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Abstract

The connection problem concerns the linear relations between fundamental sets of solutions
near singular points. In this paper, we will emphasize the $twe\succ$point connection problem. In the
first section, we will explain why the two-point connection problem is interesting in the analysis
of the Stokes phenomenon. In the second section, we will introduce an associated fundamental
function which was introduced by K. Okubo in the $1960’ s[O]$ . In the third section, we will give
an example of the two-point connection problem. In the final section, we will give an useful
result of a reduction problem for solving the multi-point connection problem.

\S 1. Introduction

The method of associated fundamental functions was first applied to the two-point
connection problem for a differential system with an irregular singular point of rank
unity by K. Okubo in 1963 [O]. In 1974, M. Kohno applied it to a single differential
equation with a regular singular point and an irregular singular point of arbitrary rank
[Kl]. In 1999, he also sketched an argument that would allow one to apply the associated
fundamental functions to the problem in the case where one has an arbitrary number
of regular sinsular points and one irregular singular point [K2].

It seems that this last advance has gone largely unnoticed, and there have been no
further developments. In the future work, we will work on applying this method to solve
the multi-point connection problem.

In this section, we will explain how the two-point connection problem is useful for
analyzing the Stokes phenomenon.

For the rest of this paper, we assume that $t$ is a complex variable. We consider an
n-th order single differential equation which has one irregular singular point of rank
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unity at infinity and a regular singular point at the origin, with unknown function $y$ , of
the form:

(1.1) $t^{n} \frac{d^{n}y}{dt^{n}}=\sum_{\ell=1}^{n}a_{n-\ell}(t)t^{n-\ell}\frac{d^{n-\ell}y}{dt^{n-\ell}},$

where $a_{\ell}(t)(\ell=0,1, \ldots, n-1)$ are holomorphic functions at the origin. There exists a
fundamental set of solutions expressed in terms of convergent power series:

$y_{j}(t)=t^{\rho_{j}} \sum_{m=0}^{\infty}G_{j}(m)t^{m} (j=1,2, \ldots, n)$ ,

in a punctured disc around the regular singular point $t=0$ , where $\rho_{i}-\rho_{j}\not\in \mathbb{Z}(i\neq j)$ .
We can calculate formal solutions:

$y^{k}(t)=e^{\lambda_{k}}tt^{\mu_{k}} \sum_{s=0}^{\infty}h^{k}(s)t^{-s} (k=1,2, \ldots, n)$

at infinity, where $\lambda_{k},$ $\mu_{k}\in \mathbb{C}$ . On each sector $S$ with vertex at the origin and central
angle not exceeding $\pi$ , there exists a fundamental set of solutions $y_{S}^{k}(t)(k=1,2, \ldots, n)$ ,
such that

$y_{S}^{k}(t)\sim y^{k}(t) (|t|arrow\infty in S)$ .

We write $Y_{0}(t)$ to denote a vector function whose components are given by a fundamental
set of solutions $y_{j}(t)$ near the origin, and $Y_{S}(t)$ to denote a vector function whose
components are given by a fundamental set of solutions $y_{S}^{k}(t)$ near infinity on $S$ ;

$Y_{0}(t)=(\begin{array}{l}y_{1}(t)y_{2}(t)|y_{n}(t)\end{array}), Y_{S}(t)=(\begin{array}{l}y_{S}^{1}(t)y_{S}^{2}(t)|y_{S}^{n}(t)\end{array})$

Let us denote the analytic continuation of the $y_{S}^{k}(t)$ into a sector $S’$ by the same notation
$y_{S}^{k}(t)$ . Then we have a linear relation between $y_{S}^{k}(t)$ and $y_{S}^{k},(t)$ :

(1.2) $Y_{S}(t)=T(S:S’)Y_{S’}(t)$ $T(S:S’)\in \mathcal{M}_{n}(\mathbb{C})$ $in$ $S’.$

We call this constant matrix $T(S:S’)$ the Stokes matrix or the lateral connection matrix.
If we can find the exact value of the matrix $T(S : S’)$ , then the asymptotic behavior of
$y_{S}^{k}(t)$ as $t$ tends to infinity in $S’$ will be immediately understood.

On the other hand, a linear relation between two fundamental sets of solutions $y_{j}(t)$

and $y_{S}^{k}(t)$ in $S$ clearly holds:

(1.3) $Y_{0}(t)=W(S)Y_{S}(t)$ $in$ $S,$ $W(S)\in GL_{n}(\mathbb{C})$ .
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We call this coefficients matrix the centml connection matrix. Its derivation is often
called the central connection problem.

