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1 Introduction
We are in a cenmry where the urbanism is in a constant expansion. The modemization and the use
of technology in urban and rural areas require more and more investments and expenses. This pro-
liferation is driving the expected value of the catastrophe to attain important sums, which makes it
nowadays very hard for an insurance company to cover these costs. For instance, a big earthquake in
Tokyo could engender a higher cost than all the capitalization of the Japanese insurance companies.
One of the solutions to this problem is the securitization of the catastrophe risk, since the financial
potential of the stock exchange is huge comparing with these loss amounts.

From their apparition in the CBOT (Chicago Board ofTreading) in 1995 the catastrophe derivatives
know an incomparable success. Hence, in the other hand the financial literacy is giving an increasing
interest to the modeling of these derivatives.

A shared point between the catastrophe products is their common underlying that is an index
representing the amount engendered by some catastrophes during a certain period of time. This
index was created to solve a moral hazard problem since the veracity of the catastrophe’s amount is
not observable from the financial statement of an insurance company A good catastrophe derivative
pricing passes inevitably by a good modeling of the loss index. Catastrophe loss indexes displays
the amount of the insurance claims that surpasses a certain amount. That is because the insurance
institutions are interested only by the large amounts (the extraordinary events) as the small ones are
covered by the reserve made for this purpose. For an example, the PCS (Property Claim Services) index
used$5 million as a floor and nowadays this floor moved to $12 million.1

The occurrence of these claims seems to follow ajump process thus some authors modeled the
index as a Poisson process like in Cox, Fairchild, and Pederson (2006)[5]. The inconvenience with
this approach is that it assigns the same size to all claims, while in reality different catastrophes in an
interval of time create gives different claim amounts thus differentjump sizes.

1 http: $//www$ . iso. $com/Products/Property-Claim-Services/Property$-Cla$im-Services-PCS-info$ -on-losses
-from-catastrophes. html
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To correct this, among Jaimungal and Wang (2006) [10] and others, Alexander (2003) [1] used a
Compound Poisson process without specifying the distribution of the sizes. Others take the jump
size to be an exponentially distributed random variable, which we will see is not appropriate to the
insurance catastrophe modeling.

Unlike other papers, we do not assume here any probability distribution for the index claims and
but will try to deduce it by using some useful statistical tools. The general methodology of this pa-
per will be as follow: we will start by introducing a simple model and try to derive its induced option
pricing formula. In a second time, we will gradually introduce some more sophisticated models con-
cluding by their induced option pricing.

2 The Loss Index: $A$ general Modeling
Let us denote by $\{L_{t};t\geq 0\}$ the Loss index process, and by $Y_{i},$ $i=1,2,\ldots$ the random variable represent-
ing the $i$-th clam amount.

As usual $(\Omega,\mathscr{F},\mathbb{P},)$ is the probability space with the statistical (real world) probability measure $\mathbb{P}.$

Also we assume a constant interest rate that we denote as $\delta.$

Following the existing PCS (Property Claim Services) index, the loss process is characterized by
two distinguished periods:

. Aloss period $[0, t_{1})$ ; where $t_{1}$ represents the first mamrity of the option, that is, for a call as an
example, at the end of this period the index’s level should be more important than the strike so
that the option would have an evenmal payoff.. $A$ development period $[t_{1}, t_{2}]$ ; since we can not assess the real amount of the sinister a period
is left for the option investor so that the index shows the exact amount of claims engendered by
the catastrophes happening between $[0, t_{1})$ . Note that only the re-estimations of the catastro-
phe sinister that happen during the Loss period is taken into account. Catastrophes that occur
between $[t_{1}, t_{2}]$ are not considered.

For simplicity, we will start by modeling the loss period.
Let the Index process have the following form:

$L_{t}=L_{0}\exp\{X_{t}\}, t\geq 0$ , (1)

where $X_{t}$ is a stochastic process (a Compound Poisson Process)satisfying the usual conditionsand
such as:

$X_{t}= \sum_{i=1}^{N_{t}}Y_{i}, t\geq 0$, (2)

where $N_{t}$ represents the number ofcatastrophes2 occurring in the interval $[0, t)$ . Hence the sum: $\sum_{i=1}^{N_{t}}Y_{i}$

represems the total amount of the claims to be hedged by the institution.
$F=\{\mathscr{F}_{t};t\geq 0\}$ symbolizes the filtration generated by the comp$0$und Poisson process $X_{t}$ and the

$\mathbb{P}$-null set of $\mathscr{F}.$

Here we are not making any assumption regarding the distribution of the claim amounts, but the
classical $i.i.d$. assumption.

