$

where $m(\cdot)$ is $m$ : $R^{p}arrow R$ function of the $X_{i}.$ . The $I_{\hslash}^{r_{i}}|X_{i}.\cdot s,$ $i=1,$ $\ldots,$
$n$ , are random

variables independent with respect to $i$ and are assumed to be independent of $X_{j}.,$ $i\neq j,$

with their means and variances to be zero and $\sigma^{2}(x_{i}.)$ respectively. Let $I\zeta_{X}(t)$ be the non-
negative real-valued p–dimensional kemel function, where $t=(t_{1}, \ldots, t_{p})$ , satisfying the
assumption of second order kernel in Ruppert and Wand (1994). Let $H$ be a $p-$-dimensional
symmetric positive definite-bandwidth matrix. All the entries $h_{ij}$ in $H$ converge to $0$ as
$narrow\infty$ and $n|H|arrow\infty$ as $\uparrow\tauarrow\infty$ . Thcn, the LL cstimator of $m(\cdot)$ is givcn by thc
solution for $\beta_{0}$ minimizing,

$!^{\cup^{o}0_{^{(}}?_{1}} \ln\dot{m}_{\beta_{p}}\sum_{i=1}^{n}[Y_{i}-\beta_{0}-\sum_{j=1}^{p}\beta_{j}(x_{ij}-x_{j})]^{2}It_{X}^{-}((x;. -x)H^{-1})$

$= \min_{\beta_{0},\beta_{1},\ldots\beta_{p}}, [Y- D(x)\beta]^{T}W(x) [Y- D(x)\beta]$ . (1)
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where

$D(x)=(\begin{array}{lllll}1 x_{11}-x_{1} x_{12}-x_{2} \cdots x_{lp}-x_{p}1 x_{21}-x_{1} x_{22}-x_{2} \cdots x_{2p}-x_{p}\vdots \vdots \vdots \ddots \vdots 1 x_{n1}-x_{1} x_{n2}-x_{2} \cdots x_{np}-x_{p}\end{array})$

$W(x)=$ diag $(K_{X}((x_{1}.$ $-x)H^{-1}), \ldots, K_{X}((x_{n}.$ $-x)H^{-1}))$ is the weight matrix, $\beta=(/3_{0},\beta_{1}, \ldots.\beta_{p})^{T}$

is the coefficient vector, $Y=(Y_{1}, \ldots, Y_{n})^{T}$ is the vector of responses with length?$l$ . Solving
the minimization problem (1) with respect to $\beta_{0}$ , we obtain the LL estimator,

$\hat{m_{H}^{LL}}(x)=e_{1}[D^{T}(x)W(x)D(x)]^{-1}[D^{T}(x)W(x)Y],$

where $e_{1}$ is a $1\cross(p+1)$ row vector with 1 as the first entry $0$ for all other entries. Then,
the theoretical conditional variance of the LL estimator is written as

$V_{X.,Y}.$ $[\hat{m_{H}^{LL}}(x)|X_{1}.$ $=x_{1}.,$ $\ldots,X_{n}.$ $= x_{n}.]=\frac{1}{n|H|}\frac{\sigma^{2}(x)}{f_{X}(x)}R(K_{X})(o_{p}(1)+1)$ , (2)

where $R( K_{X})=\int\cdots\int K_{X}^{2}(t)dt$ . The term $\sigma^{2}(x)/f_{X}(x)$ in the leading term of (2) rep-
resents the heteroscedasticity of the LL estimator. Similarly, the theoretical conditional
bias for the LL estimator at $x$ is known to be

$E_{X,,Y}. [\hat{m_{H}^{LL}}(x)|X_{1}. =x_{1}., \ldots, X_{n}. =x_{n}.]-m(x)$

$=$ $\frac{\mu_{2}(K_{X})}{2}$ trace $[H^{T}\nabla^{2}m(x)H]+o_{p}$ (trace $(H^{T}H)$ ),

where $\mu_{2}(K_{X})$ is the variance of the kemel and $\nabla^{2}m(x)$ is the Hessian matrix,

$\nabla^{2}m(x)=(\begin{array}{lll}\frac{\partial^{2}m(x)}{\partial x_{l}\partial x_{l}} \cdots \frac{\partial^{2}m(x)}{\partial x_{1}\partial x_{p}}\vdots \ddots \vdots\frac{\partial^{2}m(x)}{\partial x_{p}\partial x_{1}} \cdots \frac{\partial^{2}m(x)}{\partial x_{p}\partial x_{p}}\end{array})=(\begin{array}{lll}\alpha_{11}(x) \cdots \alpha_{1p}(x)\vdots \ddots \vdots\alpha_{1p}(x) \cdots \alpha_{pp}(x)\end{array})$.

To obtain homoscedastic LL estimator. it is necessary to set the determinant of the local
variable bandwidth matrix $|H(x)|$ to be $\sigma^{2}(x)/f_{X}(x)$ at every locational point $x$ . One such
bandwidth estimator appears in Fan and Gijbels (1992). In the paper, they employ the
global variable bandwidth $\sigma^{2}(_{\wedge}Y_{i})h_{0}/f_{X}(X_{i})$ for the univariate LL estimator and assign dif-
fcrent weight to each observation in the kemel by $K((x-X_{i})f_{X}(X_{i})/(\sigma^{2}(X_{i})h_{0}))$ . The pa-
rameter $h_{0}$ is a global parameter that should be determined to minimize AMISE (Asymp-
totic Mean Integrated Squared Error). Nishida and Kanazawa (2011) also proposes the
variance-stabilizing local variable bandwidth for the univariate Nadaraya-Watson esti-
mator (Nadaraya, 1964, 1965, 1970; Watson, 1964; Watson and Lcadbetter, 1963) and
make a comparison with the Mean Integrated Squared Error (MISE) minimizing fixed
bandwidth. Since the two $VS$ bandwidths arc so designed as to ninimize MISE (Mean
Integrated Squared Error) among the class of $VS$ bandwidths, they cannot, by its defini-
tion, outperform the MSE minimizing local variable bandwidth in terms of MISE. In this
sense, Fan and Gijibels (1992) are critical to the $VS$ bandwidth.

74



In multivariate setting, Nishida and Kanazawa (2013) proposes the $VS$ diagonal band-
width matrix for the p–variate LL estimator. The proposed $VS$ bandwidth matrix is of
the form

$H_{VS}(x)=h_{0}$ . diag $([ \frac{\sigma^{2}(x)}{f_{X}(x)}]^{\eta_{1i}^{Dcag}(x)}, \ldots, [\frac{\sigma^{2}(x)}{f_{X}(x)}]^{\eta_{p\dot{p}}^{D’ag}(x)})$ ,

$\sum_{\backslash ,\iota=1}^{p}\eta_{ii}^{Diag}(x)=1$ . (3)

$-\infty<\eta_{ii}^{Diag}(x)<\infty$ , (4)

and the global parameter $h_{0}$ and the local parameters $\eta_{ii}(x)’ s,$ $i=1,$ $\ldots,p$ , are optimized
to minimize AMISE under the constraints (3) and (4). Then, if we denote $w_{X}(x)$ to be a
weighting function, the optimal $h_{0}^{*}$ and $\eta_{ii}^{Diag,*}(x),$ $i=1,$ $\ldots,p,$ $a1^{\backslash }e$ respectively given by

