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1 Introduction
The Markov chain Monte Carlo (MCMC) method is an efficient tool for the approximation of an

integral with respect to a particular type of probability measure. The strategy has been developed in the
past 50 years and it becomes one of the most popular method in the Bayesian statistics. See Robert and
Casella [9] for a recent review.

Let $p(dx|\theta)=p(x|\theta)dx$ be a probability measure with the prior distribution $p(d\theta)$ . The posterior
distribution $p(d\theta|x)$ is proportional to $p(x|\theta)p(d\theta)$ under an observation $x$ . Sometimes the posterior
distribution does not have a closed form that usually requires some kind of approximation. Present paper
deal with the so-called data augmentation ($DA$ ) procedure. This procedure uses the so-called augment
data model $p(dxdy|\theta)$ that satisfies $\int_{Y}p(dxdy|\theta)=p(dx|\theta)$ . The $DA$ procedure iterates the following;

simulate $y\sim p(dy|x, \theta)$ , simulate $\theta\sim p(d\theta|x, y)$ (1)

where $p(d\theta|x, y)$ is the posterior distribution of $p(dxdy|\theta)$ with the prior $p(d\theta)$ . This procedure results in
a Markov chain $\theta_{0},$ $\theta_{1},$

$\ldots$ with invariant distribution $p(d\theta|x)$ (see Tiemey [11], Gilks et al. [3], Roberts
and Rosenthal [10]; the sequence of $y$ is omitted here). Moreover under mild conditions, the value
$I_{m}=m^{-1} \sum_{i=0}^{m-1}\varphi(\theta_{i})$ converges to $I= \int\varphi(\theta)p(d\theta|x)$ as $marrow\infty$ for any function $\varphi$ and for each
observation $x$ , so we can use $I_{m}$ as an approximation of $I.$

Sometimes the convergence of $I_{m}$ to $I$ is very slow and there have been a lot of efforts for the analysis
of the sufficient number of iteration (see ex. Roberts and Rosenthal [10], Diaconis et al. [2]). In the
current paper we review one of these approaches, “the large sample” approach by Kamatani [5, 6, 7] (we

call the other, “fixed sample size” approaches).
Consider the following simple model;

$x\sim$ Bemoulli $(\Phi(\theta))$ (2)

where $\Phi$ is the cumulative distribution function of the standard normal distribution $N(0,1)$ . Let $x_{n}=$

$\{x^{1}, \ldots, x^{n}\}$ be an i.i. $d$ . sample from this model and let $N(O, 1)$ be the prior distribution. Consider two
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choices of the augmented data models and construct two $DA$ procedures corresponding to these models;

$y\sim N(0,1), x=1_{\{y\leq\theta\}}$ (3)

and
$y\sim N(-\theta, 1), x=1_{\{y\leq 0\}}$ . (4)

Though two $DA$ procedures have similar steps and both of which have geometric ergodicity, the perfor-
mances of them are quite different. This difference is strongly related to their model regularity. The former
model has the parameter-depending support, and the latter is a regular model. It is quite usual that the
regular and non-regular models have different asymptotic properties (see ex. Akahira and Takeuchi [1]).
In the present paper we analyze the large sample size approach through a very simple binomial model
(2) with the augmented data model (3).

2 Key properties
Let $x_{n}=\{x^{1}, \ldots, x^{n}\}$ be an independent observation from $p(dx|\theta)$ and $\theta\sim p(d\theta)$ (assume the sub-

jective Bayes setting). Let $\hat{\theta}_{n}$ be the maximum likelihood estimator. Let $I_{n}$ $:= \int\psi(\sqrt{n}(\theta-\hat{\theta}_{n}))p(d\theta|x_{n})$

and $I_{n,m};=m^{-1} \sum_{i=0}^{m-1}\psi(\sqrt{n}(\theta_{i}-\hat{\theta}_{n}))$. Write $\mathbb{P}_{n}$ for the underlying probability measure. It would be
helpful if we have for any $m_{n}arrow\infty$ and any bounded and continuous function $\psi$ as $narrow\infty$

$I_{n}-I_{n,m_{n}}=o_{\mathbb{P}_{n}}(1)$ . (5)

This property was called the local consistency of the MCMC procedure in Kamatani [7]. This property
is always satisfied for the $DA$ procedure under regularity conditions. Assume the following regularity
conditions.