2 Catastrophes are only the ones generating large sinister (extraordinary amounts).
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Some scientific evidences show that the occurrence of an earthquake opens a hole in the earth.
The opening of the hole may be done by a series of other earthquakes. This part is directly followed
by the closing of the hole process via an other set of earthquakes. If the original earthquake has a big
magnimde then the following provoked ones (the replicas) have an important probability to have also
a big magnitude.

This is to say that one big earthquake can generate many others. In the probability ofhaving many
magnimde picks (and thus amounts that aoe measurable by the index) during an interval $[t_{i}, t_{j}],$ $i\neq j$

where $t_{i}$ is the time of an earthquake manifestation.
This observation is important in the sense that statistically it allows us to use the strong law of

large numbers. As stated before the correct approach of the index should includes only the high claim
amounts.

For this purpose, the Extreme Value Theory (EVT) seems to provide a very useful set of tools that
could be exploited in our case to set our model.

A Distribution for the Index’s Amounts

In this subsection, we will try to deduct the distribution ofthe amounts that are measured by the index
starting from the sample of all the observable claims by using some statistical approaches.

This distribution differs depending on our definition of the $high$
)$/$ amount.

According to the EVT, two kinds of definitions could be used.
First, we define the extreme values during a period say $[0_{J}T]$ as the set of the maximum amounts

of each subset $[t_{i}, t_{j}],$ $0\leq t_{i}<t_{j}\leq T.$

Let $M_{n};= \max\{Y_{1,\ldots/}Y_{n}\}$ . According to the Fisher, Tippet and Gnedenko Theorem oftheBlockMax-
ima, if there exists a sequence of couples $(a_{n},b_{n}),$ $n=1,2,\ldots$ where $a_{n}>0$ and

$\lim_{narrow\infty}\mathbb{P}(\frac{M_{n}-b_{n}}{a_{n}}\leq y)=;H(y)$ ,

where $H$ is a non-degenerate cumulative dismbution function, then $H$ has a Generalized Extreme
Value (GEV) distribution which is a distribution that includes one ofthe following distributions: Weibull,

Fr\’echet, or Gumbel that is to say that the normalized maximum has only one of the distributions stated
above.

The GEV distribution has the Following form:

$H_{\zeta}(x)=\{\begin{array}{ll}\exp\{-(1+\zeta x)^{-\frac{1}{\zeta}}\} if \zeta\neq 0;\exp\{-\exp(-x)\} if \zeta=0.\end{array}$

Choice of the GEV Distribution
The skewness of the Fr\’echet distribution is given by:

$Skewness_{Fr\’{e} chet}=\{\frac{\Gamma(1-\frac{3}{\alpha})-3\Gamma(1-\frac{2}{\alpha})\Gamma(1-\frac{1}{\alpha})+2\Gamma^{2}(1-\frac{1}{\alpha})}{\infty\sqrt{\{\Gamma(1-\frac{2}{\alpha})-\Gamma^{2}(1-\frac{1}{\alpha})\}^{3}}}$

$if\alpha>3;$

otherwise,
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where $\alpha\in \mathbb{R}^{++}$ is Frechet distribution’s shape parameter. So the basicaUy the shape of the distribution
is determined depending on the value of our $\alpha$ . Thus the behavior of this distribution is not clear.
Same is for the Weibull distribution.
To remedy this, we follow this reasoning: In one hand, following Proposition 3 of Fraga Alves and
Neves (2010) [6], the skewness ofthe GEV distribution is positive for $\zeta>-2.8$ , negative for $zeta<-2.8,$
and approximately equal to 1.14 for $\zeta=0.$

In the other hand the GEV corresponds to the Frechet distribution for $\zeta>0$ , to the Weibull one in
the case where $\zeta<0$ , and finally it represents the Gumbel law when $\zeta=0.$

We deduct that the Fr\’echet distribution is right skewed. Affecting a Fr\’echet distribution to the
extreme values of earthquake claims is equivalent to suppose that the maximum amounts are too
close from the ones that appear in a regular simation. In other words this distribution is concentrated
in its small values. While in reality the catastrophes amoum happen to be unexpected, so out of the
historical data and these amount are larger than we could have in a normal situation.

