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\S 1. Introduction

The purpose of this article is to call forth the interest of specialists in microlocal
analysis in the computer-assisted study of the Landau-Nakanishi geometry by showing
concrete examples which we have encountered in making the effort with Henry P. Stapp
to elucidate the concrete contents of Sato’s postulate ([2]) on the analytic structure of
the $S$ -matrix near the 3-particle threshold. For the convenience of the reader we first
recall the definition of a Feynman graph $G$ and the Landau-Nakanishi variety (hereafter
abbreviated as en variety) $\mathscr{L}(G)$ associated with $G.$

Definition 1.1. A Feynman graph $G$ is a graph that consists of finitely many points
$V_{1},$ $V_{2},$

$\ldots,$
$V_{n’}$ (called vertices), finitely many line segments $L_{1},$ $L_{2},$

$\ldots$ , $L_{N}$ (called
internal lines) and finitely many half-lines $L_{1}^{e},$ $L_{2}^{e},$

$\ldots,$
$L_{n}^{e}$ (called external lines), where

each of the end-points $W_{\ell}^{+}$ and $W_{\ell}^{-}$ of $L_{\ell}(\ell=1,2, \ldots, N)$ coincides with some $V_{j}$

$(j=1,2, \ldots, n’)$ satisfying the condition

(1.1) $W_{\ell}^{+}\neq W_{\ell}^{-},$

and the (unique) end-point of $L_{r}^{e}(r=1, \ldots, n)$ coincides with some $V_{j}(j=1, \ldots, n’)$ .

In this article we assume that each internal line and each external line are oriented
(and specified with an arrow like – if necessary). Using this orientation we define
the incidence number $b$ : $\ell$] for a pair of a vertex $V_{j}$ and an internal line $L_{\ell}$ by the
following rule:

(1.2) $[j:\ell]=\{\begin{array}{ll}+1 when the internal line L_{\ell} ends at the vertex V_{j},-1 when L_{\ell} starts from V_{j},0 neither of the end- points of L_{\ell} coincides with V_{j}.\end{array}$
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The incidence number $[j:r]$ for a pair of a vertex $V_{j}$ and an external line $L_{r}^{e}$ is defined
in a similar manner.

We also assume that a $v$-dimensional real (or complex if so specified) vector $p_{r}=$

$(p_{r,0}, \ldots, p_{r,\nu-1})(r=1,2, \ldots, n)$ is assigned to each external line $L_{r}^{e}$ and a strictly
positive number $m_{\ell}(\ell=1,2, \ldots, N)$ is assigned to each internal hne $L_{\ell}.$

Figure 1. An example of a Feynman graph.

Remark 1.2. In this article we assume, for the sake of simplicity, that all constants
$m_{\ell}$ are the same and we denote it by the number $m$ . That is, we consider only the
so-called equal mass case.

Remark 1.3. Unless otherwise stated, we assume $v=2$ in what follows.

Remark 1.4. In this article we do not assume

(1.3) $p_{r}^{2}(=p_{r,0}^{2}-p_{r,1}^{2})=m^{2}.$

In passing we note that, here and in what follows, for $v$-dimensional vector $k=$

$(k_{0}, k_{1}, \ldots, k_{\nu-1})$ the scalar $k^{2}$ stands for $k_{0}^{2}- \sum_{\rho=1}^{\nu-1}k_{\rho}^{2}.$

In order to write down the defining equation of the $\mathscr{L}\mathscr{N}$ variety, we introduce the
following numbers $j^{\pm}(\ell)$ and $j(r)$ for an internal hne $L_{\ell}$ and an external line $L_{r}^{e}$ :

(1.4) $[j^{\pm}(\ell):\ell]=\pm 1,$

(1.5) $[j(r):r]\neq 0.$

Definition 1.5. (i) The Landau-Nakanishi variety $\mathscr{L}(G)$ associated with a Feyn-
man graph $G$ is, by definition, the totality of $(p, \sqrt{-1}u)$ in $\mathbb{R}^{\nu n}\cross(\sqrt{-1}\mathbb{R}^{\nu n})$ that satisfies
the following equations for some $(\alpha_{1}, \ldots, \alpha_{N};k_{1}, \ldots, k_{N};v_{1}, \ldots, v_{n’} ; a)\in \mathbb{R}^{N}\cross \mathbb{R}^{\nu N}\cross$
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$\mathbb{R}^{\nu n’}\cross \mathbb{R}^{\nu}$ :

