
Freeware, Shareware, and Open-Source
Mathematical Software Tools: a Feasible

Alternative to Commercial Symbolic
Packages for Mathematics Education

Andr\’es Iglesias1’2
lDepartment of Applied Mathematics and Comp. Sciences

University of Cantabria, Avda. de los Castros
s/n, E-39005, Santander, Spain

2Department of Information Science
Faculty of Sciences, Toho University

2-2-1 Miyama, 274-8510, Funabashi, Japan
E-mail: iglesias@unican.es

Web site: http: //personales. unican. es/iglesias

(This paper is specially devoted to my longtime dear fnend Professor Setsuo Takato, who
is now writing beautiful lines in a new chapter of his book of life. Best wishes for this
new stage of hrs life to be also bnzlliant, exciting and successful. Thanks for allowing me
to become part of your life. Doomo $arigatoo!//$)

Abstract

This paper corresponds to the printed form of an invited talk the author deliv-
ered in a RIMS workshop held at Kyoto University in August 2012. The main core
of the presentation was about the new challenges we face as educators of Mathe-
matics subjects at University level and how to solve them. To this aim, the talk
proposed an int\‘ensive use of freeware (mostly symbolic) computational tools, as a
way to overcome both instructional and economical issues. During the talk, it was
emphasized that current freeware symbolic tools are powerful enough to represent
a feasible, reliable altemative to costly commercial symbolic packages. The talk
als 0 explores the reasons behind the blossoming of this new freeware solutions for
mathematical computation.

1 Introduction
On August $22nd$. 2012, the author was kindly invited to deliver a talk at the “RIMS
Workshop on Mathematical Soflware and Education: Study on Effective Use of Mathe-
matical Software”, held at the Research Institute for Mathematical Sciences (RIMS) of

数理解析研究所講究録
第 1865巻 2013年 204-214 204

Kyoto University, Kyoto, Japan (http: $//www$. kurims. kyot $0-u$. ac. jp/en/index. html).
The primary goal of this workshop was to analyze the interplay between mathematical
software (mostly CAS, computer algebra systems) and education regarding the effective
use of mathematical software in order to improve the educational level and bring out the
best of the students at all educational steps.

We are indeed facing a new era in which our students have to meet the new challenges
of an increasingly technological world. In this regard, it is clear that old approaches to
education are no longer applicable and hence, new educational paradigms must be envi-
sioned and implemented. This challenge is specially important in very difficult subjects
such as Mathematics and other scientific disciplines, which typically suffer from high fail-
ure rates. Several academic reports have pointed out the difficulties our students face
when studying (and suffering) mathematical subjects. Students and professors at univer-
sity often cite lack of preparation from high school, poor study habits and the rapid pace
of the course as reasons for such low scores, but it is clear that there are many reasons
to explain why this problem arises recurrently everywhere.

Another issue is to recognize the profile of our current students, as they are quite
different to those of previous decades. In general, they are less skilled than their coun-
terparts in the last decades in deduction, mathematical intuition and scientific reasoning
and encounter more problems in solving questions with scientific content. Their back-
ground is also less solid in both science and arts. Furthermore, they also have less oral
and written communication skills, with a much limited vocabulary and hence find some
troubles for a full comprehension of concepts and ideas. Very often, they lack discipline
and exhibit poor study habits such as poor note-taking skills, poor time management,
last minute work, procrastination, over-reliance on classmates and$/or$ Internet and so on.
On the positive side, most current students come to college and university with greater
computer proficiency and technology skills than their predecessors. Technology is nat-
ural to them as they got accustomed to use it from their childhood. Today’s students’
equipment is by far the most complete and varied we have ever seen: modern connectiv-
ity devices such as last generation smartphones, powerful laptops, USB memory cards,
webcam, MP3 player, memory sticks, digital camera and smart cards. Very often also
Internet connection at home, a desktop computer, videogame consoles, wide flat screens,
videotape players and recorders, cable and/or satellite TV , and videocamera. Some stu-
dents also have GPS, beam proyector, Blue-ray player/recorder, car navigator and other
sophisticated electronic devices. They are familiar with terms such as pixel, texturing,
RGB color palette, and technologies such as remote control, Internet surfing, DVI and
HDMI connectors and many more. Much better, they are not only accustomed to technol-
ogy but also they know how to use it efficiently. Therefore, proper use of computer tools
and other technology turns out to be more than appropriate to promote their background
to an upper level [2, 3].

1.1 The role of educational materials
In our opinion, part of the solution must come from a good collection of supporting
materials, of which computer software is undoubtely a primary resource. Mathematics
is very much practice-based. Students may grasp a concept in the classroom, but they
will certainly lose it if not reinforced by homework. For doing so, students need to be

205

provided with good supporting materials so that they can effectively learn by themselves.
High-quality, helpful educational materials allow underachieving students catching up on
belated assignments and get extra time for successful backtracking. It is at this point
where Computer Algebra Systems (CAS onwards) can really pave the way, making the
most with less. In author’s opinion, CAS are very powerful tools (arguably the best ones)
to face the challenges of this new approach to Higher Education.