If we can solve such a central connection problem (1.3) for every sector $S$ , then after
the analytic continuation of the $y_{S}^{k}(t)$ across a domain near $t=0$ and then into the
sector $S’$ , we can directly obtain the lateral connection formula (1.2). That is, once
the central connection problem is solved, the Stokes phenomenon will be completely
understood.

\S 2. Associated fundamental function

We will give here a short sketch of a method for the establishment of the asymptotic
expansion $y_{j}(t)$ as $t$ tends to infinity, together with the determination of the lateral
connection matrices $T(S:S’)$ for every sector $S.$

Assume that the central connection problem were solved. There exists a fundamental
set of solutions of (1.1) expanded in terms of convergent power series in a punctured
disc around the regular singular point $t=0$ :

$y_{j}(t)=t^{\rho_{j}} \sum_{m=0}^{\infty}G_{j}(m)t^{m} (j=1,2, \ldots, n)$

where $\rho_{i}-\rho_{j}\not\in \mathbb{Z}(i\neq j)$ . The fundamental solutions $y_{S}^{k}(t)(k=1,2, \ldots, n)$ of (1.1) are
characterized by formal solutions at the irregular singular point:

$y_{S}^{k}(t)\sim y^{k}(t) (|t|arrow\infty in S)$ .

Then $y_{j}(t)$ can be expressed as:

$y_{j}(t)=t^{\rho_{j}} \sum_{m=0}^{\infty}G_{j}(m)t^{m}=\sum_{k=1}^{n}W_{j}^{k}(S)y_{S}^{k}(t)$

where $W_{j}^{k}(S)$ are entries of the matrix $W(S)$ :

$W(S)=(\begin{array}{ll}W_{1}^{1}(S)W_{1}^{2}(S)\cdots W_{1}^{n}(S)W_{2}^{1}(S)W_{2}^{2}(S)\cdots W_{2}^{n}(S)\vdots\vdots |\vdots W_{n}^{1}(S)W_{n}^{2}(S)\cdots W_{n}^{n}(S)\end{array})$

We shall introduce a set of functions $x_{j}^{k}(s;t)$ , distinguished by the property that they
admit the same local behavior as $y_{j}(t)$ in a punctured disc around the origin and $y^{k}(t)$

near infinity. We call the functions $x_{j}^{k}(\mathcal{S};t)$ the associated fundamental functions and
we will work out the expansion of $y_{j}(t)$ in terms of $x_{j}^{k}(s;t)$ :

$x_{j}^{k}(s;t)\sim\{\begin{array}{l}t^{\rho_{j}} (|t|arrow 0)e^{\lambda_{k}}tt^{\mu_{k}}(|t|arrow\infty) .\end{array}$

113



KANA ANDO

Now we consider a first order non homogeneous differential equation:

$t \frac{dx_{j}^{k}(s;t)}{dt}=(\lambda_{k}t+\mu_{k}-s)x_{j}^{k}(s;t)+t^{\rho_{j}}\lambda_{k}g_{j}^{k}(s-1) (s=0,1,2, \ldots)$

which has the particular solutions:

$x_{j}^{k}(s;t)=t^{\rho_{j}} \sum_{m=0}^{\infty}g_{j}^{k}(m+\mathcal{S})t^{m}.$

By quadrature, from the first order non homogeneous differential equation, we obtain
the integral representation:

$x_{j}^{k}(s;t)= \lambda_{k}g_{j}^{k}(s-1)t^{\rho_{j}}\int_{0}^{1}e^{\lambda_{k}t(1-\tau)}\tau^{s+\rho_{j}-\mu_{k}-1}d\tau.$

We remark that the integral is well-defined for all integers $s$ satisfying $s+\rho-\mu>0,$

and if $\rho-\mu\not\in \mathbb{Z}$ , it can be regularized by analytic continuation for all integers $s.$

It is known that asymptotic behavior of $x(s;t)$ is

$x_{j}^{k}(s;t)\sim e^{2\pi i(\rho_{j}-\mu_{k})\ell}e^{\lambda_{k}}tt^{\mu_{k}-s}+t^{\rho_{j}}\{g_{j}^{k}(s-1)t^{-1}+g_{j}^{k}(s-2)t^{-2}+\cdots\}$

as $|t|arrow\infty$ in $| \arg(\lambda_{k}t)-2\pi\ell|<\frac{3}{2}\pi$ , where $\ell$ is an integer. This concludes our
introduction of the aesociated fundamental functions $x_{j}^{k}(s;t)(k,j=1,2, \ldots, n)$ , and
our analysis of the asymptotic behavior of $x_{j}^{k}(s;t)(k, j=1,2, \ldots, n)$ .

