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Abstract

The integrable discrete nonlinear Schr\"odinger equation was introduced by Ablowitz-Ladik.
It can be solved by the inverse scattering transform based on the Riemann-Hilbert technique.
By combining it with the nonlinear steepest descent method of Deift-Zhou, we can calculate
the long-time asymptotic behavior of a solution to the defocusing version of the equation.

\S 1. Introduction

The (focusing) nonlinear Schr\"odinger equation $ir_{t}+r_{xx}+2|r|^{2}r=0$ can be solved
by the inverse scattering transform (IST) method as was proved by Zakhalov-Shabat
([11]). It was later extended to other equations by Manakov ([7]) and Ablowitz-Kaup-
Newell-Segur ([1]). The latter general result includes the IST scheme for the defocusing
integrable nonlinear Schr\"odinger equation

$ir_{t}+r_{xx}-2|r|^{2}r=0.$

A way of discretization of the nonlinear Schr\"odinger equation was proposed in [2].
The point here is the choice of the nonlinear term. The trivial choice $\pm 2|R_{n}|^{2}R_{n}$

messes up integrability, while $\pm|R_{n}|^{2}(R_{n+1}+R_{n-1})$ preserves it. The integrable discrete
nonlinear Schr\"odinger equation

(1.1) $\dot{?}\frac{d}{dt}R_{n}+(R_{n+1}-2R_{n}+R_{n-1})\pm|R_{n}|^{2}(R_{n+1}+R_{n-1})=0.$

admits a Lax pair (an AKNS pair) representation and can be solved by the IST method.
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An interesting topic about integrable equations is the long-time behavior of solutions.
There are a lot of results in this direction. Some are formal and are based on some ansatz
about the leading terms. $A$ rigorous approach, called the nonlinear steepest descent
method, was established by Deift-Zhou ([6]) and has been applied in studying a lot of
problemsl. In particular, according to Deift-Its-Zhou ([5]), the long-time asymptotics
of a solution of the defocusing nonlinear Schr\"odinger equation is decaying oscillation of
order $O(t^{-1/2})$ . For (1.1) (the focusing version, under the assumption that there are no
solitons), a formal calculation was performed by [8]. The aim of the present article is
to review our recent result about the long-time behavior of solutions of the defocusing
integrable discrete nonlinear Schr\"odinger equation

(1.2) $i \frac{d}{dt}R_{n}+(R_{n+1}-2R_{n}+R_{n-1})-|R_{n}|^{2}(R_{n+1}+R_{n-1})=0.$

The result is as follows. If $|n/t|<2$ , there exist $C_{j}=C_{j}(n/t)\in \mathbb{C}$ and $p_{j}=p_{j}(n/t),$ $q_{j}=$

$q_{j}(n/t)\in \mathbb{R}(j=1,2)$ depending only on the ratio $n/t$ such that

(1.3) $R_{n}(t)= \sum_{j=1}^{2}C_{j}t^{-1/2}e^{-i(p_{j}t+q_{j}\log t)}+O(t^{-1}\log t)$ as $tarrow\infty.$

A more precise statement will be given in \S 3. The behavior of each term in the sum is
decaying oscillation of order $t^{-1/2}.$

\S 2. Inverse scattering

In this section we explain the inverse scattering transform for (1.2) following [3,
Chap. 3]. The Lax pair for (1.2) consists of a recurrence relation in $n$ (the $n$-part) and
an ordinary differential equation in $t$ (the $t$-part).

The $n$-part, called the Ablowitz-Ladik scattering problem, is given by

(2.1) $X_{n+1}=\{\begin{array}{ll}z \overline{R}_{n}R_{n} z^{-1}\end{array}\}X_{n}.$

The $t$-part is

(2.2) $\frac{d}{dt}X_{n}=\{\begin{array}{ll}iR_{n-1}\overline{R}_{n}-\frac{i}{2}(z-z^{-1})^{2} -i(z\overline{R}_{n}-z^{-1}R_{n-1}^{-})i(z^{-1}R_{n}-zR_{n-1}) -iR_{n}\overline{R}_{n-1}+\frac{i}{2}(z-z^{-1})^{2}\end{array}\}X_{n}$

and (1.2) is the compatibility condition of (2.1) and (2.2).

lAn easy-to-read account of the method is given in [4].

