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Borel sums of Voros coefficients of hypergeometric
differential equations with a large parameter

By

Takashi AOkI* and Mika TANDA**

§1. Introduction

The notion of Voros coefficients was introduced by Voros [11] for some Schrodinger
equations with irregular singularities. It plays a role in the analysis of Stokes phenomena
for WKB solutions with respect to parameters which are contained in the potentials. For
Weber equations and for Whittaker equations, concrete forms of the Voros coefficient
were obtaind by Shen-Silverstone [8], Takei [9] and by Koike-Takei [7].

Voros coefficients can be defined also for equations with regular singularities. In
2], the authors give a definition of them and a concrete form of a Voros coefficient for
hypergeometric differential equations with a large parameter for a special case. As in
the case of irregular singularities, we want to analyze the Stokes phenomena for WKB
solutions in parameters by using Voros coefficients of hypergeometric equations. For
this purpose, we must compute the Borel sums of them.

In this report, we give a concrete form of the Voros coefficient for each regular singular
point and the Borel sums of it for hypergeometric equations. Detailed discussions and
proofs will be given in our article in preparation.

§2. Voros coefficients

We consider the following Schrodinger-type equation with a large parameter n:

2
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with Q = Qo + n72Q;, where we set

(a = B)*x* +2(208 — ay = By)z +7*

(2.2) Qo =

472(x — 1)
and
2?2 —z+1
(2.3) Q= “m-

Then a, 8 and v are complex parameters. Equation (2.1) is obtained from the hyper-
geometric differential equation:

2

d“w dw
(2.4) m(l—z)m+(c—(a+b+ 1)x)E~abw—O,

that is, we introduce a large parameter n by setting a = 1/2 + na, b = 1/2 + 1,
¢ = 1 + 7y with complex parameters «, 3 and -« and eliminate the first-order term by

taking
'w = ([;%’*’ﬂi’l(]_ - m)%'*'m%ﬁ":ﬂw
as unknown function. Then we have equation (2.1). Let
1 x
(25) Vs = o= explt | Seaado)
Sodd ( ak °

be WKB solutions of (2.1) (cf. [7]). Here ax(k = 0,1) is a turning points of (2.1),
that is, zeros of Qo and S,qq4 denotes the odd-order part of the formal solution § =
S _,n7 ™Sy in n71 of the Riccati equation

(2.6) Iz +5°=71°Q
associated with (2.1). We consider the following integrals which are called Voros coeffi-
cients: a
Vo = Vola,8,7) i= [ (Seaa = nS-a)ds
0
ax
Vi=Vi(@,87) = [ (Soaa = nS-2)da
1
and

Vs = Va(a, B,7) = / (Soad — nS—1)dz

of equation (2.1). Since the residues of S,q4 and nS_; at the singular points coincide
(See [6] for the computation of residues of S,qq.), these integrals are well-defined for
every homotopy class of the path of integration and we have a formal series V; (a, 3,7)
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(1 =0,1,2) in 1. Note that, there are two turning points ag, a; in general, however,
Vo, Vi and V; are independent of the choice of ax (k= 0,1).

For j = 0,1 and 2, Vj(a, 3,7) describes the discrepancy between WKB solutions
normalized at a; and those normalized at singular points by = 0,b; = 1 and by = oo,
respectively, that is, when we set

1 x

2.7 = ex :}:/ So dz‘)
(2.7) be = o p( [ S
and

() 1 /w /m
2.8 = — + Sodd —NS_1)dz £+ S_idx |,
( ) wi \/ﬁexp< bj( dd n 1) xz n o 1 .’13)
we have
(2.9) p{7 = exp(£V)ha.

Here the paths of integration should be chosen suitably. Voros coefficient V; satisfies a
system difference equations with respect to parameters a, 8 and «. Solving the system

we have the following Theorem.