(1.6) $\{\begin{array}{ll}\sum_{r=1}^{n}[j:r]p_{r}+\sum_{\ell=1}^{N}[j:\ell]k_{\ell}=0 (j=1,2, \ldots, n’) ,\alpha_{\ell}(k_{\ell}^{2}-m^{2})=0, k_{\ell,0}>0 (\ell=1,2, \ldots, N) ,v_{j^{+}(\ell)}-v_{j^{-(\ell)}}=\alpha_{\ell}k_{\ell} (\ell=1,2, \ldots, N) ,u_{r}=-[j(r) : r](v_{j(r)}+a) (r=1,2, \ldots, n) .\end{array}$

(ii) If $\alpha_{\ell}\geq 0(\ell=1,2, \ldots, N)$ in (1.6), $\mathscr{L}(G)$ is designated as $\mathscr{L}^{+}(G)$ and called the
$positive-\alpha\ovalbox{\tt\small REJECT}$’ variety associated with $G.$

(iii) If $\alpha_{\ell}>0(\ell=1,2, \ldots, N)$ , then $\mathscr{L}^{+}(G)$ is designated as $\mathscr{L}^{\oplus}(G)$ .

Remark 1.6. (i) If we formally define the Feynman integral $F_{G}(p)$ associated with $G$

by

(1.7)
$\int\cdots\int\frac{\acute{\prod_{j=1}^{n}}\delta^{\nu}(\sum_{r=1}^{n}[j:r]p_{r}+\sum_{\ell=1}^{N}[j:\ell]k_{\ell})}{\prod_{\ell=1}^{N}(k_{\ell}^{2}-m^{2}+\sqrt{-1}0)}\prod_{\ell=1}^{N}d^{\nu}k_{\ell},$

then it is known ([2]) that under some moderate conditions $F_{G}(p)$ is well-defined as
a microfunction and that it is supported by $\mathscr{L}^{+}(G)$ . Thus $\mathscr{L}^{+}(G)$ is a variety in
$\sqrt{-1}S^{*}\mathbb{R}^{\nu n}$ . Denoting by $\pi$ the canonical projection map from $\sqrt{-1}S^{*}\mathbb{R}^{\nu n}$ to $\mathbb{R}^{\nu n},$

we denote $\pi(\mathscr{L}^{+}(G))$ by $L^{+}(G)$ . It is also called the $positive-\alpha\ovalbox{\tt\small REJECT}\gamma$ variety. When
we want to emphasize that we are dealing with the object projected down to the base
manifold, we sometimes use somewhat $10$ose expression “ $(positive-\alpha)LN$ surface” As
we will show in Section 2 and Section 3, some higher codimensional component of an
$LN$ “surface” is of particular interest.
(ii) When $F_{G}(p)$ is well-defined, it has the form

(1.8)
$f_{G}(p) \delta^{\nu}(\sum_{j,r}[j:r]p_{r})$

.

The vector $a$ in the last equation of (1.6) is a counterpart of the factor $\delta^{\nu}(\sum[j : r]p_{r})$ .
The factor $f_{G}(p)$ is called a Feynman amplitude (or function).

Concerning the concrete figure of $L^{+}(G)$ the book of Eden et al. ([1]) is a good
introduction. Thanks to the progress of computers, mathematicians can now make the
figures in [1] much more precise so that they may give a fresh impetus to study the
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Landau-Nakanishi geometry, if they put sufficiently enough energy and time into the
study of the subject. Actually, as we show in Section 2, the detailed description of
$L^{+}(G)$ gives rise to interesting mathematical problems even for a very simple graph $G.$

Section 3 is devoted to showing what kind of anomalies is observed when $G$ contains
what we call the non-external vertices. The study of such graphs is not only challenging
but also important in our future study of the analytic structure of the $S$-matrix near
the 3-particle threshold, which will make essential use of the Borel resummation.

\S 2. $LN$ surface $L(G)$ and its $positive-\alpha$ part $L^{+}(G)$ when $G$ is
an ice-cream cone graph

As one of the most basic graph that is relevant to the 3-particle threshold we consider
the so-called ice-cream cone graph, that is,

Figure 2. The ice-cream cone graph $G_{1}.$

The reason of our interest in $L^{+}(G_{1})$ is twofold. First, $L^{+}(G_{1})$ touches the 3-particle
threshold $3PT$ , and we know ([2], [3])

(2.1) $f_{G_{1}}(p)|_{3PT}=a(p)f_{G_{0}}(p)+b(p)$

holds at a generic point of $3PT$ , where $a(p)$ and $b(p)$ are holomorphic functions and the
graph $G_{0}$ is described in the figure below:

Figure 3. The Feynman graph $G_{0}.$

Second, if we consider a point $p$ where the following configuration of Fig. 4 is realized,
that is, if all internal lines are parallel keeping each vertex distinct, then we find
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Figure 4. The configuration of vectors $v_{j}$ ’s and $\alpha_{\ell}k_{\ell}’ s.$

(2.2) $p_{4}+p_{5}=2p_{6},$

(2.3) $p_{6}^{2}=m^{2}.$

The totality $N_{-}$ of such points covers only a tiny portion of $L^{+}(G_{1})$ , but as Fig. 5
showsl , $N_{-}$ is a crucially important part of the singularity that $L^{+}(G_{1})$ presents; the
singularity is commonly known as “Whitney’s umbrella”, and $N$-belongs to its most
singular part. Thus explicitly writing down the holonomic system that $f_{G_{1}}(p)$ satisfies
near $N_{-}$ is a charming problem in microlocal analysis.