1. $\{p(dx|\theta)\}$ is quadratic mean differentiable.

2. The Fisher information matrix of $\{p(dx|\theta)\}$ is non-singular.

3. $\{p(dx|\theta)\}$ has a uniformly consistent test.

4. The prior $p$ has a continuous, positive and bounded density.

5. $\{p(dx|\theta)\}$ is identifiable.

Theorem 1 (Kamatani [7])
Assume the above conditions and assume $\theta_{0}\sim p(d\theta|x_{n})$ . Then the $DA$ procedure has the local consistency.

This fact illustrates that if an MCMC have poor performances, then the model may not satisfy the
above conditions. For the analysis of such poor MCMC procedures, the local degeneracy was defined in
Kamatani [6]. The MCMC procedure is called locally degenerate if for any $m\in N$ and any continuous
and bounded function $\psi$ as $narrow\infty$

$I_{n,1}-I_{n,m}=o_{\mathbb{P}_{n}}(1)$ . (6)

This means that the MCMC procedure using $m$ iteration does not provide helpful approximations of $I$

than that using only one iteration. If
$\theta_{0}\sim p(d\theta|x_{n})$ (7)
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and if the posterior distribution has $\sqrt{n}$-consistency, this is equivalent to

$\sqrt{n}|\theta_{1}-\theta_{0}|=o_{P_{n}}(1)$ . (8)

We call (7) stationarity condition and assume it throughout in this paper. This assumption is impractical
but if we take a good initial guess $\theta_{0}$ the same results hold (see Kamatani [7] for details).

The following order is useful to calculate the severity of the degeneracy.

Definition 2 (Order of degeneracy)
For an increasing sequence of positive number $d_{n}$ , if

$d_{n}\sqrt{n}|\theta_{1}-\theta_{0}|=O_{P_{n}}(1)$ (9)

then $\{d_{n}\}$ is called the order of the local degeneracy of the MCMC procedure.

This property is easy to check in practice. However it is rather indirect approach for the analysis of
(5). The following more direct approach due to Kamatani [5] may be appealing.

Definition 3 (Order of weak consistency)
For an increasing sequence of positive number $d_{n}’$ , if (5) holds for any $m_{n}$ such that $m_{n}/d_{n}’arrow\infty$, then
$\{d_{n}’\}$ is called the rate of local weak consistency of the MCMC procedure.

The sequence $d_{n}’$ corresponds to the sufficient number of iteration of the MCMC procedure. For local
consistent MCMC procedure, $d_{n}’\equiv 1$ , that is the best possible order.

The next section provides an example for the analysis of the order of the local degeneracy and the
order of the local weak consistency and their relation.

3 An application

Consider a reparametrization $\theta\mapsto\Phi^{-1}(\theta)$ . Then the model (2) becomes extremely simple;

$x\sim$ Bemoulli $(\theta)$ (10)

with the prior distribution $U(O, 1)$ . Let $x_{n}=\{x^{1}, \ldots, x^{n}\}$ be an i.i. $d$ . copy from the above model. Write
$n_{i}= \sum_{j=1}^{n}1_{\{x^{j}=i\}}(i=0,1)$ . Note that the Bayes estimator $\hat{\theta}_{n}=(n_{1}+1)/(n+2)$ is a sufficient statistic.
The $DA$ procedure becomes

for $n=1,2,$ $\ldots$ , simulate $y^{i}\sim\{\begin{array}{l}U(O, \theta] if x^{i}=1, then simulate \theta\sim U[y_{*}, y^{*})U(\theta, 1) if x^{i}=0\end{array}$ (11)

where $y^{*}:= \min_{i;x^{:}=0}y^{i}$ and $y_{*}:= \max_{i;x^{:}=1}y^{i}.$

First we remark a fixed sample size property. Let $\Vert\nu\Vert=2\sup_{A\in \mathcal{E}}|\nu(A)|$ where $\nu$ is a signed meaeure
on a measurable space $(E, \mathcal{E})$ . For transition kemels $S(x, dy)$ and $T(x, dy)$ on $(E, \mathcal{E})$ , let $(ST)(x, dz)=$