$h_{0}^{*} = [ \frac{R(K_{X})}{\mu_{2}^{2}(K_{X})T_{VS}(\eta_{11}^{Di\alpha g,*}(x),\ldots,\eta_{pp}^{Di\alpha g,*}(x))}]^{\frac{1}{p+4}}\cdot p^{\frac{1}{p+4}}\cdot n^{-\frac{1}{p+4}},$

where

$T_{VS}( \eta_{11}^{Diag,*}(x), \ldots, \eta_{pp}^{Diag,*}(x))=\int\cdots\int_{Ip}w_{X}(x)[\sum_{i=1}^{p}\alpha_{ii}(x)[\frac{\sigma^{2}(x)}{f_{X}(x)}]^{2\eta_{ii}^{Dag,*}(x)}]^{2}dx,$

and

$\eta_{ii}^{Diag,*}(x)=\frac{\ln[arrow[\frac{\sigma^{2}(x)}{fx(x)}]^{2}]}{\ln[\frac{\sigma^{2}(x)}{f_{X}(x)}]^{2p}}$

if $a_{ii}(x)>0,$ $i=1,$ $\ldots,p$ , or $\alpha_{ii}(x)<0,$ $i=1,$ $\ldots,p$ . If $\alpha_{ii}(x)=0,$ $i=1,$ $\ldots,p$ , any set of
values $\eta_{ii}^{Diag,*}(x)$ satisfying $\sum_{i^{\backslash }=1}^{p}\eta_{ii}^{Diag,*}(x)=1$ are available. If $\alpha_{ii}(x)’ s,$ $i=1,$ $\ldots,p$ , are
not of the same $sign$ when $p\geq 3$ , the optimal set of parameters $\eta_{ii}^{Diag,*}(x),$ $i=1,$ $\ldots,p$ , is
given by any set of values satisfying

$\sum_{i=1}^{p}\alpha_{il}(x)[\frac{\sigma^{2}(x)}{f_{X}(x)}]^{2\eta_{ii}^{D\tau ag,*}(X)}=0$ , subject to $\sum_{i=1}^{p}\eta_{ii}^{Di\alpha g.*}(x)=1.$

If $\alpha_{qq}(x)=0,$ $\mathfrak{a}_{-ii}(x)’ s,$ $i=1,$ $\ldots,p,$ $i\neq q$ , are non-zero, we consider the $p-1$ dimensional
lninimization problem with the q-th variable left out of the AMISE minimization problem.
This proposed $VS$ bandwidth matrix is called the $VS$ diagonal bandwidth matrix.

The $VS$ diagonal bandwidth matrix has an advantage that, under a sufficient condition,

$\gamma^{\frac{4}{p}}(x)[\sum_{i=1}^{p}\alpha_{ii}(x)]^{2}=$ Const., $\gamma(x)=\frac{\sigma^{2}(x)}{\int_{IP}\sigma^{2}(x)dx}/\frac{f_{X}(x)}{\int_{Ip}f_{X}(x)dx}$ ,
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our proposed $VS$ bandwidth outperforms the MSE minimizing local variable scalar band-
width matrix (henceforth the MSEmininuzing scalar bandwidth matrix),

$H_{var}(x) = [\frac{R(K_{X})\sigma^{2}(x)}{\mu_{2}^{2}(A_{X}’)f_{X}(x)[\sum_{i=1}^{p}\alpha_{ii}(x)]^{2}}]^{\frac{1}{p+4}}p^{\frac{1}{p+4}}\cdot n^{-\frac{1}{p+4}}\cdot I_{p}$, (S)

which minimizes AMSE at every $x$ among the class of local variable scalar bandwidth
matrices $H_{var}(x)=h_{00}(x)\cdot I_{p}$ . This result reveals that the $VS$ bandwidth can outperform
the MSE-minimizing bandwidth matrix if the dimensionality $p$ is greater than one.

However, the proposed $VS$ diagonal bandwidth matrix may be inadequate under a
complex data structure. It is because we put a zcro value at each off-diagonal clement
of the $VS$ matrix instead of the terms that would be necessary to estimate a complex
regression function. If we employ a full-bandwidth matrix $H_{2}$ in bivariate setting, the
leading term of the squared bias is written as

$\frac{\mu_{2}^{2}(A_{X}^{r})}{4}[(h_{11}^{2}+h_{12}^{2})\alpha_{11}(x_{1}, x_{2})+2h_{12}(h_{1i}+h_{22})a_{12}(x_{1}, x_{2})+(h_{22}^{2}+h_{i2}^{2})\alpha_{22}(x_{1}, x_{2})]^{2}$ (6)

If $h_{12}=0$ , the term that contains $\alpha_{12}(x_{1}, x_{2})$ in (6) disappears and information about the
term is overlooked.

We also expect that the tem $h_{12}$ reflects the correlation between $X_{1}$ and $X_{2}$ . This is
conceivable from that the squared of the bandwidth matrix $H^{2}$ crresponds to thc variance-
covariance matrix of the data $X_{i}$ when Gaussian kemcl is employed. In bivariate setting,
for example, the off-diagonal elements of $H_{2}^{2}$ are $h_{12}(h_{11}+h_{22})$ , and $H_{2}^{2}$ has no correlation
if $h_{12}=0.$

In this sense, undcr the data such as the mixed derivative functions of (x) are not zero
and /or the correlations between explanatory variables are observed, more flexible $VS$

bandwidth matrix such as a full-bandwidth matrix is motivated. The $VS$ full-bandwidth
matrix in multivariate setting is of the form

$H_{VS^{++}}(x)=(\begin{array}{llll}h_{1l}^{Full}[\frac{}{f()}]^{\eta_{ii}^{Full}(x)}h_{i2}^{Full}[\frac{\sigma^{2}()c)\sigma^{2}(c)xx}{f_{X}(x)}]^{\eta_{12}^{Full}(x)}\cdots h_{12}^{Ful/}[\frac{}{}]^{\eta_{i2}^{Full}(x)}h_{22}^{Full}[\frac{!x(x)\sigma^{2}(x)\sigma^{2}(x)}{Jx(x)}]^{\eta_{22}^{Full}(x)}\cdots \cdots h_{1p}^{Full}[\frac{\sigma^{2}(x)}{fx(x)}]^{\eta_{1p}^{Full}(x)}\vdots \vdots \ddots h_{1p}^{\Gamma ull}[\frac{\sigma^{2}(x)}{fx(x)}]^{\eta_{1p}^{Full}(x)} h_{2p}^{Full}[\frac{\sigma^{2}(x)}{!x(x)}]^{\eta_{2p}^{Full}(x)} \cdots h_{pp}^{Full}[\frac{\sigma^{2}(x)}{Jx(x)}]^{\eta_{pp}^{Full}(x)}\end{array})$ (7)

$\sum_{s\in S_{p}}$
sgn$(s) \prod_{i=1}^{p}h_{i,s}^{Fu/l}>0,$ $h_{ij}^{Full}=h_{jf}^{F.ull}$ , (8)

$\sum_{i=1}^{p}\eta_{s}^{Futl}(x)=1$ , for all $s\in S_{p},$ $\eta_{ij}^{Full}(x)=\eta_{ji}^{Full}(x)$ , (9)

$h_{ii}^{Full}>0,$ $-\infty<\eta_{ij}^{Full}(x)<\infty$ , for $i,$ $j=1,$ $\ldots,p$ , (10)
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where $S_{p}$ is the set of all permutations $s=\{s_{1}, s_{2}, \ldots, s_{p}\}$ of the set $\{$ 1, 2, $\ldots,p\}$ and sgn$(s)$

denotes the signature of each $s$ ; it is $+1$ for even $\llcorner\backslash$ and-l for odd $s$ . The conditions (8),
(9) and (10) assure us the positive definiteness of the bandwidth matrix by Sylvester’s
criterion.