Figure 5. The “non-zero $\alpha$

” $LN$ surface of $G_{1}$ with $\nu=2$ and $m=1.$

lThe surface appearing in the figure is analytically isomorphic to the one defined by the following

equations of parameters $s>0$ and $t>0:x=s+ \frac{1}{s},$ $y= \frac{s^{2}t+3s}{st-1}$ and $z=t$ . It has only one
pinch point singularity $N-$ and also has a self-intersection curve corresponding to a shank of an
umbrella.
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\S 3. Truss-bridge graphs

As our eventual purpose is to understand the analytic structure of the $S$-matrix
near the 3-particle threshold, it is natural to try to study the concrete figure of the
$positive-\alpha$ $LN$ surface $L^{+}(G)$ associated with Feynman graph $G$ when it touches 3-
particle threshold. One such a graph is $G_{1}$ studied in Section 2. One can readily note
that $L^{+}(T_{2})$ contains $L^{+}(G_{1})$ and also note that $L^{+}(T_{1})$ touches 3-particle threshold,
where the truss-bridge graph $T_{1}$ (resp. $T_{2}$ ) is given in Fig. 6 (resp. Fig. 7) below.

Figure 6. The truss-bridge graph $T_{1}$ . Figure 7. The truss-bridge graph $T_{2}.$

Thus it is natural to study $L^{+}(T_{3})$ , as the next target, where

Figure 8. The truss-bridge graph $T_{3}.$

Interestingly enough, there is no reference which concretely describes $L^{+}(T_{3})$ , as far as
we know. And, the actual figure shown in Fig. 9 is highly intriguing; the $LN$ surface
in the figure consists of two irreducible components. One is isomorphic to the surface
defined by the following equations of parameters $\mathcal{S}>0$ and $t>0$ :

$x=s+1/s,$

(3.1) $y=- \frac{((b^{2}-ab)s^{2}+(a-b)s+1)t^{2}+((a-2b)s^{2}+s)t+s^{2}}{((b^{2}-ab)s-b)t^{2}+((a-2b)s+1)t+s},$

$z=bt^{2}/(bt-1)$ ,
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where $a$ and $b$ are some positive constants. This surface has two pinch point singularities
and two self-intersection curves which form a combination of two umbrellas. Another
component is the curve, i.e., the higher codimensional component, defined by equations
of $s>0$ :

(3.2) $x=s+1/s, y=- \frac{as^{2}-3s}{as+1}, z=-b/(s^{2}-bs)$ .

Figure 9. $A$ generic slice of the “non-zero $\alpha$

” $LN$ surface of $T_{3}$ in a transversally inter-
secting 3-dimensional space $(\nu=2$ and $m=1)$ .
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Among other things, the existence of a higher codimensional component of the $LN$

surface that corresponds to the configuration described in Fig. 10 was what we had not
anticipated before the actual computation.

Figure 10. The configuration of vectors $v_{j}’ s.$

Note that the vertex $V_{3}$ may move freely from $V_{2}$ to $V_{4}$ in the configuration of Fig. 10
even if $(p, k)$ is fixed. This flexibility of the configuration is tied up with the higher
codimensionality of the component in question.

We believe that several intriguing features of $L^{+}(T_{3})$ should be tied up with the
existence of non-external vertex $V_{3}$ . Here, and in what follows, we say that a vertex is
non-external if no external line is incident upon the vertex. It is probably worth noting
the following fact.

Let us consider the following graph $\overline{T_{3}}$ :

Figure 11. The Feynman graph $\overline{T_{3}}.$

Then, for any point $p$ in $L^{\oplus}(\overline{T_{3}})(\subset L^{+}(T_{3}))$ , we find

(3.3) $p_{6}^{2}=m^{2}$ ;

otherwise stated, although the external line $p_{6}$ is originally assumed not necessarily
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to be on-shell, the current configuration forces it to be on-shell. We note that we
encountered a similar situation in Section 2; at some particular points of $L^{\oplus}(G_{1}),$ $p_{6}$ lies

on mass-shell. But this time at all points in $L^{\oplus}(\overline{T_{3}}),$
$p_{6}$ obeys the mass-shell constraint.