By the same reasoning, the Weibull distribution assigns a large probability to the values too far
from the end of the original distribution of the claims. This seems to be unrealistic since the earth-
quake wave vanishes after a certain distance.

Contrariwise the Gumbel law offers a certain uniformity in its distribution thus to begin we will
say that the claim’s extreme values follow a Gumbel distribution.

As a reminder, the Gumbel Cumulative Distribution Function ($CDF$) and ProbabilityDensity Func-
tion (PDF) are defined consecutively as bellow:

$F_{Y}(x)= \exp[-\exp\{-(\frac{x-\mu}{\beta})\}|, -\infty<x<\infty,$

$f_{Y}(x)= \frac{1}{\beta}\exp\{-(\frac{x-\mu}{\beta})\}\exp[-\exp\{-(\frac{x-\mu}{\beta}1\}|, -\infty<x<\infty.$

Its mean ad variance are:

$E[Y]=\mu+\beta\gamma$ ;

Var $[Y]= \sigma^{2}[Y]=\frac{\pi^{2}\gamma^{2}}{6}$ .

where $\gamma=0.577\ldots$ is the Euler-Mascheroni constant.
Starting from the claims observations we can estimate the parameters of the Gumbel distribution.

The Maximum Likelihood Estimator (MLE) is discussed in Chapter 19 ofForbes, Evans, Hastings, and
Peacock (2011) [7]. The system of equations for the shape and scale parameters that is issued by
this method needs to be solved numerically. Many authors suggest instead the use of the Method of
Moments (MM) approach. The MM yields to:

$\hat{\beta}=\frac{\sqrt{6}}{\pi}\overline{\sigma}$ ;

$\hat{\mu}=\overline{Y}-\hat{\beta}\gamma,$

where $\overline{Y}$ and $\overline{\sigma}^{2}$ are sample mean and variance, respectively.
Now that we have defined the probabihty dismbution for the claims we can start investigating our

option pricing.
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3 Catastrophe Option pricing
We will start this suction by calculating the Momem generating function of the process $X_{t}$ since it
would be of an extreme necessity afterward.

Moment Generating Function of $X_{t}$

The Moment Generating Function (MGF) of $X_{t}$ is given as follows:

$M(z, t)=E[e^{zX_{t}}]$

$=E[E[e^{z\Sigma_{i=1}^{N_{t}}Y_{i}1N_{t}]}]$

$=E[\{\varphi_{Y}(z)\}^{N_{t}}]$

$= \sum_{k=0}^{\infty}\{\varphi_{Y}(z)\}^{k}\frac{(\lambda t)^{k}}{k!}e^{-\lambda t}$

$=e^{\lambda t\varphi_{Y}(z)}e^{-\lambda t}$

$= \exp[\lambda t\{\Gamma(1-\beta z)e^{\mu z}-1\}], z<\frac{1}{\beta}$, (3)

where
$\varphi_{Y}(z)=E[e^{zY}]=\Gamma(1-\beta z)e^{\mu z}, z<\frac{1}{\beta}$

where is the MGF of Gumbel random variable $Y.$

Option Pricing by Esscher Transform

Our index is composed by a series of jumps which means that the market is incomplete. Conse-
quently, there exists not only one measure for which the discounted option price is a martingale.
Accordingly the pricing of our asset is not unique. Here, for the pricing of our catastrophe option, we
propose to use the Esscher transform following Gerber and Shiu (1994) [9] in their seminal paper. For
this purpose, we suppose that there are no transaction costs and no taxes as usual. We also give the
pricing of a call option. The put option price afterward can be easily deducted by using the Call/Put

parity.

The Esscher MGF

Recall that the Esscher Moment Generating Function (MGF) is given by:

$M(z, t, h);= \frac{M(z+h,t)}{M(h,t)}$ , (4)

where we denote $M(z, t)$ as $X_{t}$ ’s MGF3.
Therefore:

$\overline{3Notice}$here that we are using the same setting as Gerber and Shiu (1994) [9] by modeling the loss as $L_{t}=L_{0}\exp\{X_{t}\}.$
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$M(z, t, h)=\exp[\lambda t\{\Gamma(1-\beta(z+h))e^{\mu(z+h)}-e^{\mu h}\Gamma(1-\beta h)\}]$