$\int_{y\in E}S(x, dy)T(y, dz)$ . Write $S^{1}=S$ and $S^{n}=S^{n-1}S(n\geq 2)$ . Assume that there exists the invariant
probability measure $\Pi$ for a transition kemel $S$ . If there exists $R<\infty$ and $\rho\in(0,1)$ such that

$\Vert S^{n}(x, \cdot)-\Pi\Vert\leq R\rho^{n}(x\in X)$ (12)
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then this Markov chain is called uniformly ergodic. If $X_{1},$ $X_{2}\ldots$ , is a Markov chain with the transition
kemel $S$ that have uniformly ergodicity, then $n^{-1} \sum_{i=1}^{n}f(X_{i})arrow 0$ almost surely and the central limit
theorem holds for $n^{-1/2} \sum_{i=1}^{n}f(X_{i})$ for any $f\in L^{2}(\Pi)$ and $\Pi(f)=0.$

Uniform ergodicity can be checked by the $D6blin$ condition.

Proposition 4
Assume $n_{0},$ $n_{1}\geq 1$ . Then the Markov chain defined by the $DA$ procedure is uniformly ergodic.

Proof Write $\theta$ for the current value and $\theta’$ for the next value of one iteration of this $DA$ procedure.
By definition, when $\theta\in(0,1)$ ,

$\mathbb{P}_{n}(\frac{y^{*}-\theta}{1-\theta}>t|x_{n}, \theta)=(1-t)^{n_{0}}, \mathbb{P}_{n}(\frac{\theta-y^{*}}{\theta}>s|x_{n}, \theta)=(1-s)^{n_{1}}$ . (13)

Hence the transition kemel of this $DA$ procedure $k(\theta, \theta’)d\theta’$ is

$k( \theta, \theta’) = l_{t\in[0,1]}\frac{1_{[\theta(1-s),\theta+(1-\theta)t]}(\theta’)(1-s)^{n_{1}-1}(1-t)^{n_{0}-1}}{(1-\theta)t+\theta sn_{1}n_{0}}dsdt$

$\geq (\frac{\theta’}{\theta})^{n_{1}}(\frac{1-\theta’}{1-\theta})^{n_{0}}\geq\theta^{\prime n_{1}}(1-\theta’)^{n_{0}}(\theta, \theta’\in(0,1))$

where we used $(1-\theta)t+\theta s\leq 1$ in the first inequality. Hence the Markov chain is uniformly ergodic by
Theorem 16.2.4 of [8]. I

We have the following large sample property.

Proposition 5
Assume the stationarity condition. For the model (10), the $DA$ procedure is locally degenerate of the
order $d_{n}=\sqrt{n}.$

Proof It is clear since $n^{1/2}|\theta’-\theta|\leq n^{1/2}(y^{*}-y_{*})=O_{\mathbb{P}_{n}}(n^{-1/2})$ . $I$

Also we have the following.

Proposition 6
Assume the stationarity condition. For the model (10), the $DA$ procedure is locally weak consistent of
the order $d_{n}’=n.$

Proof Since $\theta’\sim U[y_{*}, y^{*})$ ,

$\mathbb{E}_{n}[\exp(\lambda(\theta’-\theta))|x_{n}, y_{n\rangle}\theta] = \frac{\exp(\lambda(y^{*}-\theta))-\exp(-\lambda(\theta-y_{*}))}{\lambda(y^{*}-\theta)-(-\lambda(\theta-y_{*}))}$

$= \sum_{k=1}^{\infty}\frac{1}{k!}\frac{(\lambda(y^{*}-\theta))^{k}-(-\lambda(\theta-y_{*}))^{k}}{\lambda(y^{*}-\theta)-(-\lambda(\theta-y_{*}))}$