In bivariate setting, the matrix (7) is written as

$H_{VS++}(x)=(h_{11}^{Full}[\frac{\sigma^{2}(x)}{fx(x)}]^{\eta_{11}^{Full}(x)}h_{12}^{Full}[\frac{\sigma^{2}(x)}{fx\langle x)}]^{\frac{1}{2}} h_{22}^{Full}[\frac{\sigma^{2}(x)}{fx(x)}]h_{12}^{Full}[\frac{\sigma^{2}(x)}{Jx(x)}]_{?7_{22}^{Full}(x)}^{\frac{1}{2}})$ (11)

where

$h_{11}^{Full}, h_{22}^{Full}>0, h_{11}^{Full}h_{22}^{Fuil}-(h_{12}^{Full})^{2}>0,$

$\eta_{11}^{Full}(x)+\eta_{22}^{Full}(x)=1, -\infty<\eta_{11}^{\Gamma ull}(x)<\infty.$

To make the problem simpler, we aclditionally assume $h_{11}^{Fvll}=h_{22}^{Full}$ in (11) and obtain
AMISE written as

AMISE ($m(x_{1}, x_{2}).\overline{m_{H_{VS++}}}(x))$

$= \frac{R(K_{X})}{n[h_{11}^{2}-h_{12}^{2}]}+\frac{\mu_{2}^{2}}{4}\cdot T_{Full}(h_{11}^{Full}, h_{12}^{Full}, \eta_{11}^{Full}(x_{1}.x_{2}))$ , (12)

where

$T_{Full}(h_{11}^{F\iota ll}, h_{12}^{Full}, \eta_{11}^{Full}(x_{1},x_{2}))$

$=$ $\int\int_{P\sim}[[(h_{1i}^{Fuil})^{2}[\frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1},X_{2}}(x_{1},x_{2})}]^{2\eta_{11}^{Fu/\iota}(x_{1},x_{2}\rangle}+(h_{12}^{Full})^{2}[\frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1}.X_{2}}(x_{1},x_{2})}]]\alpha_{11}(x_{1}, x_{2})$

$+2h_{12}^{Full}[h_{11}^{Full}[ \frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1},X_{2}}(x_{1},x_{2})}]^{\eta_{i1}^{Ful/}(x_{1},x2})+\frac{1}{2}+h_{11}^{F\iota\iota ll}[\frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1,\wedge}Y_{2}’}(x_{1},x_{2})}]^{\frac{3}{2}\eta_{11}^{Fu\iota\iota}(x_{1},x)}2]\alpha_{12}(x_{1}, x_{2})$

$+[(h_{11}^{Full})^{2}[ \frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1},X_{2}}(x_{1},x_{2})}]^{2(1-\eta_{11}^{Full}(x,x))}12+(h_{12}^{Full})^{2}[\frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1},X_{2}}(x_{1},x_{2})}]]\alpha_{22}(x_{i}, x_{2})]^{2}$

$\cross$ $fx_{1},x_{2}(x_{b}x_{2})dx_{1}dx_{2}$ . (13)

Even in a bivariate setting, it is hard to obtain the optimal parameters $h_{11}^{Full.*},$ $h_{12}^{Full,*},$

$\eta_{11}^{Full,*}(x_{1}.x_{2})$ explicitly in terms of AMISE, so we have to resort to numerical calculation.
If the domain is large, it is also practically inevitable to employ universal paranleters $\eta_{ii}^{Full},$

$i=1,2$ , instead of local ones, to reduce computational burden. In section 2, we mention
undcr what situation the $VS$ full-bandwidth matrix is advisable in tcrlns of AMISE in
bivariate setting.

Although the two $VS$ bandwidth matrices are so designed as to stabilize the asymptotic
variance of the LL estimator, we do not know to what degree they stabilize the variance
when they are practically used for a complex data. Especially, we are interested in the
cases where the mixed derivative of the true regression function is nonzero and/or the
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explanatory variables are correlated. We are also interested in the case where the sphering
approach is not applicable, e.g. a multimodal density setting. To validate this, we run
$Mont\not\in$Carlo simulations with the theoretical $VS$ bandwidth matrices in bivariate setting
and present the results in Section 3. In the simulation, the $MSE$-ininimizing local variable
bandwidth in (5) is employed as a competitor for the heteroscedastic LL estimator. In
section 2, we give some remarks on the $VS$-full bandwidth matrix and its estimator. In
Section 4, we give Discussion.

2 On the $VS$ full-bandwidth matrix

It is impossible to obtain the $VS$-full bandwidth matrix explicitly even in bivariate
setting. To compute the $VS$-full bandwidth matrix numerically, we need to know the
AMISE function has minimum values with respect to $h_{11}^{Full}$ and $h_{12}^{Full}$ , as well as $\eta_{11}^{Full}.$

Thc following two remarks give us a sketch about the existence of minimum value of
AMISE function when the $VS$ full-bandwidth matrix is employed.

Remark 1. The function AMISE $(h_{11}^{Full}, h_{i2}^{Fu/l}, \eta_{11}^{Full})$ has at least one minimum value
with respect to $h_{1i}^{Full}$ and $h_{12}^{Ful/}$ . To know this, we expand (13) and obtain,

$T_{Full}(h_{11}^{Full}, h_{12}^{Full}, \eta_{11}^{Ful/})$

$=$ $(h_{11}^{Full})^{4} \int\int_{I^{2}}[V^{4\eta_{11}^{Full}}(x_{1}, x_{2})\alpha_{i1}^{2}(x_{1}, x_{2})+V^{4(1-\eta_{i1}^{Pull})}(x_{i}, x_{2})\alpha_{22}^{2}(x_{1}, x_{2})$

$+V^{2}(x_{1}, x_{2})\alpha_{11}(x_{1}, x_{2})\alpha_{22}(x_{1}, x_{2})]f_{X_{1},X_{2}}(x_{1}, x_{2})dx_{1}dx_{2}$

$+$ $(h_{12}^{Full})^{4} \int\int_{I^{2}}V^{2}(x_{1}.x_{2})[\alpha_{11}^{2}(x_{1}, x_{2})+\alpha_{22}^{2}(x_{1}, x_{2})+\alpha n(x_{1}, x_{2})o_{22}(x_{1}, x_{2})]f_{X_{1}.X_{2}}(x_{1}, x_{2})dx_{i}dx_{2}$

$+$ $2(h_{11}^{Full})^{3}(h_{12}^{Ful/}) \int\int_{I^{2}}\alpha_{12}(x_{1}, x_{2})[V^{\eta_{11}^{Fult}+\frac{1}{2}}(x_{1}, x_{2})+V^{\frac{3}{2}\eta_{11}^{Pu/l}}(x_{1}, x_{2})]$