$=\exp[\lambda te^{\mu h}\{\Gamma(1-\beta(z+h))e^{\mu z}-\Gamma(1-\beta h)\}].$ (5)

The Risk Neutral Esscher Transform
According to the Fundamental Theorem ofAsset Pricing (FTAP), a no-arbitrage pricing measure $\mathbb{P}^{*}$

satisfies:

$L_{0}=E^{*}[e^{-\delta t}L_{t}] \Rightarrow L_{0}=e^{-\delta t}E^{*}[L_{0}\exp\{X_{t}\}]$

$\Rightarrow e^{\delta t}=E^{*}[\exp\{X_{t}I]$

$\Rightarrow \delta t=\ln M(1, t, h^{*})$ (6)

$\Rightarrow \delta=\ln M(1,1, h^{*})$

$\Rightarrow \delta=\lambda te^{\mu h^{*}}[\Gamma(1-\beta(1+h^{*}))\{e^{\mu}-\Gamma(1-\beta h^{*})\}]$ (7)

This equation has apparently no closed form solution for $h^{*}$ . Gerber and Shiu (1994) [9] proved
in their paper the existence and the uniqueness of the solution of our equation. We thus believe that
depending on the cases some numerical approaches can provide us a solution to this equation.

This $h^{*}$ represent the parameter for which the Esscher transform is a martingale. Notice that the
uniqueness of $h^{*}$ does not imply the uniqueness of the martingale measure. This is because the mar-
ket is highly incomplete because of the jump process, thus, there exist other martingale measures that
can induce us to a fair price. We have to think of the uniqueness of $h^{*}$ as the existence of a unique Es-
scher risk neutral transform and that other pricing methods could lead to a different pricing formulas
compared to the one we are trying to derive.

Having our martingale measure we can compute our option price. For a call option on the index
we have we have:

$C_{0}:= E^{*}[e^{-\delta t}(L_{t}-K)^{+}]=e^{-\delta t}L_{0}\int_{\psi}^{\infty}e^{X}f(x, t, h^{*})dx-\int_{\uparrow\psi}^{\infty}e^{-\delta t}Kf(x, t,h^{*})dx,$

where $K$ is the strike price, and V is issued from the argument:

$L_{t}-K>0 \Leftrightarrow L_{0}\exp\{X_{t}\}-K>0 =X_{t}>\ln(\frac{L_{0}}{K}1=:\varphi.$

Accordingly, we have

$C_{0}=L_{0}\{1-F(\uparrow\mu, t, h^{*}+1)\}-e^{-\delta t}K\{1-F(\gamma/, t, h^{*})\}$ . (8)

This expression is familiar in the sense that it resembles the famous Black and Scholes option
pricing formula (Black and Scholes (1973) [2]).

For the special case where $\betaarrow 0+,$ $\lim_{\betaarrow 0+}\Gamma(1-\beta(z+h))\approx 1$, as same as $\lim_{\betaarrow 0+}\Gamma(1-\beta z)\approx 1.$

By then,

$M(z, t, h)=\exp[\lambda te^{\mu h}\{e^{\mu z}-1\}]$ , (9)
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where the $\lambda te^{\mu h}$ part would be independent of $z$. In this case, the Esscher transform has a Poisson
distribution with an intensity $\Lambda=\lambda te^{\mu h}$ , or a Poisson process that has an intensity equal to $\Lambda=\lambda t$

multiplied by a constant $e^{\mu h}$ . Then the Esscher $CDF$ is written as:

$F( \uparrow\psi, t,h)=\frac{\Gamma(\lfloor\psi+1\rfloor,\lambda te^{\mu h})}{\lfloor\Psi\rfloor!}$, (10)

where $\Gamma(a,b)$ is the upper incomplete Gamma function.
For the general case where $\beta>0$ , the Esscher transform PDF is defined as, denoting $f(x, t)$ the $X_{t}$ ’s

PDF by:

$f(x, t,h)= \frac{e^{hx}f(x,t)}{\int_{-\infty}^{\infty}e^{hx}f(y,t)dy}=\frac{e^{hx}f(x,t)}{M(h,t)}$ (11)

Then the $CDF$ is:
$F(x, t, h)= \frac{\int_{-\infty}^{x}e^{uz}f(u,t)du}{M(h,t)}$ . (12)

Correction of the ClaimAmount

In general, in the catastrophe insurance and for the earthquake insurance especially, it is very hard-if
not impossible-to assess the exact amount of the claim caused by a catastrophe on the date of the
occurrence. This amoum is continually revised with time. The first amount is most of the time only
an approximation of the real ultimate amount.