Next, we shall define additional functions:

$f_{j}^{k}(m)= \sum_{m=0}^{\infty}h^{k}(s)g_{j}^{k}(m+s) (k=1,2, \ldots, n)$ .

We can show that $f_{j}^{k}(m)(k=1,2, \ldots, n)$ satisfies the same reccurances which $G_{j}(m)$

satisfies, but the proof is omitted. From these facts, we can analyze the asymptotic
expansion of $y_{j}(t)$ :

$y_{j}(t)=t^{\rho_{j}} \sum_{m=0}^{\infty}G_{j}(m)t^{m}$

$= \sum_{m=0}^{\infty}(\sum_{k=1}^{n}W_{j}^{k}f_{j}^{k}(m))t^{m+\rho_{j}}$

$= \sum_{k=1}^{n}W_{j}^{k}\sum_{s=0}^{\infty}\sum_{m=0}^{\infty}h^{k}(s)g_{j}^{k}(m+s)t^{m+\rho_{j}}$

$= \sum_{k=1}^{n}W_{j}^{k}\sum_{s=0}^{\infty}h^{k}(s)x_{j}^{k}(s;t)$ .
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The asymptotic behavior of the associated fundamental function $x_{j}^{k}(\mathcal{S};t)$ is the same
as that of $y^{k}(t)$ . We will see more detail in the next section, where we work out an
example.

\S 3. Example

In this section, we apply the Okubo-Kohno method to describe the global behavior
of solutions of Airy’s differential equation:

(3.1) $t^{2}y"+ \frac{1}{3}ty’-t^{2}y=0.$

This equation has one regular singular point at the origin, and one irregular singular
point at infinity in the complex projective line. In [K2], Kohno computes some entries
of the central connection matrix of (3.1). Here, we shall compute the remaining entries,
and furthermore, we shall determine the Stokes matrix.

To begin, we find a fundamental set of solutions of (3.1) in a punctured disc around
the regular singular point $t=0$ . These solutions have the form

(3.2) $y(t)=t^{\rho} \sum_{m=0}^{\infty}G(m)t^{m} (G(O)\neq 0)$ .

By substituting this expansion into (3.1), we obtain the linear difference equation

(3.3) $\{\begin{array}{l}(m+\rho)(m+\rho-\frac{2}{3})G(m)=G(m-2) ,G(O)\neq 0, G(r)=0 (r<0) .\end{array}$

In order for negative terms to vanish, it is necessary that $\rho$ is equal to $0$ or 2/3, and
that $G(1)=0$ . By induction, $G(2m+1)=0$ for all $m\geq 0$ . If we set $G(O)=1$ , we
obtain

(3.4) $\{\begin{array}{l}G(2m)=\frac{\Gamma(_{2}^{e})\Gamma(_{2}^{e}+\frac{2}{3})}{4^{m}\Gamma(m+_{2}+1)\Gamma(m+_{2}+\frac{2}{3})},G(2m+1)=0.\end{array}$

Consequently, the two values of $\rho$ yield a fundamental set of solutions in a punctured
disc around the regular singular point $t=0$ as follows:

(3.5) $\{\begin{array}{l}y_{1}(t)=\sum_{m=0}^{\infty}\frac{\Gamma(\frac{2}{3})}{\Gamma(m+1)\Gamma(m+\frac{2}{3})}(\frac{t}{2})^{2m}y_{2}(t)=\sum_{m=0}^{\infty}\frac{2^{2/3}\Gamma(\frac{4}{3})}{\Gamma(m+1)\Gamma(m+\frac{4}{3})}(\frac{t}{2})^{2m+2/3}\end{array}$
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By the asymptotic properties of $\Gamma$ , the first series has infinite radius of convergence, and

the second series is $t^{2/3}$ times a series with infinite radius of convergence.