$\cross[V^{2\eta_{11}^{Full}}(x_{1}, x_{2})\alpha_{n}(x_{1}, x_{2})+V^{2(1-\eta_{i1}^{Full)}}(x_{1}, x_{2})\alpha_{22}(x_{1}, x_{2})]f_{X_{1},\lambda_{2}’}(x_{1}, x_{2})dx_{1}dx_{2}$

$+$ $2(h_{11}^{Full})(h_{i2}^{Full})^{3} \int\int_{I^{2}}\alpha_{12}(x_{1}, x_{2})V(x_{1}, x_{2})[V^{\eta_{11}^{Full}+\frac{1}{2}}(\tau_{1}.x_{2})+V^{\frac{3}{2}\eta_{11}^{Futl}}(x_{1}, x_{2})]$

$\cross[\alpha_{11}(x_{1}.x_{2})+\alpha_{22}(x_{1}, x_{2})]f_{X_{1},X_{2}}(x_{1}, x_{2})dx_{1}dx_{2}$

$+$ $(h_{11}^{Full})^{2}(h_{12}^{Full})^{2} \int\int_{I^{2}}[4\alpha_{12}^{2}(x_{1},x_{2})[V^{\eta_{11}^{Fut\downarrow+\frac{1}{2}}}(x_{1}, x_{2})+V^{\frac{3}{2}\eta_{11}^{Full}}(x_{1}, x_{2})]^{2}$

$+\alpha_{11}(x_{1}, x_{2})\alpha_{22}(x_{1}, x_{2})[V^{2\eta_{11}^{Futl+1}}(x_{1}, x_{2})+V^{3-2\eta_{11}^{Full}}(x_{1}, x_{2})]$

$+2V^{2\eta_{1i}^{Fult}+1}(x_{1}, x_{2})\alpha_{11}^{2}(x_{1}, x_{2})+2V^{3-2\eta_{11}^{Full}}(x_{1}, x_{2})\alpha_{22}^{2}(x_{1}, x_{2})]f_{X_{1},X_{2}}(x_{1}, x_{2})dx_{1}dx_{2}$, (14)
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where $V(x_{1}, x_{2})=\sigma^{2}(x_{1}, x_{2})/f_{X_{1},X_{2}}(x_{1}.x_{2})$ . From $h_{11}^{Full}>F_{12}^{Full}$ , we know that the first
term is of the greatest order of magnitude in terms of $h_{11}^{\Gamma vll}$ and $h_{12}^{Full}$ . We also know

$(h_{12}^{Full})^{4} \int\int_{I^{2}}[V^{4\eta_{11}^{Full}}(x_{1}, x_{2})a_{11}^{2}(x_{1}, x_{2})+V^{4(1-\eta_{11}^{Pull})}(x_{1},x_{2})\alpha_{22}^{2}(x_{1}, x_{2})$

$+V^{2}(x_{1}, x_{2})\alpha_{11}(x_{1}, x_{2})\alpha_{22}(x_{1}, x_{2})]f_{X_{i},X_{2}}(x_{1}, x_{2})dx_{1}dx_{2}$

$\geq(h_{11}^{Full})^{4}\int\int_{I^{2}}V^{2}(x_{1}, x_{2})[2|\alpha_{11}(x_{1}, x_{2})\mathfrak{a}_{22}(x_{1}, x_{2})|+\alpha_{11}(x_{1}, x_{2})\alpha_{22}(x_{1},x_{2})]$

$\cross f_{X_{1},X_{2}}(x_{1}, x_{2})dx_{1}dx_{2}\geq 0.$

$o_{whereh=(h_{11}^{1^{i}vll_{h_{12}^{Ful/}),h_{11}^{Full}>h_{12}’>0.Onthherhand,itisverifiedthat}^{1arrow\infty}}}Thus,we1_{i}now\lim_{||h},T_{Full}(h_{11}^{Full}, h_{12Fut\iota^{\eta_{11}^{Futl}||h||arrow 0}}^{Full})=\infty and\lim_{eot}T_{Fvll}(h_{11}^{Full},h_{12}^{F\iota\iota ll}, \eta_{11}^{Full})=$

$\lim_{||h||arrow\infty}R(K_{X})/[n[(h_{11}^{Full})^{2}-(h_{12}^{Full})^{2}]]=0$ and $\lim_{||h||arrow 0}R(A_{X}’)/[n[(h_{11}^{Full})^{2}-(h_{12}^{Full})^{2}]]=$

$\infty$ . Since AMISE $(h_{11}^{Full}, h_{12}^{Full}.\eta_{11}^{Full})$ is bounded below by zero. there exists at least one
minimum value with respect to $h_{11}^{Ful/}$ and $h_{12}^{F\prime\iota\iota ll}.$

Remark 2. There exists the optimal $\eta_{11}$ that lninimizes $T_{Full}(h_{11}^{Full}, h_{12}^{Full}, \eta_{11}^{Full})$ . With-
out loss of generality, we assume $[\sigma^{2}(x_{1}, x_{2})/f_{Y_{1},X_{2}}(x_{1}, x_{2})]>1$ . Then. we can choose a
constant term $v_{0}$ that satisfies

$v_{0}[ \frac{\sigma^{2}(x_{1},x_{2})}{f_{\lambda_{1},X_{2}}(x_{1},x_{2})}]^{\eta_{1i}^{Full}}<T_{Full}(h_{11}^{0}, h_{12}^{0}, \eta_{i1}^{Full})$, (15)

where $h_{11}^{0}$ and $h_{12}^{0}$ are arbitrary constants. Since $\lim_{\etaarrow\infty}\iota_{0}[\sigma^{2}(x_{1}, x_{2})/f_{\sim}\iota_{1}’,x_{2}(x_{1}.x_{2})]^{\eta_{11}^{Full}}=$

$\infty,$ $T_{Fvll}(h_{11}^{0}, h_{12}^{0}, \eta_{1i}^{Full})$ also goes to $\infty$ , as $\eta_{11}^{Full}arrow\infty$ . On the other hand, we can choose
another constant term $v_{1}$ that satisfies

$v_{1}[ \frac{\sigma^{2}(x_{1},x_{2})}{f_{X_{1},X_{2}}(x_{1},x_{2})}]^{-\eta_{11}^{Full}}<T_{Full}(h_{11}^{0}.h_{12}^{0}, \eta_{1i}^{Full})$. (16)

Since $\lim_{\etaarrow-x}v_{1}[\sigma^{2}(x_{1}.x_{2})/fx_{1},x_{2}(x_{1}, x_{2})]^{-\eta_{11}^{Full}}=\infty,$ $T_{\Gamma ull}(h_{11}^{0}, h_{12}^{0}, \eta_{11}^{Full})$ also goes to
$\infty$ , as $\eta_{11}^{Full}arrow-\infty$ . Since the teml $T_{Full}(h_{11}^{Full}, h_{12}^{Full}, \uparrow l_{11}^{Full})$ is bounded below, we notice
that there exists at least one $\eta_{11}^{Full,*}$
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We also present a sufficient condition under which the bandwidth parameter $h_{12}^{Full}$

should be zero in terms of AMISE in bivariate setting. This condition claims that the
$VS$ diagonal bandwidth matrix is advisable over the $VS$ full-bandwidth matrix in terms
of AMISE under the situation.