The confirmation of (3.3) is straightforward. First we note that the energy-momentum
conservation at $V_{3}$ (i.e., the first equation of (1.6) with $j=3$)

(3.4) $k_{5}=k_{6}=k_{2}=k_{3},$

because $v=2$ and $\alpha_{\ell}\geq 0(\ell=2,3,5,6)$ . Then it follows from the third equation of

(1.6) that

(3.5) $\alpha_{4}k_{4}=\alpha_{3}k_{3}+\alpha_{5}k_{5}=(\alpha_{3}+\alpha_{5})k_{3},$

and hence

(3.6) $k_{4}=k_{3}.$

Similarly the third equation of (1.6) applied to the triangle formed by $V_{3},$ $V_{4}$ and $V_{5}$

entails

(3.7) $\alpha_{6}k_{6}=\alpha_{5}k_{5}+\alpha_{7}k_{7}.$

Hence (3.4) guarantees

(3.8) $k_{7}=k_{5}=k_{3}.$

Thus the energy-momentum conservation at $V_{4}$ implies

(3.9) $p_{6}=k_{3},$

proving (3.3). In passing, we note that in the course of the above reasoning we have

also confirmed

(3.10) $p_{4}+p_{5}=2p_{6}.$

The degeneration of this sort is a universal one, and we can confirm that at a point

$p$ in $L^{\oplus}(T_{n})(n\geq 4)$ where $T_{n}$ is the truss-bridge graph given in Fig. 12 below, all the

internal lines become parallel, and hence we find (in the labeling of external energy-
momentum vectors as in Fig. 12)

(3.11) $p_{4}+p_{5}=2p_{6},$ $p_{6}^{2}=m^{2}$ if $n$ is odd,

and

(3. 12) $p_{5}+p_{6}=2p_{4},$ $p_{4}^{2}=m^{2}$ if $n$ is even.
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Figure 12. The truss-bridge graph $T_{n}$ consisting of $n$-trusses.

We also note

(3.13) $p_{1}+p_{2}=2p_{3}, p_{3}^{2}=m^{2}$

holds. Hence, by setting

(3.14) $N=N_{+}\cup N_{-},$

where

(3.15)
$N_{+}= \bigcup_{p_{3}^{2}=m^{2}}\{(p_{1},p_{2},p_{3});p_{1}+p_{2}=2p_{3}\}$

and

(3.16)
$N_{-}= \bigcup_{p_{6}^{2}=m^{2}}\{(p_{4},p_{5},p_{6});p_{4}+p_{5}=2p_{6}\},$

we find

(3.17) $L^{\oplus}(T_{n})\subset N (n\geq 4)$

with some change of labeling of $(p_{4}, p_{5},p_{6})$ if necessary. Thus the micr$0$-analytic struc-
ture of the $S$-matrix near $N$ should be formidably difficult to study, but we believe the
analysis of individual Feynman integrals $F_{T_{n}}(p)$ should be within reach of us.

\S 4. Concluding remarks and future problems

Having in mind the study of micro-analytic structure of the $S$-matrix near the 3-
particle threshold, we have made a detailed study of the $LN$ surfaces associated with
an ice-cream cone graph and a truss-bridge graph $T_{n}$ with $n=3$ near the 3-particle
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threshold. Thanks to the power of recent computers our results are precise enough
to stimulate the interest of mathematicians in the geometry of $LN$ surfaces near the
3-particle threshold. Among other things we note that a central role is played by the
set $N$ given by (3.14) (or $N$-for the configuration of Fig. 4). Although the singularity
structure of the $S$-matrix near $N$ should be too complicated to analyze, we believe the
study of the holonomic structure of individual Feynman integrals near $N$ is an interest-
ing problem in microlocal analysis. Another interesting feature of our results is that the
existence of non-extemal vertices in a Feynman graph normally gives strong constraint
on the shape of the associated $\ovalbox{\tt\small REJECT}\gamma$ variety. (See [4] and [5] for some related topics.)
The study of the holonomic structure of a Feynman integral associated with a Feynman
graph containing non-external vertices is an important and challenging problem in mi-
crolocal analysis. One natural way to approach this problem is to introduce fictitiously
an external vector $p_{j}$ at a non-external vertex $V_{j}$ and then set it to be $0$ . As one imme-
diately realizes, this procedure normally leads to the restriction of a holonomic system
to a submanifold which contains characteristic points. We believe concrete studies of
Feynman integrals of this sort should contribute much to the progress of the theory of
holonomic systems.
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