12



DISCRETE NONLINEAR SCHR\"ODINGER EQUATION

We can construct eigenfunctions satisfying the $n$-part (2.1) for any fixed $t$ . Following
[3], one can construct the eigenfunctions $\phi_{n}(z, t),$ $\psi_{n}(z, t)\in \mathcal{O}(|z|>1)\cap C^{0}(|z|\geq 1)$ and
$\psi_{n}^{*}(z, t)\in \mathcal{O}(|z|<1)\cap C^{0}(|z|\leq 1)$ such that

(2.3) $\phi_{n}(z, t)\sim z^{n}\{\begin{array}{l}10\end{array}\}$ as $narrow-\infty,$

(2.4) $\psi_{n}(z, t)\sim z^{-n}\{\begin{array}{l}01\end{array}\},$ $\psi_{n}^{*}(z, t)\sim z^{n}\{\begin{array}{l}10\end{array}\}$ as $narrow\infty.$

On the circle $C:|z|=1$ , there exist unique functions $a(z, t)$ and $b(z, t)$ such that

(2.5) $\phi_{n}(z, t)=b(z, t)\psi_{n}(z, t)+a(z, t)\psi_{n}^{*}(z, t)$

holds. It is known that $a(z, t)$ never vanishes. One can define the reflection coefficient

(2.6) $r(z, t)= \frac{b(z,t)}{a(z,t)}.$

It has the property $r(-z, t)=-r(z, t),$ $0\leq|r(z, t)|<1.$

Remark. If $\{n;R_{n}(t)\neq 0\}$ is finite, the reflection coefficient can be calculated con-
cretely with ease.

The time evolution of $r(z, t)$ according to the $t$-part (2.2) is given by

(2.7) $r(z, t)=r(z)\exp(it(z-z^{-1})^{2})$ ,

where $r(z)=r(z, 0)$ . Let us introduce the following Riemann-Hilbert $problem^{2}$ :

(2.8) $m_{+}(z)=m_{-}(z)v(z)$ on $C:|z|=1,$

(2.9) $m(z)arrow I$ as $zarrow\infty,$

(2.10) $v(z)=v(z, t)=\{\begin{array}{ll}1-|r(z,t)|^{2} -z^{2n}\overline{r}(z,t)z^{-2n}r(z,t) 1\end{array}\}$

$=e^{-\frac{\iota’t}{2}(z-z^{-1})^{2}ad\sigma_{3}}\{\begin{array}{ll}1-|r(z)|^{2} -z^{2n}\overline{r}(z)z^{-2n}r(z) 1\end{array}\}$

Here $m+$ and $m$-are the boundary values from the outside and inside of $C$ respectively
of the unknown matrix-valued analytic function $m(z)=m(z;n, t)$ in $|z|\neq 1$ . As is
customary, $\sigma_{3}=$ diag $(1, -1),$ $e^{ad\sigma_{3}}Q=e^{\sigma_{3}}Qe^{-\sigma_{3}}$ ( $Q$ : a $2\cross 2$ matrix).

Set
$\varphi=\varphi(z)=\varphi(z;n, t)=\frac{1}{2}it(z-z^{-1})^{2}-n\log z$

$\overline{2It}$is an alternative to the Gelfand-Levitan-Marchenko equation.
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so that the jump matrix $v(z)$ in (2.8) is given by

(2.11) $v=v(z)=e^{-\varphi ad\sigma_{3}}\{\begin{array}{ll}1-|r(z)|^{2} -\overline{r}(z)r(z) 1\end{array}\}$

The “phase” $\varphi$ has four saddle points, all on the circle $C$ , and they play important roles
in the method of nonlinear steepest descent. The four points are actually two pairs of
antipodal points. Each pair contributes to one of the terms in the sum in (1.3).

The solution $\{R_{n}\}=\{R_{n}(t)\}$ to (1.2) can be reconstructed from the (2, 1) component
of $m(z)$ by a formula on [3, p.69]. One has $m(z)_{21}=-zR_{n}(t)+O(z^{2})(zarrow 0)$ , namely,

(2.12) $R_{n}(t)=- \lim_{zarrow 0}\frac{1}{z}m(z)_{21}=-\frac{d}{dz}m(z)_{21_{z=0}}$

Summing up, the initial value problem for (1.2) can be solved by the following
algorithm:

1. the initial value $\{R_{n}(0)\}$ and the $n$-part of the Lax pair determine $r(z)=r(z, 0)$ .
2. $r(z, t)(t>0)$ is determined by the $t$-part of the Lax pair.
3. $m(z)=m(x, t;z)$ is obtained from the Riemann-Hilbert problem involving $r(z, t)$ .
4. $R_{n}(t)(t>0)$ is obtained from $m(x, t;z)$ .