Proposition 1. In bivariate setting, the parameter $h_{12}^{Full}$ in (11) should $be\approx ero$ to mini-
mize AMISE under a sufficient condition,

$\alpha_{11}(x_{i},x_{2})>0, o_{12}(x_{1}, x_{2})\geq 0, o_{22}(x_{1}, x_{2})>0,$

$or$ $\alpha_{11}(x_{1}, x_{2})<0,$ $\alpha_{12}(x_{1}, x_{2})\leq 0,$ $a_{22}(x_{i}, x_{2})<0$ , (17)

over the domain.

Proof. Let $h_{11}^{Full}$ be fixcd. The AMISE $(h_{11}^{Full}, h_{12}^{Full}, \eta_{11}^{Full})$ is minimized at $h_{12}^{Full}=0$ if

$\frac{\partial AMISE(h_{12}^{Full})}{\partial(h_{12}^{\Gamma ull})}|_{h_{12}^{Full}=0}>0$ , (18)

and

$\frac{\partial^{2}AMISE(h_{12}^{Full})}{\partial(h_{i2}^{Full})^{2}}>0$ , (19)

on the support $0\leq h_{12}^{Full}<h_{11}^{Full}$ . Sincc the first and the second derivatives with rc-
spect to $h_{12}^{Full}$ of the variance part in (12) are always positive, the signs of (18) and
(19) are determined by all the signs of $\mathfrak{a}_{1i}(x_{1}, x_{2})a_{i2}(x_{1}.x_{2}),$ $\mathfrak{a}_{12}(x_{1},x_{2})o_{22}(x_{1}, x_{2})$ and
$\alpha_{11}(x_{1}, x_{2})\alpha_{22}(x_{1}, x_{2})$ , all of which appear in the first and the second partial derivatives
with respect to $h_{12}^{Full}$ of the function (14). As long as the condition (17) is satisfied, all the
signs of 011 $(x_{1}, x_{2})\alpha_{12}(x_{1}.x_{2}),$ $o_{12}(x_{1}, x_{2})\alpha_{22}(x_{1}, x_{2})$ and $\alpha_{11}(x_{1}, x_{2})\alpha_{22}(x_{1}.x_{2})$ are positive
and the AMISE$(h_{12}^{Full})$ is minimized at $h_{12}^{Fu/l}=0.$ $\square$

A sketch on the estimator of the $VS$ ful$I$-bandwidth matrix

Nishida and Kanazawa (2013) proposes an estimator of the $VS$ diagonal bandwidth
matrix. The idea is to estimate $f_{X}(x),$ $\sigma^{2}(x),$ $\partial^{2}m(x)/\partial x^{2}$ and plug these estimators
into the original $VS$ diagonal bandwidth matrix. Nishida and Kanazawa (2013) employs
the residual bascd estimator in Fan and Yao (1998) as an cstimator of $\sigma^{2}(x)$ , kernel
density estimator as an estimator of $f_{X}(x)$ and quartic polinomial fit for $\alpha_{ii}(x)$ . For the
bandwidths of these estimators, cross-validation statistics are emploved. Since quartic
pohnomial fit for $\alpha_{ii}(x)$ is inconsistent estimator unless the true regression function is
polynomial function, this estimator is $ROT$ (Rule of Thumb). Although Nishida and
Kanazawa (2013) points out that the $VS$ regression estimation is a difficult task because
of the difficulty in estimating $\sigma^{2}(x)$ and $\alpha_{ii}(x)$ , somc pieces of evidence that the proposed
estimator produces homoscedastic nonparametric regression estimator is presented.

The problem is even more difficult when it comes to estimating the $VS$ full-bandwidth
matrix. Since it is impossible to obtain a theoretical bandwidth matrix explicitly, either
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plug-in ( $PI$) approach or $ROT$ is no longer accessible. Yang and Tschernig (1999) en-
counters the same difficulty to propose the estimator of the MISE-minimizing diagonal
bandwidth matrix for the multivariate LL estimator. In their paper, the optimal band-
width matrix in multivariate setting cannnot be obtained explicitly so they estimate the
AMISE that dcpends on $\hat{A}(\sigma^{2}(\cdot))$ and $\hat{B}_{ij}(m(\cdot))$ , where

$A( \sigma^{2}(\cdot))=\int\cdots\int_{Ip}w_{X}(x)\sigma^{2}(x)dx,$

$B_{ij}(m( \cdot))=\int\cdots\int_{Ip}w_{X}(x)\alpha_{ii}(x)\alpha_{jj}(x)dx, i,j=1, \ldots,p,$

and lninimize the AMISE estimated by $n\iota$merical calculation in terms of $h_{11},h_{22},$
$\ldots,$

$h_{pp}.$

To obtain $\hat{A}(\sigma^{2}(\cdot))$ and $\hat{B}_{ij}(m(\cdot))$ , they employ two ways, $ROT$ and $PI$ approahes. For
$ROT$ approach, the use of a quartic Taylor expansion is employed as in Ruppert et.al.
(1995). They separate the data into equalized blocks and use a quartic Taylor expansion
on each block. If we denote the number of blocks in one direction, say $j$ , to be $N_{j}$ , the
total number of blocks in the domain is $N= \prod_{j=1}^{p}N_{j}$ . To detem$\dot{u}ne$ the optimal $N^{*},$

they employ Mallow’s $C_{p}$ criterion,

$C_{p}( N)=\frac{RSS(N)\{n-k(p)\lfloor\frac{n}{1k(p)}\rfloor\}}{n1in_{N}RSS(N)}-(n-2k(p)N)$ ,

where $RSS(N)$ denotes the residual sum of squares based on the quartic fit with blocking
$N=(N_{1}, N_{2}, \ldots.N_{p})$ ,

$k(p)=1+ \sum_{l^{\backslash }=1}^{4}(\begin{array}{ll}p +i-1 i\end{array})$

is $the\wedge$ maximum number of parameters in one block. Then, the corresponding estimator
$\underline{\underline{o}}fB_{ij}(m(\cdot))$ is the estimate of error variance: residual sum of squares of the function
$m_{ROT,N^{-}}\cdot(x)$ , afumction estimated by aquartic Taylor expansion, divided by the number
of degrees of freedom. The estimator of $\hat{B_{ij}}(m(\cdot))$ is the sample average of
$[\partial_{\overline{m_{ROT,N^{*}}}}^{2--}(x)/\partial x_{1}^{2}][\partial_{\overline{m_{ROT,N^{*}}}}^{2--}(x)/\partial x_{2}^{2}]$ weighted by $\hat{f_{X}}(x)$ .