In contradiction with Schradin (1996) [12] who supposes a re-estimation taking place only after the
development period, we follow Jaimungal and Wang (2006) [10], and Biagini, Bregman, and Meyer-
Brandis $(2008a, 2008b)[3,4]$ . Supposing that the re-estimation befall right after the catastrophe.

Unlike these authors who build their model as a convolution of a semi-martingale process and
the claim size process, we model the re-estimation as a process that do not happen only once per
catastrophe but we allow instead the claim to be re-corrected many times between two jumps.

Starting from this point the loss index is not a pure jump process but rather a jump diffusion
process. We then propose this model:

$Z_{t}=X_{t}+( \mu_{c}-\frac{1}{2}\alpha_{c})t+\alpha_{c}W_{t}, t\geq 0$; (13)

$L_{t}=L_{0}\exp\{Z_{t}\}, t\geq 0$, (14)

where $\{W_{t};t\geq 0\}$ is a,Brownian motion satisfying: $W_{t}\sim N(0, t)$ .
The correction is done through time with a mean $\mu_{c}$ and a standard deviation of $\alpha_{c}(\geq 0)$ . First, let

us compute the Moment Generating Function of the process $X_{t}$ for $z=1.$

$E[\exp\{X_{t}\}]=\exp\{\lambda t(\varphi_{Y}(1)-1)\} \Rightarrow \exp\{\lambda t\Gamma(1-\beta)e^{\mu}\}=M_{X_{t}}(1)$. (15)

Proposition 1. llhe process $\{\frac{\exp\{X_{t}\}}{M_{X_{t}}(1)};t\geq 0\}$ is a $\mathbb{P}$-martingale.

Proof. We obviously have to calculate the expectation $\frac{\exp\{X_{t}\}}{M_{X_{t}}(1)}$ of our process $X_{t}$ conditionally on $\mathscr{F}_{s}$

the filtration generated by the compound Poisson process up to time $s.$
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For $0\leq s<t$, we have:

$E[\frac{\exp\{X_{t}\}}{M_{X_{t}}(1)}|\mathscr{F}_{s}]=E[\exp\{X_{t}-\ln M_{X_{t}}(1)\}|\mathscr{F}_{s}]$

$= E[\exp\{\sum_{i=1}^{N_{t}}Y_{i}-\ln M_{X_{t}}(1)\}|\mathscr{F}_{s}|$ (16)

$E[\exp\{\sum_{i=1}^{N_{t}}Y_{i}-\ln M_{X_{t}}(1)\}|\mathscr{F}_{s}]$

$= E[\exp\{\sum_{i=1}^{N_{t}}Y_{i}-\ln M_{X_{t}}(1)-\sum_{i=1}^{N_{s}}Y_{i}+\ln M_{X_{s}}(1)\}|\mathscr{F}_{s}|\cdot E[\exp\{\sum_{i=1}^{N_{s}}Y_{i}-\ln M_{X_{s}}(1)\}|\mathscr{F}_{s}]$ (17)

$= E|\exp\{\sum_{i=N_{s}+1}^{N_{f}}Y_{i}-\ln M_{X_{t}}(1)+\ln M_{X_{S}}(1)\}|\mathscr{F}_{s}]\cdot\exp\{\sum_{i=1}^{N_{s}}Y_{i}-\ln M_{X_{S}}(1)\}$ , (18)

where the deviation from Eq. (17) to Eq. (18) is because the last part of the expression Eq. (18) is
$\mathscr{F}_{s}$-measurable.