Theorem 2.1. Voros coefficients V; have the following forms:

—_ 1 & Bnnl—n -n 1 ! . ;
%3 w02 (e e o)

2
+,yn—-1}’
_1& Byl e 1 1 1 _ 1
" 27;%’7-_1) {(1_2 ) (a"‘l TET T Gt (7—6)"‘1>
2 }
(@+ -1
and
1 Bt . 1 1 1 1
=22 w1 {“‘21 )(an—l‘ﬁ"—l‘w—a)n—l* (v—ﬂ)”‘1>

Here B,, are Bernoulli numbers defined by

o0

tet B,
o i Dl

n=0
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§3. Stokes graphs

A characterization of Stokes graphs in term of parameters of (2.1) is given in [2]. A
Stokes curve emanating from the turning point ax (k = 0,1) is a curve defined by

Im/ vV Qo dz = 0.
ar

A Stokes curve flows into a singular point or a turning point. The Stokes graph ([1])
of (2.1) is, by definition, a two-colored sphere graph consisting of all Stokes curves
(emanating from ag and a;) as edges, {ao, a1} as vertices of the first color and {bg, by, b2}
as vertices of the second color. The Stokes graph of (2.4) is, by definition, that of (2.1).
We define that the sets H; (j = 0,1, 2) of the parameters «, 3, as follows:

31) Ho={(ap7)eC|a-B-v - (a=8) (a—7)-(B—7) (a+8—7)#0},
(32) Hi={(a,8,7) € C° | Reav- Ref - Re(y — @) - Rey — §) # 0},
(33) Hy={(c,f,7) € C*| Re(a — B) - Re(ar+ ) - Rey £0}.

If (o, B,7) is contained in Hp, the turning points and the singular points of (2.4) are
mutually distinct. Moreover, if (e, 3,7) is not contained in H; U Hj, then the Stokes
geometry is degenerate.

We assume that (a, 3,7) is contained in the sets Hy N Hy N Hy. Stokes graphs can
be classified by its order sequence 7 = (ng, n1,n2), where ng,n; and ng are numbers
of Stokes curves that flow into 0,1 and oo, respectively. Next we define the sets wy
(k =1,2,3,4) of the parameters «, 8 and v as follows:

{(e, B,7) € C* | 0 < Rea < Rey < Rep},
wy = {(a, B,7) € C* | 0 < Rea < ReB < Rey < Rea + Ref3},
w3 = {(a, B,7) € C3| 0 < Rey < Rea < Ref},
ws = {(a, 8,7) € C* | Rey — Ref < Rea < 0}

w1

and involutions ¢; (j = 0,1,2) in the space of parameters as follows:

LO:(an@a’Y) H(/B7a77)’
1,1:((1,,3,’7) H(’Y_B,’Y—aa’\/)v
la . (a,,@, ’Y) — (_aa _ﬁa _’7)

The potential @ is invariant under those involutions. Moreover, we define Il as
follows:

(3.4) O = | J r(ws) (k=1,2,3,4).

reG
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Here G is the group generated by ¢; (j = 0,1,2). We characterize the types of Stokes
graphs in terms of the parameters. The following Theorem is proved in [2] (Theorem
3.2) (See all so [3], [10].)

Theorem 3.1. Let 7 denote the order sequence of the Stokes graph with parameters

(a7 /377)‘

(1) If (a,8,7v) € Iy, then 7 = (2,2,2).
(2) If (o, B,7) € Iy, then 7 = (4,1,1).
(3) If (o, 8,7) € 13, then 7 = (1,4,1).
(4) If (o, 8,7) € Iy, then A = (1,1,4).

Remark. For a fixed Re v > 0, configurations of wy’s and II’s in the real o-4 plane
are shown in Fig. 3.1.

Res Res
b
w4 w1 w3 \H4\ Hl 1}{
7/
AN
AN //
wo \\ //
15
Hl / 2\ Hl
/ AN
AN
// N\
/ \\
s 10 i
// N\

Fih. 3.1
We will consider the Borel sums of Voros coefficients in w; and in ws in the next

section. We show some example of Stokes curves in Fig. 3.2.
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Here bullets and white bullets designate turning points and singular points, respectively
and € > 0. If we take (o, 8,7) = (1,2,1), which is located on the boundary between w;
and w3, turning points coincide (cf. Fig. 3.2). If we take (a,8,7) = (1 —€,2,1) (resp.
(1+¢,2,1)), i.e, parameters are contained in w; (resp. ws), we have 71 = (2,2,2) (resp.
7 = (1,4,1)) in left-hand side (resp. right-hand side) of Fig. 3.2.

§4. Borel sums of Voros coefficients

In this section we consider the relation between Borel sums of Voros coefficients
in w; and w3. Let Vg (resp. V¥p) and V}! (resp. V) (j = 0,1,2) denote the Borel
transforms and the Borel sums of the Voros coefficients V; in w; (resp. ws), respectively.
To clarify the relations between Borel sums V! and V;? (j = 0,1,2), we need the concrete
forms of V! and V3. They are given as follows.