We now consider solutions of (3.1) near $t=\infty$ . Because the singularity is irregular,

the solutions do not have the convergent expansions of the form (3.2). However, there

are formal power series solutions of the form

(3.6) $y(t)=e^{\lambda t}t^{\mu} \sum_{s=0}^{\infty}h(s)t^{-s} (h(O)\neq 0)$ .

In order to seek the value of the characteristic constant $\lambda$ and the characteristic exponent
$\mu$ , we follow the method in the paper [Kl]. We define $y^{(\kappa)}(t)(\kappa=0,1,2)$ to be the $\kappa th$

derivative of $y(t)$ with respect to $t$ :

$y^{(\kappa)}(t)= \frac{d^{\kappa}y(t)}{dt^{\kappa}},$

and we shall write the coefficients of the formal series $h^{\kappa}(s)$ , that is

(3.7) $y^{(\kappa)}(t)=e^{\lambda}tt^{\mu} \sum_{s=0}^{\infty}h^{\kappa}(s)t^{-s},$

with $h^{0}(s):=h(s)$ Then, we have the relation:

Lemma 3.1. From $y^{(\kappa)}(t)=(y^{(\kappa-1)}(t))’(\kappa=1,2)$ , the relation

(3.8) $h^{\kappa}(s)=\lambda h^{\kappa-1}(s)+(\mu-s+1)h^{\kappa-1}(s-1) (s=0,1, \ldots)$

holds.

Proof.
$y^{(\kappa)}(t)=(y^{(\kappa-1)}(t))’$

$\Leftrightarrow e^{\lambda}tt^{\mu}\sum_{s=0}^{\infty}h^{\kappa}(s)t^{-s}=e^{\lambda t}t^{\mu}\{\lambda\sum_{s=0}^{\infty}h^{\kappa-1}(s)t^{-s}+\sum_{s=0}^{\infty}(\mu-s)h^{\kappa-1}(s)t^{-s-1}\}$

$\Leftrightarrow\sum_{s=0}^{\infty}h^{\kappa}(s)t^{-s}=\{\lambda\sum_{s=0}^{\infty}h^{\kappa-1}(s)t^{-s}+\sum_{s=0}^{\infty}(\mu-s)h^{\kappa-1}(s)t^{-s-1}\}.$

Comparing the $co$efficients of $t^{-s}$ , we have the above formula. $\square$

We substitute (3.7) into (3.1) to find that our initial terms satisfy:

(3.9) $(\lambda^{2}-1)h(0)=0,$

(3.10) $( \lambda^{2}-1)h(1)+2\lambda(\mu+\frac{1}{6})h(O)=0.$
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and the remaining terms satisfy the following recursion for $s\geq 0$ :

$( \lambda^{2}-1)h(s+2)+2\lambda(-s-1+\mu+\frac{1}{6})h(s+1)+(s-\mu)(s-\mu+\frac{2}{3})h(s)=0.$

Because we assumed $h(O)\neq 0$ , we see from the initial term equations that $\lambda$ must
be equal to $\pm 1$ and $\mu$ must be equal to $- \frac{1}{6}$ . Then, from the recursion, we obtain the
hnear difference equation in $s$ :

$h(s)= \frac{(s-\mu-1)(s-\mu-\frac{1}{3})}{2\lambda s}h(s-1)$

Setting $h(O)=1$ , we obtain the explicit formula:

$h(s)=( \frac{1}{2\lambda})^{s}\frac{\Gamma(s-\mu)\Gamma(s-\mu+\frac{2}{3})}{\Gamma(s+1)\Gamma(-\mu)\Gamma(-\mu+\frac{2}{3})}.$

Using the two possible values of $\lambda$ , we obtain two formal solutions near $t=\infty$ :

(3.11) $\{\begin{array}{ll}y^{1}(t)=e^{t}t^{-\frac{1}{6}}\sum_{s=0}^{\infty}\frac{\Gamma(s+\frac{1}{6})\Gamma(s+\frac{5}{6})}{\Gamma(s+1)\Gamma(\frac{1}{6})\Gamma(\frac{5}{6})}(\frac{1}{2\lambda})^{s} (\lambda=1) ,y^{2}(t)=e^{-t}t^{-\frac{1}{6}}\sum_{s=0}^{\infty}\frac{\Gamma(s+\frac{1}{6})\Gamma(s+\frac{5}{6})}{\Gamma(s+1)\Gamma(\frac{1}{6})\Gamma(\frac{5}{6})}(-\frac{1}{2\lambda})^{S} (\lambda=-1) .\end{array}$

It is straightforward to see that these formal solutions diverge wildly, but they are
useful because they are in fact asymptotic expansions of holomorphic solutions in sectors
near infinity.