For $PI$ approach, Yang and Tschernig (1999) estimates the second dcrivative of the
true regression function via partial local cubic estimator, with most cross terms left-out
of full local cubic estimator, given by

$\hat{\alpha_{j_{J}’}}(x)=(2!)$ $ej$ $[D_{j}^{T}(x)W(x)$$Dj$ $(x)]^{-1}[D_{j}^{T}(x)W(x)Y],$

where

Dj $(x)=(D_{j,1}(x),$ $D_{j.2}(x),$ $D_{j,3}(x),$ $D_{j,4}(x),$ $D_{j,5}(x),$ $D_{j,6}(x),$ $D_{j.7}(x))$ ,
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$D_{j,1}(x) = \{1\}, (n\cross 1)$ ,

$D_{j,2}(x) = \{(x_{is}-x_{s})\}_{i=1,\ldots,n,s=1,\ldots,p},$

$D_{j,3}(x) = \{(x_{is}-x_{s})(x_{ij}-x_{j})\}_{i=1,\ldots,n,s=1,\ldots,p,s\neq j},$

$D_{j,4}(x) = \{(x_{is}-x_{s})^{2}\}_{i=1,\ldots,n,s=1,\ldots,p}$

$D_{j,5}(x) = \{(x_{is}-x_{s})(x_{ij}-x_{j})^{2}\}_{i=i,\ldots,n,s=1,\ldots,p,s\neq j}$

$D_{j,6}(x) = \{(x_{is}-x_{s})^{2}(x_{ij}-x_{j})\}_{i=1,\ldots,n,s=1,\ldots,p,s\neq 4}$

$D_{j,7}(x) = \{(x_{ij}-x_{j})^{3}\}_{i=1,\ldots,n},$

and $e_{j}$ is a $1\cross(5p-1)$ row vector with 1 as the $2p+j$ $(=1+p+p-1+j)$-th entry $0$ for
the other entries. To estimate the bandwidths for partial local cubic regression estimator,
thcy dcrive the asymptotic bias and variance of thc estimator and cmploy $ROT$ approach.

In our setting, the similar approaches to estimate AMISE directly in Yang and Tsch-
emig (1999) may be applicable. To estimate $T_{Full}(h_{11}^{Full}, h_{22}^{Full}, \eta_{11}^{Full})$ , we need to estimate
the mixed derivative function of $m(x)$ that appears in (13). If we employ partial local
cubic estimator, the estimator of the mixed derivative function of $m(x)$ with respect to
the variables $x_{j}$ and $x_{k}$ is given by

$\hat{\alpha_{jk}}(x)=e_{jk}[D_{j^{T}}(x)W(x)D_{j}(x)]^{-1}[D_{J^{T}}(x)W(x)Y]$ , (20)

where $e_{jk}$ is a $1\cross(5p-1)$ row vector of Os whose $(1+p+k)$ element is 1. To obtain
the bandwidth matrix of the estimator (20), further study on the asymptotic bias and
variance of (20) is needed.

3 Monte-Carlo Simulations with theoretical bandwidth matri-
ces

Wand and Jones (1993) gives an extensive study about the choice of bandwidth ma-
trix in bivariate density estimation. In the study, they employ scalar. diagonal and full
bandwidth matrices for kemel density estimator. Then, they set up extensive numbers
of simulation cases and calculate AMISE’s theoretically for each simulation case. Fol-
lowing the practice in Wand and Jones (1993), we set up several simulation cases and
run Monte-Carlo Simulations with theoretical bandwidth matrices in bivariate setting to
know performances of the two $VS$ bandwidth matrices. The procedure is as follows.

1. Generate $(X_{i1}, X_{i2})$ of sample size $n$ distributed as $f_{X_{1},X_{2}}(x_{1}, x_{2})$ . Generate $U_{i}|\{X_{i}.$ $=$
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$x_{i}.\}$ of sample size $n$ distributed as $N(O, \sigma^{2}(x_{i1}, x_{i2}))$ . Obtain $(X_{i}., Y_{i})$ of sample size
$n$ . where $Y_{i}=m(x_{i1}, x_{i2})+U_{i}|\{X_{i}=x_{i}\}.$

2. Construct LL estimators $\overline{n\iota_{Hvs}}(x),$ $–\overline{m_{H_{VS++}}}(x)$ and $\overline{m_{H_{var}}}(x)$ at every grid point
defined on the domain. The number of grid points in the domain is $G=10,000.$

3. Repeat $1\sim 3M=100$ times.
4. Obtain the cstimator of MISE given by

$\overline{MIS}E(m(x_{1},x_{2}),\hat{m_{H}}(x_{1}.x_{2}))$

$= \frac{1}{M}\sum_{t=1}^{M}[.\int\int_{I^{2}}f_{X}(x_{1,}.x_{2})[m(x_{1},x_{2})-\acute{r}\overline{n_{H}}^{(t)}(x_{1}, x_{2})]^{2}dx_{1}dx_{2}],$

where $\hat{m_{H}}^{(t)}(x_{1}, x_{2})$ is the LL estimator calculated (t) th generated sample of size $n.$

5. At every grid point, calculate the sample variances of $\overline{m_{H_{VS}}}(x),$ $\overline{7?}\overline{t_{H_{vs++}}}(x)$ and
$\overline{m_{H_{vm}}}(x)$ that are respectively calculated $M=100$ times in 1 $\sim$ 3 for $n=5,000.$

6. As measures to check if the variance is stabilized, we calculate the means, the
standard deviations and the Gini-coefficients of the sample variances of $\overline{m_{Hvs}}(x)$ ,

$–\overline{m_{H_{vs++}}}-(x)$ and $\check{\overline{m}}_{H_{VR}^{-}}(x)$ calculated at every grid point in 5.
In the simulation cases to be presented, the domain and the grid points are re-

spectively defined to be $[-0.5,0.5]\cross[-0.5,0.5]$ and $(-0.495+0.01\chi(i-1),$ -0.495 $+$

0. $01\cross(j-1)),$ $i=1,$ $\ldots,$
$100,$ $j=1,$ $\ldots,$

$100$ . The conditional variance function is
$\sigma^{2}(x_{1}, x_{2})=0.5+0.25x_{1}^{2}+0.2_{c)}^{r}x_{2}^{2}$ as illustrated in Figure 2. As densities, we employ
a normal density $f_{X}(x_{1}, x_{2};\mu_{1}=0.0, \mu_{2}=0.0.\sigma_{1}^{2}=0.25^{2}, \sigma_{2}^{2}=0.25^{2},\rho)$ truncated on
$[-0.5,0.5]^{2}$ with its correlation coefficient $p=0.0,0.25,0.5$ and 0.75. We also employ a
bimodal density, a mixture of the two normal densities $N((0.25, 0)$ , diag$(0.15^{2},0.15^{2}))$ and
$N((-0.25,0.0)$ , diag$(0.15^{2},0.15^{2}))$ with its mixing ratio even. Figure 1 illustrates the five
distributions of the sample $(X_{i1}, X_{i2}),$ $i=1,$ $\ldots,$ $5,000$ . Then, we suppose the following
three true regression functions denoted as simulation 1, 2 and 3 respectively. The per-
spective plots and contour plots of the simulation cases are given in Figure 3 and Figure 4
respectively. As kernel, we employ bivariate Gaussian kernel.

In general, $VS$ nonparameteric regression estimation requires a large sample size data
as stated in Nishida and Kanazawa (2013). We consider that the sample size 5, 000 is
enough to know the behavior of the $VS$ bandwidth matrices.

Simulation 1. The true regression function is $m(x_{1}, x_{2})=-2x_{1}^{2}-x_{2}^{2}$ . In this setup, we
intend that $\alpha_{12}(x_{1}, x_{2})$ is zero over the domain.

Simulation 2. The true regression function is $m(x_{1}, x_{2})=-2x_{1}^{2}+1.5x_{1}x_{2}-x_{2}^{2}$. In this
setup, we intend that $\alpha_{12}(x_{1}, x_{2})$ is nonzero constant ovcr the domain.