The other part is:

$E[\exp\{\sum_{t=N_{s}+1}^{N_{f}}Y_{i}-\ln M_{X_{t}}(1)+\ln M_{X_{s}}(1)\}|\mathscr{F}_{s}]=E[\exp\{\sum_{i=N_{s}+1}^{N_{t}}Y_{i}-\lambda(s-t)(\varphi_{Y}(1)-1)\}|\mathscr{F}_{s}|$ (19)

$= E[\exp\{\sum_{i=N_{s}+1}^{N_{t}}Y_{i}\}|\mathscr{F}_{s}|\exp\{-\lambda(s-t)(\varphi_{Y}(1)-1)\}$

$\sum_{i=N_{s}+1}^{N_{t}}Y_{i}\}$ is the sum of the jumps with size $Y_{i}$ that occurs in the time interval $(s, t]$ , and because

the jumps are independent between the intervals and the only thing that matters is the length of the

interval we have that: $N_{t}-N_{s}\infty N_{t-s}$ . This leads to he fact that: $\sum_{t=N_{s}+1}^{N_{t}}Y_{i}=d\sum_{i=1}^{N_{t-s}}Y_{i}$ , So:

$E|\exp\{\sum_{i=N_{s}+1}^{N_{t}}Y_{i}\}|\mathscr{F}_{s}]\cdot\exp\{-\lambda(s-t)\{\varphi_{Y}(1)-1)\}$

$= E[\exp\{\sum_{i=1}^{N_{t-s}}Y_{i}\}]\cdot\exp\{-\lambda(s-t)(\varphi_{Y}(1)-1)\}$

$=M_{X_{t-s}}(1)\exp\{-\lambda(s-t)(\varphi_{Y}(1)-1)\}$

$=\exp\{-\lambda(t-s)(\varphi_{Y}(1)-1)\}\cdot\exp\{-\lambda(s-t)(\varphi_{Y}(1)-1)\}=1.$

Finally,

$E[\frac{e^{X_{t}}}{M_{X_{t}}(1)}|\mathscr{F}_{s}]=\exp\{\sum_{i=1}^{N_{s}}Y_{i}-\ln M_{X_{s}}(1)\}\cdot 1=\frac{e^{X_{s}}}{M_{X_{s}}(1)}, 0\leq s<t$. (20)

$\square$

Under the risk neutral probability measure $\mathbb{Q}$ the Brownian motion noted $\{W_{t}^{\mathbb{Q}};t\geq 0\}$ has the fol-
lowing form:

$W_{t}^{\mathbb{Q}}:=W_{t}+ \frac{(\mu_{c}-\delta)t-\ln M_{X_{t}}}{\alpha_{c}}, t\geq 0.$
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It follows that the Radon-Nikodym derivative process is:

$\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\ovalbox{\tt\small REJECT}_{t}}=\exp\{-\frac{1}{2}\int_{0}^{t}(\frac{\mu_{c}-\delta+\omega}{\alpha_{c}})^{2}ds-\int_{0}^{t}(\frac{\mu_{c}-\delta+\omega}{\alpha_{c}})dW_{s}\}, t\geq 0$ , (21)

where
$\omega;=\lambda\{\Gamma(1-\beta)e^{\mu}-1\}.$

Theorem3.1. The price $ofa$ catastrophe call on the loss index at $t_{i}met=0$ is given by:

$\sum_{k=0}^{\infty}E^{\mathbb{Q}}|\kappa(t,L_{0}\exp\{\ln M_{X_{t}}(1)\}\exp\{\sum_{i=0}^{k}Y_{i}\})|e^{-\lambda}\frac{(\lambda t)^{k}}{k!}$ , (22)

where

$k(t,x)=xN(d_{+}(t,x))-Ke^{-\delta t}N(d_{-}(t,x))$

$d_{\pm}(x, t)= \frac{1}{\alpha_{c}\sqrt{t}}[\ln(\frac{x}{K})+(\delta\pm\frac{\alpha^{2}}{2})t|$

Proof. Recall that, from Eqs. (13), (14), we have:

$L_{t}=L_{0} \exp\{(\mu_{c}-\frac{1}{2}\alpha_{c}^{2})t+\alpha_{c}W_{t}\}\exp\{X_{t}\},$

and
$C_{t}= E|E^{Q}\Vert L_{0}\exp\{(\mu_{c}-\frac{1}{2}\alpha_{c}^{2})t\}\exp\{\sum_{j=1}^{N_{t}}Y_{\dot{j}}\}-K)^{+}|\sigma(\exp\{\sum_{j=1}^{N_{t}}Y_{j}\}\Vert]$

In one hand, since the jump size and the diffusion process are supposed to be independent of each
other, we could separate the compound Poisson process exponent from the geometric Brownian mo-
tion to get two expectations. In the other hand, inside the second expectation (the risk neutral one)4

is $\sigma(\exp\{\sum_{j=1}^{N_{t}}Y_{j}\})$ -measurable. Hence the quantity in the first expectation is the Black and Scholes

formula for a call price (Black and Scholes (1973) [2]). Calculating the first expectation as usual for a
Poisson process, we got our final pricing formula. $\square$

This pricing formula needs to be calculated via simulation.