We shall now apply the Okubo-Kohno method.
Suppose that we are given a convergent power series solution of the form (3.2) near

$t=0$ , and suppose we have an additional expansion as a combination of holomorphic
functions $\{x(s;t) : s=0,1, \ldots\}$ as follows:

$y(t)= \sum_{s=0}^{\infty}h(s)x(s;t)$ .

The solution $y(t)$ behaves near infinity like

$y(t) \sim Te^{\lambda t}t^{\mu}\{1+O(\frac{1}{t})\} (|t|arrow\infty)$ ,

where $T$ is a Stokes multiplier. If our functions $\{x(s;t) : s=0,1, \ldots\}$ admit the
following asymptotic behavior

(3.12) $\{\begin{array}{l}x(s;t)\sim t^{\rho} (|t|arrow 0) ,x(s;t)\sim e^{\lambda t}t^{\mu-s} (|t|arrow\infty) ,\end{array}$
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we can reasonably expect them to combine to form $y$ , and satisfy convenient uniqueness
properties.

We will construct functions $\{x(s;t) : s=0,1, \ldots\}$ of the form :

(3.13) $x(s;t)=t^{\rho} \sum_{m=0}^{\infty}g(m+s)t^{m}$

that satisfy the first order non-homogeneous linear differential equations

(3.14) $tx’(s;t)=(\lambda t+\mu-s)x(s;t)+\lambda g(s-1)t^{\rho} (s=0,1, \ldots)$ ,

and the asymptotics given in (3.12). We will see that $x(s;t)$ is uniquely defined by these
properties once we have chosen $g(O)$ .

By substituting (3.13) into (3.14) and isolating powers of $t$ , we see that the coefficient
$g(m+\mathcal{S})$ satisfies the first order linear difference equation

(3.15) $(m+s+\rho-\mu)g(m+s)=\lambda g(m+s-1)$ .

This linear difference equation therefore uniquely determines $x(s;t)$ once the initial term
is specified. We set:

(3.16) $g(m+s)= \frac{\lambda^{m+s+\rho-\mu}}{\Gamma(m+s+\rho-\mu+1)}$

as a particular solution of (3.15). By quadrature, the non-homogeneous equation (3.14)
has solution given by the integral representation

(3.17) $x(s;t)= \lambda g(s-1)t^{\rho}\int_{0}^{1}\exp\{\lambda t(1-\tau)\}\tau^{s+\rho-\mu-1}d\tau.$

We therefore have our sequence of associated fundamental functions $\{x(s;t)$ : $s=$

$0,1,$ $\ldots\}$ , and they have the expected asymptotic behavior in sectors. Indeed, for arbi-
trarily small positive $\epsilon$ , and any integer $\ell$ , we have:

(3.18) $x(s;t)\sim e^{2\pi i(\rho-\mu)\ell}e^{\lambda t}t^{\mu-s}+t^{\rho}\{g(s-1)t^{-1}+g(s-2)t^{-2}+\cdots\}$

as $tarrow\infty$ in $| \arg(\lambda t)-2\pi\ell|\leq\frac{3}{2}\pi-\epsilon.$

We return to our example, where our solutions were determined by the values of
$\rho\in\{0, \frac{2}{3}\}$ and $\lambda=\pm 1$ . Here, we consider the cases where $\rho=\frac{2}{3},$ $\lambda=\pm 1$ and $\mu=-\frac{1}{6}.$

Then, the associated fundamental functions are defined by

(3.19) $(m+s+ \frac{5}{6})g_{2}^{k}(m+\mathcal{S})=\lambda_{k}g_{2}^{k}(m+s-1) (k=1,2;\lambda_{1}=1, \lambda_{2}=e^{\pi i})$ ,
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and using the explicit formula for $g_{2}^{k}(m)$ from (3.16), we have

$x_{2}^{k}(s;t)= \sum_{m=0}^{\infty}g_{2}^{k}(m+s)t^{m+\frac{2}{3}},$

(3.20)
$= \sum_{m=0}^{\infty}\frac{(\lambda_{k})^{m+s+\frac{5}{6}}}{\Gamma(m+s+\frac{11}{6})}t^{m} (k=1,2)$ .