Simulation 3. The true regression function is $m(x_{1)}x_{2})=\sin(3x_{1})\cos(3x_{2})$ . In this
sctup, we intend that $\alpha_{12}(x_{1}, x_{2})$ , which is-9 $\cos(3x_{1})\sin(3x_{2})$ , varies ovcr the domain.

We show the result. The theoretical values of the parameteres in the two $VS$ band-
width matrices are given in Table 1. The result of the simulations, Gini-coefficients, MISE
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Figure 1: Distribution of the sample $(_{\wedge}Y_{i1}, X_{i2})$ .

$0.$

0.2

$02$

0.

$0$ . 02 02 $0.$

Figure 2: True conditional variance function : $\sigma^{2}(x_{1}, x_{2})=0.2^{t}\acute{v}+0^{t_{J}’}x_{1}^{2}+0.5x_{2}^{2}.$

Figure 3: Perspective plots : Left$=$Simulation 1, Center$=$Simulation 2, Right$=$Simulation 3.

$04$ 02 02 $0.$ $0$ . 02 02 $0..$

Figure 4: Contour plots : Lcft$=$Simulation 1, Center$=Si_{1}$nulation 2, Right$=$Simulation 3 $.$
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estimated and standard deviation of sample variances. are given in Table 2. Figure 5 sum-
marizes Table 2. Although it is natural that the three simulation cases do not represent
all the data to happen, the result gives us somc points of interest.

First, we examine the result of the theoretical bandwidth matrices. $\Gamma rom$ Table 1,
we notice that the size of bandwidth tends to dilninish as the correlation coefficient $\rho$

increases from 0.0 to 0.75. It seems that the smaller bandwidth is assigned when the
data is highly correlated. The comparison between simulation 1 and 2 also gives us an
interesting point of view. In simulation 1, the $sign$ of the second derivative functions are
$\alpha_{11}(x_{1}, x_{2})<0$ and $\alpha_{22}(x_{1}.x_{2})<0$ , whereas in sinlulation 2, $\alpha_{11}(x_{1}, x_{2})<0,$ $a_{22}(x_{1}, x_{2})<$

$0$ and $\alpha_{12}(x_{1},x_{2})>0$ . As a result, $h_{12}^{Full,*}$ comes out to be zero in simulation 1 whereas
nonzero in simulation 2. It seems that the parameter $h_{12}^{Full,*}$ serves as an adjustment to
control the impact of the mixed derivetive on AMISE. We also notice that the size of $h_{0}^{*}$

and $h_{11}^{Full,*}$ are similar each other in simulation 1 whereas in simulation 2 dissimilar. It
is because the mixed derivative of $m(\cdot)$ is zero in simulation 1 so there is no difference
between the $VS$ diagonal and the $VS$ full-bandwidth. As for the bimodal density setting,
we cannot find clear-cut features in the theoretical bandwidth matrices.

Second, we examine the achevement of variancestabilization. From Table 2 as well
as Figure 5, we find a clear result that either the $VS$ diagonal or the $VS$ full-bandwidth
matrix outperforms the $MSE$-lninimizing bandwidth matrix in terms of Gini-coefficients
when $\rho$ ranges from $0$ to 0.75. This is a convincing evidence that either of the two $VS$

bandwidth matrices can attain the variance-stabilization if the parameters in bandwidth
are well-estimated. We also notice that the Gini-coefficients of the $VS$ bandwidth matrices
tend to increase as $\rho$ increases form $0$ to 0.75. The Gini-coefficients of the $MSE-minimizi_{1}\mathfrak{B}$

bandwidth matrix, on the other hand, tends to diminish as $\rho$ increases. It seems that the
$MSE-n\dot{u}ni_{1}nizing$ bandwidth matrix tends to perform better than the two $VS$ bandwidth
matrices in terms of Gini-coefficient when the data is highly correlated. Similarly, we also
notice that the $VS$ diagonal bandwidth matrix tends to perform better than the $VS$-full
bandwidth matrix in terms of Gini-coeff.. It is because the $VS$ diagonal bandwidth lnatrix
adjusts the size of $\eta_{1i}^{Full,*}(x)$ locally whereas the $VS$ full-bandwidth matrix in our setting
does $\eta_{ii}^{Full,*}$ globally. As for the bimodal density setting, the $VS$ full-bandwidth matrix
shows a good performance in simulation 3 in terms of Gini coeff., a piece of evidence
that the $VS$-full bandwidth matrix is advisable in a multimodal density setting to achieve
homoscedasticity.

Third, we examine the MISE estimated. From Table 2, we observe that the MISE’s
estimated diminishes as the correlation coefficient $\rho$ increases from 0.0 to 0.75 in sim-
ulation 2 and 3 for all the three bandwidth matrices. On thc other hand, the MISE’s
estimated tends to increase as the correlation coefficient $p$ increases from 0.0 to 0.75 in
simulation 1. It seems that the MISE tends to diminish as the correlation $\rho$ increases
from 0.0 to 0.75 when the nixed derivative of $m(\cdot)$ is nonzero over the domain. We also
observe that the $VS$ diagonal and full-bandwidth matrices can, in many cases, outperform
the MSE-minimizing bandwidth matrix in terms of MISE estimated. This result supports
the assertion in Nishida and Kanazawa (2013). As for the bimodal setting, it seems that
the $VS$ bandwidth matrices do not produce good results for all the simulation cases.
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$\overline{\overline{\frac{\rho-\rho-0.2S\rho--0.50\rho--0.75Bi\mathfrak{m}\circdc}{Simulation1.h_{0}0.50490.47820.37190.13030.3736}}}$

$h_{i1}^{Full}$ ’ 0.4966 0.4726 0,3705 0.1302 0.3725
$h_{12}^{Futl,t}$ 0. $0$ 0. $0$ 0. $0$ 0. $0$ 0.0

$\frac{\eta_{11}^{Full,l}0..44330..43910.46210..485504492}{Simulation2.h_{\dot{0}}05049047820.3719013030.3736}$

$h_{i1}^{Full,*}$ 0.5417 0.5168 0.4093 0.1447 0.4093
$h_{12}^{Full}$ ’ 0,1447 0,1405 0.1157 0.0413 0.1157

$\frac{\eta_{11}^{Full}’ 0.44070.43500.45900.48440..4451}{Simulation3.h_{0}^{*}0.45220.43700.36860.153704244}$

$h_{11}^{Full}$ ’ 0.4523 0.4391 0.3791 0.1674 0.0980
$h_{12}^{Full}$ ’ 0.0 0.0231 0.0475 0.0372 0.0

$\underline{\underline{\eta_{1i}^{Futl_{l}}’ 0.50.50.50.505}}$

Table 1: Theoretical values of the parameters in the two $VS$ bandwidth matrices. The sample size is set
to be unity in this table.