$= \sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{k!}\sum_{i=0}^{k-1}(y^{*}-\theta)^{k-i-1}(-(\theta-y_{*}))^{i}$. (14)

Next we integrate out $y_{*}$ and $y^{*}$ in the above using (13). For $k\geq 0,$

$\mathbb{E}_{n}[(y^{*}-\theta)^{k}|x_{n}, \theta]=(1-\theta)^{k}(\begin{array}{l}k+n_{0}n_{0}\end{array}), \mathbb{E}_{n}[(\theta-y_{*})^{k}|x_{n}, \theta]=\theta^{k}(\begin{array}{l}k+n_{1}n_{1}\end{array})$
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Let $h_{n}=\sqrt{n}(\theta-\hat{\theta}_{n})$. Now for a random variable $X_{n}=f_{n}(h_{n},\hat{\theta}_{n})$ , we denote $X_{n}=O(n^{\alpha})$ if
$\lim\sup_{narrow\infty}\sup_{(h,\theta)\in K}|n^{-\alpha}f_{n}(h, \theta)|<\infty$ for any compact set $K\subset R\cross(0,1)$ . By considering Tay-

lor’s expansion of the left hand side of (14), we obtain

$\mu_{k}:=E_{n}[n^{k/2}(\theta^{*}-\theta)^{k}|x_{n}, \theta]=\frac{n^{k/2}}{k+1}\sum_{i=0}^{k}(k -i+n_{0} n_{0}) (\begin{array}{l}\dot{x}+n_{1}n_{1}\end{array})(-\theta)^{i}(1-\theta)^{k-i}.$

By simple algebra,

$\mu_{1}=-\frac{1}{2n}\frac{h_{n}}{\hat{\theta}_{n}(1-\hat{\theta}_{n})}+O(n^{3/2}), \mu_{2}=n^{-1}+0(n^{-3/2}), \mu_{4}=O(n^{-4})$ .

By choosing suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$ , without loss of generality we may assume $\hat{\theta}_{n}(\omega)$ tends

to $\hat{\theta}_{n}(\omega)\in(0,1)$ for all $\omega$ (Skorohod’s representation theorem). Write $\mathcal{G}$ for the $\sigma$-algebra generated by
$\{\hat{\theta}_{n}, n=1,2, \ldots\}$ . Consider a stochastic process $h_{n}(t)=n^{1/2}(\theta([nt])-\hat{\theta}_{n})$ . By checking conditions in

Theorem 9.4.21 of Jacod and Shiryaev [4], we can show that the law of $\{h_{n}(t);t\geq 0\}$ tends $\mathcal{G}$-stably to

that of the following Ornstein–Uhlenbeck process $\{h(t);t\geq 0\}$ ;

$dh(t)=- \frac{h(t)}{2\hat{\theta}(1-\hat{\theta})}dt+dW(t);h(O)\sim N(O, 1/\hat{\theta}(1-\hat{\theta}))$ (15)

where $W$ is the standard Wiener process and $\hat{\theta}\sim U[0,1]$ and both of which are independent. Then the

claim follows by Kamatani [5]. $I$

The convergence to the diffusion process (15) illustrates the difference between the order of local

degeneracy and that of local weak consistency. Essentially, these orders are defined to be

$\sum_{i=1}^{d_{n}}|\Delta_{i}h_{n}|\approx d_{n}/n^{1/2}=O_{1p}(1)$ , or $( \sum_{i=1}^{d_{n}’}|\Delta_{i}h_{n}|^{2})^{1/2}\approx\sqrt{d_{n}’/n}=O_{P}(1)$ (16)

with respectively, where $\triangle_{i}h_{n}=h_{n}(i/n)-h_{n}((i-1)/n)$ . Therefore it is natural that the order of local

degeneracy is smaller than that of the local weak consistency.

On the other hand, by Theorem 1, the $DA$ procedure using the augmented data model (4) is locally

consistent that can not be locally degenerate. Therefore the $DA$ procedure using (3) should be much

worse than that using (4).
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