If we write $h^{k}(s)(k=1,2)$ to denote the coefficients in the formal power series expansion
(3.11) of $y^{k}(t)$ , we may define the functions $f_{2}^{k}(m)(k=1,2)$ by

(3.21) $f_{2}^{k}(m)= \sum_{s=0}^{\infty}h^{k}(s)g_{2}^{k}(m+s) (k=1,2)$ .

Because our explicit formula for $g_{2}^{k}(m)$ from (3.16) yields a holomorphic function on
the right half $m$-plane, the same is true for $f_{2}^{k}(m)$ . Indeed, we have the asymptotic
relations:

(3.22) $f_{2}^{k}(m) \sim\frac{(\lambda_{k})^{m+\frac{5}{6}}}{\Gamma(m+\frac{11}{6})}\{1+O(\frac{1}{m})\}.$

Here the proof is omitted.

We claim that $f_{2}^{k}(m)(k=1,2)$ satisfies the same recurrence that defines $G_{2}(m)$ , but
we omit the proof. Therefore, $G_{2}(m)$ can be expressed as a linear combination of the
$f_{2}^{k}(m)(k=1,2)$ as follows :

(3.23) $G_{2}(m)=W_{2}^{1}f_{1}^{1}(m)+W_{2}^{2}f_{2}^{2}(m)$

where the $W_{2}^{k}(k=1,2)$ are, in general, periodic functions of $m$ with period 1, however,
they may be considered to be constants for integral values of $m$ . From this, we conse-
quently obtain the expansion of $y_{2}(t)$ in terms of sequences of associated fundamental
functions $\{x_{2}^{k}(s;t) : s=0,1, \ldots(k=1,2)\}$ :

(3.24) $y_{2}(t)= \sum_{m=0}^{\infty}G_{2}(m)t^{m+\frac{2}{3}}$

$=W_{2}^{1} \sum_{m=0}^{\infty}f_{2}^{1}(m)t^{m+\frac{2}{3}}+W_{2}^{2}\sum_{m=0}^{\infty}f_{2}^{2}(m)t^{m+\frac{2}{3}}$

$=W_{2}^{1} \sum_{s=0}^{\infty}h^{1}(\mathcal{S})(\sum_{m=0}^{\infty}g_{2}^{1}(m+\mathcal{S})t^{m+\frac{2}{3}})+W_{2}^{2}\sum_{s=0}^{\infty}h^{2}(s)(\sum_{m=0}^{\infty}g_{2}^{2}(m+\mathcal{S})t^{m+\frac{2}{3}})$

$=W_{2}^{1} \sum_{s=0}^{\infty}h^{1}(s)x_{2}^{1}(\mathcal{S};t)+W_{2}^{2}\sum_{s=0}^{\infty}h^{2}(s)x_{2}^{2}(s;t)$.
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We conclude that for each nonnegative integer $m,$ $f_{2}^{k}(m)(k=1,2)$ is the coefficient at-

tached to $t^{m+\frac{2}{3}}$ , when $y_{2}(t)$ is expanded as a power series. We may now use the asymp-

totic behavior (3.18) of the associated fundamental functions to analyze the asymptotic

behavior of the original solutions. We derive from (3.24)

$y_{2}(t) \sim W_{2}^{1}\sum_{m=0}^{\infty}h^{1}(s)\{e^{t}t^{-\frac{1}{6}-s}+\sum_{r=0}^{\infty}g_{2}^{1}(s-r)t^{-r}\}$

$+W_{2}^{2} \sum_{s=0}^{\infty}h^{s}(s)\{e^{-t}t^{-\frac{1}{6}-s}+\sum_{r=0}^{\infty}g_{2}^{2}(s-r)t^{-r}\}$

$\sim W_{2}^{1}y^{1}(t)+W_{2}^{2}y^{2}(t)$

$+ \sum_{r=0}^{\infty}(W_{2}^{1}f_{2}^{1}(-r)+W_{2}^{2}f_{2}^{2}(-r))t^{-r}$

$\sim W_{2}^{1}y^{1}(t)+W_{2}^{2}y^{2}(t)+\sum_{r=0}^{\infty}G_{2}(-r)t^{-r}$

$\sim W_{2}^{1}y^{1}(t)+W_{2}^{2}y^{2}(t)$

ae $tarrow\infty$ in the sector

$\hat{S}=\bigcap_{k=1}^{2}\{|\arg(\lambda_{k}t)|<\frac{3}{2}\pi\}=\{-\frac{3}{2}\pi<\arg t<\frac{\pi}{2}\}.$