\S 3. Statement of the result

The function $\varphi$ has four saddle points. They are $S_{1}=e^{-\pi i/4}A,$ $S_{2}=e^{-\pi i/4}\overline{A},$ $S_{3}=$

$-S_{1},$ $S_{4}=-S_{2},$ , where $A=2^{-1}(\sqrt{2+n/t}-i\sqrt{2-n/t})$ . Notice that $|A|=|S_{j}|=1$

for $j=1,2,3,4$ . Set

$\beta_{1}=\frac{-e^{\pi i/4}A}{2(4t^{2}-n^{2})^{1/4}}, \beta_{2}=\frac{e^{\pi i/4}\overline{A}}{2(4t^{2}-n^{2})^{1/4}}$

$D_{1}= \frac{-iA}{2(4t^{2}-n^{2})^{1/4}(A-1)}, D_{2}=\frac{i\overline{A}}{2(4t^{2}-n^{2})^{1/4}(\overline{A}-1)}.$

We need to introduce several quantities involving $S_{j}$ and $r(z)=r(z, 0)$ . We set

$\delta(0)=\exp(\frac{-1}{\pi i}\int_{S_{1}}^{S_{2}}\log(1-|r(\tau)|^{2})\frac{d\tau}{\tau})$ ,

$\chi_{j}(S_{j})=\frac{1}{2\pi i}\int_{\exp(-\pi i/4)}^{S_{j}}\log\frac{1-|r(\tau)|^{2}}{1-|r(S_{j})|^{2}}\frac{d\tau}{\tau-S_{j}},$

$\nu_{j}=-\frac{1}{2\pi}\log(1-|r(S_{j})|^{2})$ ,

$\hat{\delta}_{j}(S_{j})=\exp(\frac{1}{2\pi}[(-1)^{j}\int_{e^{-\pi i/4}}^{s_{3-j}}-\int_{-S_{1}}^{-S_{2}}]\frac{\log(1-|r(\tau)|^{2})}{\tau-S_{j}}d\tau)$ ,

$\delta_{j}^{0}=S_{j}^{n}e^{-it(S_{j}-S_{j}^{-1})^{2}/2}D_{j}^{(-1)^{j-1}i\nu_{j}}e^{(-1)^{j-1}\chi_{j}(S_{j})}\hat{\delta}_{j}(S_{j})$
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for $j=1,2$ . Here the integrals are taken along minor arcs included in $C$ . We have
${\rm Re} D_{j}>0$ and $z^{(-1)^{j-1}i\nu_{j}}$ has a cut along the negative real axis. It follows from
$|r(z)|<1$ that $\delta(0)\geq 1,$ $v_{j}\geq 0$ . Notice that $A,$ $S_{j},$ $\delta(0),$ $\chi_{j}(S_{j}),$

$\nu_{j}$ and $\hat{\delta}_{j}(S_{j})$ are
functions in $n/t$ and that $\beta_{j}$ and $D_{j}$ are of the form $t^{-1/2}\cross$ (a function in $n/t$). As
$tarrow\infty,$ $\beta_{j}$ is decaying and $\delta_{j}^{0}$ is oscillatory if $n/t$ is fixed.

Theorem. Assume $\sum n^{10}|R_{n}(0)|<\infty$ and $\sup|R_{n}(0)|<1$ . Then on $|n|\leq 2t$ , we
have

$R_{n}(t)=- \frac{\delta(0)}{\pi i}\sum_{j=1}^{2}\beta_{j}(\delta_{j}^{0})^{-2}S_{j}^{-2}M_{j}+O(t^{-1}\log t)$ as $tarrow\infty.$

Here we set
$M_{j}= \frac{\sqrt{2\pi}\exp((-1)^{j}3\pi i/4-\pi v_{j}/2)}{\overline{r}(S_{j})\Gamma((-1)^{j-1}i\nu_{j})}$

if $r(S_{j})\neq 0$ , and $M_{j}=0$ if $r(S_{j})=0.$

Proof. The asymptotic behavior is proved by using the nonlinear steepest descent
method. We deform the contour in the Riemann-Hilbert problem $(2.8)-(2.10)$ by adding
crosses near the saddle points and some other curves. The crosses are steepest descent
paths of $\pm\varphi$ . The details will be given in [9]. $\square$
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