4 An Esscher Transform Pricing for the Claims with Correction
We proceed as same as with the firs case without continuous corrections.

$M_{Z}(z, t)=E[e^{zZ_{t}}]$

$= E|e^{zX}te^{z\alpha_{c}W}texp\{z(\mu_{c}-\frac{1}{2}\alpha_{c}^{2})t\}|$

$=M_{X}(z, t)M_{W}(z \alpha_{C/}t)\exp\{z(\mu_{c}-\frac{1}{2}\alpha_{c}^{2})t\}$

$= \exp\{\lambda t\{\Gamma(1-\beta z)e^{\mu z}-1\}+\mu_{c}tz+\frac{1}{2}\sigma^{2}z^{2}\}$

$\overline{4}$We used the $\mathbb{P}$-measure expectation here as the intensity does not change in the risk neutral world according to
Merton (1976) [11]
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Thus:

$M(z, t, h)= \exp\{\lambda te^{\mu h}\{\Gamma(1-\beta(z+h))e^{\mu z}-\Gamma(1-\beta h)\}+(\alpha_{c}h-\mu_{c})tz+\frac{1}{2}\alpha_{c}^{2}t^{2}z^{2}\},$

we then find that:

$M(1,1,h^{*})= \delta=\exp\{\lambda e^{\mu h^{*}}\{\Gamma(1-\beta(1+h^{*}))e^{\mu}-r(1-\beta h^{*})\}+(\alpha_{c}h^{*}-\mu_{c})+\frac{1}{2}\alpha_{c}^{2}\}$

extracting $h^{*}$ and replacing it in the formula will give us our option price.

5 Pricing in the Development Period
During the development period we assist only to the correction of the claims. The index on which
our option is based, by convention, do not take into consideration the new jumps even if a catastro-
phe may happen during this period. Thus, it tums out that the loss index become a pure geometric
Brownian motion during the development interval. We can then, rewrite our loss index ass follow:. For the simple case (without corrections in the loss period):

$L_{t}=L_{0}e^{X_{t}^{*}}, t\geq 0$ , (23)

$X_{t}^{*}=1_{\{t\leq T_{1}\}} \sum_{i=1}^{N_{t}}Y_{i}+0_{\{t>T_{1}\}}(\mu_{c}-\frac{1}{2}\alpha_{c}^{2})t+\alpha_{c}W_{t}, t\geq 0$. (24)

For the case with corrections:

$Z_{t}^{*}= T_{\{t\leq T_{1}\}}\sum_{i=1}^{N_{t}}Y_{i}+(\mu_{c}-\frac{1}{2}\alpha_{c}^{2})t+\alpha_{c}W_{t}, t\geq 0$ . (25)

Observe that, in this case, the Brownian motion is present with a probability equal to 1 a.s.

The pricing of the option during this period leads to the same results for the two models, since,
during this interval, these two models are equal and are represented by a geometric Brownian motion
only.

Pricing Formula for the Development Period
Using the Esscher Transform Method, $\mathcal{W}e$ have the following result:

$M(z, t,h)= \exp\{(\mu_{c}+h\alpha^{2}z+\frac{1}{2}\alpha_{c}^{2}z^{2})t\}, t\geq 0$ . (26)

The transformed process is then normally distributed and our new $h^{*}$ and call option price are:
$\delta-\alpha_{c}^{2}-\mu_{c}\underline{1}$

$h^{*}= \frac{2}{\alpha_{c}^{2}}$ ; (27)

$C_{0}=L_{t_{1}} \varphi(\frac{-\varphi+(\delta+\frac{1}{2}\alpha_{c}^{2})\tau}{\alpha_{c}\sqrt{\tau}})-e^{-\delta\tau}K\varphi(\frac{-\uparrow l’+(\delta-\frac{1}{2}\alpha^{2})\tau}{\alpha\sqrt{\tau}}1\prime$ (28)
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where $\tau:=t-T_{1}$ for $t>T_{1}.$

This pricing formula is nothing else then the Black and Scholes formula for a call option (Black

and Scholes (1973) [2] $)$ . Obviously, using the martingale approach will lead to the sane result5.
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