$\overline{\overline{\underline{\rho=0.00\rho=0.25\rho=0.50\rho=0.75B_{\dot{t}}mode}}}$

Simulation 1.
$VS$ .Diag. Gini coeff. 0.3155 0,3105 0.3502 0.4098 0.9511

Var. Std. 0.0013 0.0014 0.0026 0.0125 31.0829
MISE 0.1497 0.1500 0.1498 0.1765 14.1006

$VS$ .Full. Gini coeff. 0.3444 0,3467 0.3674 0.4105 0.9262
Var. Std. 0.0012 0.0014 0.0025 0.0133 1.5859

MISE 0.1514 0.1517 0.1503 0.1774 1.5550
MSE-min. Gini coeff. 0.5847 0.5741 0.5377 $0.43^{\sim}1$ 0.8134

Var. Std. 0.0041 0.0039 0.0035 0.0020 0.1358

$\frac{\overline{MISE}0.15490.15510.15240.15850.3505}{Simulation2}$

$VS$ .Diag. Gini coeff. 0.3238 0.3333 0.3609 0.3826 0.9343
Var. Std. 0.0013 0.0016 0.0026 0.0098 68.1049

$\overline{MISE}$ 0.1710 0.1307 0.0941 0.0846 30.2487
$VS$ Full. Gini coeff. 0.3205 0.3380 0.3524 0.4025 0,9268

Var. Std. 0.0008 0.0009 0.0015 0.0072 0.7523
MISE 0.1686 0.1283 0,0921 0.0747 0,8726

MSE-min. Gini coeff. 0.5820 0.5809 0.5366 0.4198 $0$ 8222
Var. Std. 0.0040 0.0043 0.0035 0,0020 0,1399

$\frac{\hat{MIS}E0.17700.13640.09670.06300.3694-}{Simulation3}$

$VS$ .Diag. Gim coeff. 0.2872 0.3388 0.2833 0.3299 0.4115
Var. Std. 0.0012 0,0236 0.0018 0.0020 0,0020

MISE 0.4276 0.4217 0,4042 0.3695 0,0404

$VS$ .FUII. Gim coeff. 0.2832 0.2570 0.2837 0.3346 0.4000
Var. Std. 0.0012 0.0009 0.0016 0.0056 0.1399

MISE 0.4276 0,4217 0.4039 0.3657 0.0532
MSE-min. Gini coeff. 0.5730 0.5899 0.6138 0.5384 0.5083

Var. Std. 0.0036 0.0039 0.0052 0.0032 0.0034

$-\underline{\overline{MISE}}$O.42280.41590.39710.35000.0122

Table 2: The result of Monte-Carlo simulation with theoretical bandwidth matrices,
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Figure 5: Summary of the simulation results,
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4 Discussion

In this paper, we propose the $VS$ full-bandwidth matrix for the multivariate LL estima-
tor to complement the $VS$ diagonal bandwidth matrix proposed by Nishida and Kanazawa
(2013). The derivation of the optimal $VS$ full-bandwidth matrix in multivariate setting is
so intensive that wc consider the problem in bivariate setting with an additional assump-
tion $h_{1i}^{Full}=h_{22}^{Full}$ . However, even in this tempered setting, it is impossible to explicitly
obtain the optimal parameters, $h_{11}^{Full},$ $h_{12}^{Fvll}$ and $l_{i1}^{Full}(x_{1}, x_{2})$ , so we resort to numerical
calculation. Although the parameter $\eta_{11}^{Full}(x_{1},x_{2})$ , which is arranged to negate the vari-
ance term, should be locally determined by nature, we arc obliged to usc it as an universal
parameter over the domain to ease the computational burden.

Our main concern in this paper is to make a comparison between the two $VS$ band-
width matrices in terms of MISE and the stability of the variance. To validate this, we run
Monte-Carlo simulations with theoretical bandwidth matrices, $H_{VS}(x_{1}, x_{2}),$ $H_{VS++}(x_{1}, x_{2})$

and $H_{var}(x_{1}, x_{2})$ . Through the simulation. we confirm that either $H_{VS}(x_{i}, x_{2})$ or $H_{VS}++(x_{1}, x_{2})$

is superior to $H_{var}(x_{1}, x_{2})$ in terms of stability of variance over the domain. We also no-
tice that the mixed derivative of $m(x_{1}, x_{2})$ surely influences the result in terms of MISE.
As for the correlation between covariates, we observe that the theoretical parameters, $h_{0}^{*},$

$h_{11}^{Full,*}$ and $h_{12}^{Full,*}$ as well as MISE tend to diminish as $\rho$ increases by the presented sim-
ulation cases. We also observe that variance-stabilization is difficult for both of the two
$VS$ bandwidth matrices when covariates are highly correlated. As for the multimodality
of the density function, we obtain neither a tendency nor clear-cut explanations.

In our Monte-Carlo simulation study, we present two measures, the Gini-coefficient and
the MISE estimated. Since these two measures are two different things, we can choose
the type of the bandwidth matrix that optimizes, for example, the following performance
function,

$\zeta\cdot$ Gini-coefficient $+(1-\zeta)$ . MISE, (21)

where $\zeta$ denotes the ratio representing the level of importance between the stability of
variance and Error. In Table 3, we revalue simulation 2 by the performance function (21).
From Table 3, we notice that the $VS$ full-bandwidth matrix is well-balanced between
stability of variance and error in this simulation setting.

To obtain the estimator of the $VS$ full-bandwidth matrix, we need to obtain the estima-
tor of the mixed derivative function of $m(\cdot)$ , as well as $f_{X_{1},X_{2}}(\cdot)$ and $\sigma^{2}(\cdot)$ . The estimation
of the mixed derivative function of $m(\cdot)$ employing partial local cubic estimator is difficult
in general and requires us to estimate its pilot bandwidth beforehand via $ROT$ approach
or cross-validation. After that, we resort to numerical calculation to obtain $h_{11}^{Full},$ $h_{12}^{Full}$

and $\uparrow 7_{11}^{Ful/}$ . It is expected that the calculation is far more intensive.
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$\overline{\frac{\rho=0.00\rho=0.25\rho=0.50\rho=0.75Bimodc}{Simulation2}}$

$\zeta=0.00$ $VS$ .Diag. 0.1711 0.1308 0.0942 0.0846 30.2488
$VS$ .Full. 0.1687 01284 $0$ 0921 0.0747 0.8726

$\frac{MS.E-n\dot{u}n.0.1’ 700.13650.0967\underline{00630}\underline{0.3694}}{\zeta=0.25VSDiag.0.20930.18140.16150.1591229202}$

$VS$ .Full. 0.2066 0,1808 0.1572 0.1567 0.8862

$\frac{MS.\cdot E-\min.0.\underline{)}7830..\cdot 24760.\cdot 0670.\underline{.1522}\underline{04826}}{\zeta=0.50VSDiag.0.\cdot 24^{\vee}5\frac{02321}{02332}0^{o}\underline{.}289\frac{02337}{0.\underline{)}386}155916\backslash vSF\iota ffl.0_{-}44602^{\underline{\gamma}}230.8998}$

$\frac{MS.E-\min 0.37950.\cdot 35870316^{-}0^{9}.4140..\cdot\underline{5958}}{\zeta=0.75Vb^{}Diag.0.285\overline{/}\frac{02827}{02857}0.2962\frac{0.3082}{0.3206}82630,VSFu1l.028260.287409133}$

$\underline{\frac{MS.\cdot E-\min.\cdot 0.\cdot\cdot\cdot 48080.\cdot.46980.\cdot\cdot 42670.\cdot\cdot 33060.\cdot\underline{7091}}{\zeta=1.00VSDiagMSE-\min^{\frac{03334}{0580903381}}\backslash ’SFu1l.\frac{0320603239}{0_{0}^{r}820}\frac{0362503636}{05367}\frac{0402503827}{04199}\frac{0934409_{-}69}{08^{\underline{r_{J}}}23}}}$

Table 3: The result of Simulation 2 revalued by the performance function (21).
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