Theorem 4.1. Borel sums le (resp. V]3) of Voros coefficients have following forms:

L(3 + (B =12 (yn)a>1887(y — a) =)y
T(3 +em(3 + Bn)(5 + (v — )n)(8 — 7)F=mMmy2yn=1"
1 L(3 + (a = )nT(F + (B — V)M (yn)an 8Py
42 V5 = 51 T eI (3 7 (e - (8 — )= DrE=Tar
log T(3 + (v — &)m)T2((a + B — 7)n)a>"307 (B — ~)(B-1)y

D(§ +an)T(} + BT + (B = M)y = )= (o + § — y)2a+f=—n=1"
2nT2((a + 8 = 7)n)a857 (& — )(@=7(8 — )=V
T +an)(E + AT + (@ - VLR + (B - nm)(a+ B — 7)2+p—1n-1’
L(3 +BnT(3 + (v = a)n)I(5 + (B = N)m)a(§ — a)>P-n—1

D(L + an[2((8 — )m)BP1(y — ) 0= 7(8 — ) B~

1. 2a0(3 + B3 + (B — Y)n)e(a — )@= M(8 — o)2B—e)n-1

s_ 1
(46) Vi =gloe (3 +amT(3 + (= NT*((B — a)n)BP7(8 - 7)B=7)m

41 Vi= %log

43) V=

= ~lo
2
1
(4.4) V3= 5lo

(45) V= %lo

Outline of the proof. To compute the Borel sums Vi and V@, we first take the
Borel transforms Vg and Vi of Voros coefficient Vp.

Proposition 4.2. Borel transforms Vi g and Vi’ g of Voros coefficients Vo have fol-
lowing forms:

1
Vo = —9(@) —g(ﬂ)—g(v—a)+g(ﬂ—7)+5(£%_—l — % +3)

and
) sl 1t vt
Vg =—g(a) —g(B) +gla—v)+9(B 7)+y(exp%—1 y 2)

Here (o) = & exp(~ £) (g + 5= )
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The Borel sums of Vp, are obtained by using the following integral representation of
the logarithm of the I'-function.

Lemma 4.3. We heve the formula:

> 1 1 1%
- —-)—dt
/0 (et—1+2 t) t

:log-w — (60— %)log@-i—@.

Ve

Next we consider the relation between V! and V. Borel sums of Voros coefficient

Vi is analytically continued over ws. We compare it with V. If Im (o — ) > 0, then
we rewrite V! as follows.

Vi = Liog L + (8= mmI2mac8i(y — )=
° 2T +an)T(§ + BTG + (v — a)n) (B — 1) By Zvm =1
1 T(3 + (B = VM2 (yn)a®857(a — ) 1=y (v — a)nmi
4.7) = - log — / : s :
2 " T(z +anl(z + AI(3 + (v — c)n)(B — 7)(B=7Iny2yn 2

Subtracting (4.7) from (4.2), we have

1 o (v — a)nmi
D ¥ P vy ) e ) R

= %log(e2(7_°‘)"m +1).

Vol - Vo3 =

On other hand, if Im(a — ) < 0, we rewrite Vg as follows.

Vi = Liog — LG+ (B nmI2(m)a8 (@ — 7)==y _(y—a)ymi
2 TG +aml( + AT + (7 — aJn)(B —7) Pz 2

Hence we have the following relation:

‘/01 _ %3 — %log(CZ(a—-’y)nﬂi + 1)

In the same way, we obtain formulas for the other cases. Summing up, we have the
following.

Theorem 4.4. The relations between Borel sums le and Vj3 (1 =0,1,2.) of Voros
coefficients have following forms:
(1) If Im (o — v) > 0, then we have

1 .
V3 = V3 + 5 log(eX eI 4 1),

‘/11 — ‘/13 _ %log(eﬂ"/—a)nri + 1)



and

24

TAKASHI AOKI AND MIKA TANDA

1 .
V21 — V23 _ 5 log(e2('y—a)nm + 1)

(2) If Im (a — 7y) < 0, then we have

and

[
2]

(8]
[9]

[10]

[11]

1 ,
Vol — ‘/03 + 5 log(e2(a-'y)r/m + 1),

1 .
Vll — V13 _ 5 log(e2(a—'y)nm + 1)

1 .
‘/'21 — V23 _ 5 log(e2(a—'y)n1n + 1)
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