Now that we have all of the necessary asymptotic information in hand, we can determine
$W_{2}^{k}(k=1,2)$ by combining the fact that $G_{j}(m)(j=1,2)$ vanishes on odd inputs with

our knowledge of the asymptotic behavior on even inputs. Explicitly, we combine (3.11)

and (3.20) to get
$f_{2}^{2}(m)=e^{\pi i(m+\frac{5}{6})}f_{2}^{1}(m)$

for all $m\geq 0$ , and from that, we apply

$0=G_{2}(2m+1)=W_{2}^{1}f_{2}^{1}(2m+1)+f_{2}^{2}(2m+1)$

$=(W_{2}^{1}-W_{2}^{2}e^{\frac{5}{6}\pi i})f_{2}^{1}(2m+1)$ .

to deduce one relation:

(3.25) $W_{2}^{1}=W_{2}^{2}e^{\frac{5}{6}\pi i}.$

For the second relation, we consider the formula:

$G_{2}(2m)=W_{2}^{1}f_{2}^{1}(2m)+W_{2}^{2}f_{2}^{2}(2m)$ .
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From (3.4) and using the asymptotic behavior of $f_{2}^{k}(2m)$ given in (3.22), we may divide
by $f_{2}^{1}(2m)$ to find that for sufficiently large $m,$

(3.26) $W_{2}^{1}+W_{2}^{2}e^{\frac{5}{6}\pi i}$

$= \frac{\Gamma(\frac{4}{3})\Gamma(2m+\frac{11}{6})}{4^{m}\Gamma(m+1)\Gamma(m+\frac{4}{3})}\{1+O(\frac{1}{m})\}$

$= \frac{\Gamma(\frac{4}{3})2^{2m+\frac{11}{6}}\Gamma(m+\frac{11}{12})\Gamma(m+\frac{17}{12})}{\sqrt{2\pi}4^{m}\Gamma(m+1)\Gamma(m+\frac{4}{3})}\{1+O(\frac{1}{m})\}$

$= \frac{\Gamma(\frac{4}{3})2^{\frac{4}{3}}}{\sqrt{2\pi}}\{1+O(\frac{1}{m})\}.$

However, $W_{2}^{1}+W_{2}^{2}e^{\frac{5}{6}\pi i}$ is constant, so the $o(1/m)$ terms vanish:

(3.27) $W_{2}^{1}+W_{2}^{2}e^{\frac{5}{6}i}= \frac{2^{\frac{4}{3}}\Gamma(\frac{4}{3})}{\sqrt{2\pi}}.$

By combining this with (3.25), we find that the connection coefficients $W_{2}^{k}(k=1,2)$

are:

$W_{2}^{1}=W_{2}^{2}e^{\frac{5}{6}\pi i}= \frac{2^{\frac{7}{6}}}{\sqrt{3}}\frac{\Gamma(\frac{5}{6})}{\Gamma(\frac{1}{3})}.$

Therefore, we obtain the connection formula:

$y_{2}(t)\sim\{\begin{array}{l}W_{2}^{2}y^{2}(t) (S_{1}:-\frac{3}{2}\pi<\arg t<-\frac{\pi}{2}) ,W_{2}^{1}y^{1}(t) (S_{2}:-\frac{\pi}{2}<\arg t<\frac{\pi}{2}) ,W_{2}^{2}e^{\frac{5}{3}\pi i}y^{2}(t)(S_{3} : \frac{\pi}{2}<\arg t<\frac{3}{2}\pi) .\end{array}$

For $y_{1}(t)$ , in [K2], Kohno employed a similar calculation to find the following connection
formula:

$y_{1}(t)\sim\{\begin{array}{l}W_{1}^{2}y^{2}(t) (S_{1}:-\frac{3}{2}\pi<\arg t<-\frac{\pi}{2}) ,W_{1}^{1}y^{1}(t) (S_{2}:-\frac{\pi}{2}<\arg t<\frac{\pi}{2}) ,W_{1}^{2}e^{\frac{\pi}{3}i}y^{2}(t)(S_{3} : \frac{\pi}{2}<\arg t<\frac{3}{2}\pi).\end{array}$

where $W_{1}^{1}=W_{1}^{2}e^{\frac{\pi}{6}i}=( \frac{1}{2})^{\frac{1}{6}}\vec{\Gamma(\frac{1}{6})}\Gamma(^{\underline{1}})$ . Even without the exact value of $W_{1}^{1}$ and $W_{1}^{2}$ , we can
compute the Stokes coefficients. For example, the analytic continuation of $Y_{S_{2}}$ from $S_{2}$

to $S_{3}$ :

$T(S_{2}:S_{3})=W^{-1}(S_{2})W(S_{3})=(\begin{array}{l}0ii1\end{array}),$
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with

$Y_{S_{2}}=(\begin{array}{l}y_{S_{2}}^{1}y_{S_{2}}^{2}\end{array}), W(S_{1})=W(S_{2})=(\begin{array}{ll}W_{1}^{1} W_{1}^{2}W_{2}^{1} W_{2}^{2}\end{array})=(\begin{array}{ll}W_{1}^{2}e^{\frac{\pi}{6}i} W_{l}^{2}W_{2}^{2}e^{\frac{5}{6}\pi i}W_{2}^{2} \end{array})$

$W(S_{3})=(\begin{array}{l}W_{1}^{2_{eW_{1}^{l}e^{\frac{\pi}{3}i}}\frac{\pi}{3}i}W_{2}^{l}e^{\frac{5}{3}\pi i}W_{2}^{2}e^{\frac{5}{3}\pi i}\end{array})=(\begin{array}{l}W_{1}^{2_{eW_{1}^{2}e^{\frac{\pi}{2}i}}\frac{\pi}{3}i}W_{2}^{2}e^{\frac{\pi}{2}i}W_{2}^{2}e^{\frac{5}{3}\pi i}\end{array})$

\S 4. Our result

In [K2], Kohno outlines a method for solving a multi-point connection problem for

a system of differential equation:

(4.1) $\frac{dX}{dt}=\{\frac{A_{0}}{t}+\frac{A_{1}}{t-1}+A_{2}\}X,$

to which one can always reduce a single differential equation:

$t^{n}(1-t)^{n} \frac{d^{n}y}{dt^{n}}=\sum_{\ell=0}^{n}(\sum_{r=0}^{2\ell}a_{\ell,r}t^{r})t^{n-\ell}(1-t)^{n-\ell}\frac{d^{n-\ell}y}{dt^{n-\ell}}$

where $A_{i}(i=0,1,2)$ are $n$ by $n$ matrices.
The method explained in [K2] is likely to be useful for solving the connection problem

for more general equations, with unknown function $y$ , of the form:

(4.2) $P_{n}(t)y^{(n)}=P_{n-1}(t)y^{(n-1)}+\cdots+P_{1}(t)y’+P_{0}(t)y,$

where

$P_{n}(t)= \prod_{j=1}^{n}(t-\lambda_{j})$

and the coefficients $P_{j}(t)(j=0,1, \ldots, n-1)$ are polynomials of degree at most $n.$

For the purpose of analyzing the multi-point connection problem, the following the-

orem is useful.

Theorem 4.1 (M.Kohno and K.Ando 2006, K.Ando 2012). The differential equa-

tion (4.2) can be reduced to the system of linear differential equations, with unknown

length $n$ vector function $X$

(4.3) $(tI-B) \frac{dX}{dt}=(A+Ct)X,$
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where I is the $n$ by $n$ identity matrix, $A$ is an $n$ by $n$ constant matrix, $C$ is an $n$ by $n$

constant lower triangular matrix, and

$B=$ diag $(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}),$ .

We can also apply this method to the more geneml reduction problem, in which $P_{n}(t)$

may have multiple roots.

Moreover, multiplying $(tI-B)^{-1}$ from the left side, we shall show that our system
can be reduced to a generalized Schlesinger system:

$\frac{dX}{dt}=(\sum_{i=1}^{q}\frac{\overline{A}_{i}}{t-\lambda_{i}}+C)X$

where $q$ is a number of regular singular points and $\overline{A}_{i}(i=1,2, \ldots, q)$ are $n$ by $n$ constant
matrices.

Proof. (K.Ando 2012) The system (4.3) can be reduced to a generahzed Schlesinger
system:

$\frac{dX}{dt}=(\sum_{i=1}^{q}\frac{\overline{A}_{i}}{t-\lambda_{i}}+C)X,$

with $\overline{A}_{i}(i=1,2, \ldots, q)$ being $n$ by $n$ constant matrices. $\square$
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