Fortunately, there is a wealth of computational software coming in our help. Among
them, the symbolic computational programs have already proved to be very effective tools
in order to improve the general performance of our students both at the classroom and
for homework. There is a limiting factor, however, in this educational approach. The
most popular symbolic tools so far are commercial software and, in general, tend to be
costly for standard students. In fact, we have witnessed a big rise in the cost of this
symbolic software. Even although the companies developing this kind of software have
tried to create special client license programs in order to increase their customer base
and allow more people to access their programs, it is clear that economical issues have
become increasingly important.

As a consequence, both individual users and academic institutions are nowadays strug-
gling to satisfy the increasing rates of prices for commercial mathematical software. In
addition, the companies have generally fail to involve users in the process of updating
their products. It is a typical complaint from many users that the new versions of very
popular commercial programs are sometimes quite different than previous versions, very
often involving substantial changes in the syntax and structures of the programming lan-
guage, core of commands, graphical capabilities, and the like. This clearly affects users’
performance by increasing the time to get familiar with the new version and, therefore,
lowering their learning curve. While it is clear that the primary goal is to improve the
product and provide users with a better “user expenence”, it oftell happens that eco-
nomical motivations are also part of the equation. In a contradictory movement, some
companies have established the tradition to launch versions of their software according to
a prescribed schedule, even if they have little (or nothing) of interest to offer at that time.
Both undesirable situations may coexist in such a way that some versions are completely
irrelevant while others are too different. A classical example of the former is given by
the Premium licenses that usually provide access to the new updates of the product for
either a limited number of versions or a limited time. The disappointment comes when
you discover that the new version provided by the Premium service license is basically
the same you bought at the time of applying for that service, with no relevant features
at all. By Murphy’s law, you have probably to wait until the new version (not covered
by the Premium service) to really find a major update of the program.

As a summary, users of commercial mathematical software are facing great challenges
in both computational and economical terms. The former is hard (if not impossible) to
be solved, since it relies completely on the software developers side. Typically, software
companies are reluctant to give up part of their business to their customers and prefer to
have full control of their products. While many software developers hear their customers
and try to incorporate their suggestions into the new versions of their products, users play
a very limited role (if any) into the strategic decisions of the company. The economical
issue has also been a very limiting factor for years. Mathematical software can be very
expensive. One can argue that these systems are usually very powerful, easy to use,

206

are equipped with a nice graphical user interface and good graphical capabilities, are
very flexible and come with a nice documentation and support. But still, they are very
expensive, that’s the bottom line.

A new actor in this scenario is the appearance and growth of a new generation of pow-
erful freeware mathematical programs able to compete on an equal basis with commercial
solutions. The fact that they are provided for free does not mean they are less powerful
than their commercial counterparts. Besides, they are not subjected to the typical con-
straints that proprietary systems have; depending on the kind of license they have, these
programs can usually be freely downloaded, installed, modified and$/or$ distributed. Fur-
thermore, most of these programs are created by communities of users, thus allowing end
users to participate actively in the new versions of such programs. This open architecture
has many obvious advantages for users far beyond the economical considerations. In most
cases, the source code can be freely accessed and modified, so that users can effectively
adapt the software to their particular needs. In other cases, a powerful programming
language is provided, so that individual users can create their own functions and libraries
in a transparent way. This means that these new functions and libraries are treated by
the system as native libraries, and then, they can be invoked basically at will provided
that they respect the programming guidelines and syntax of the underlying programming
language.

In this paper we explore some aspects of this on-going process currently happening
within the mathematical community as a results of this shift from commercial to freeware
mathematical software. In particular, next section discusses some issues related to this
new approach, such as the kind of licenses available and their implications for further
use. We also provide pointers to some open-source and freeware tools and middleware
available to handle a variety of tasks regarding mathematical education.

2 $Eree/$Share$/Open$-Source Software

2.1 Clarifying the terms
A very important issue is to distinguish clearly among what is freeware, free software,
open-source software and shareware. Although there is a common misconception por-
trayed in many web sites and media about these terms being synonymous, they actu-
ally refer to qualitatively different legal scenarios. The importance of this question for
end-users and companies becomes clear as soon as you want to distribute your digital
creations: being unaware about which kind of legal situation the software you use is
might potentially lead to legal liability for using such software without the required per-
missions (licenses). To make things tougher, there is not an unanimous opinion about
the right meaning of those terms and their legal implications, so users should always
read the corresponding license agreements as they are the only reliable source when it
comes to legal rights and obligations. As such, the description of terms below is mostly
based on commonly accepted practices within relevant software communities rather than
well-established “official” definitions themselves.

By freeware we refer to computer software available for use at no cost or for an optional
fee. Typically, freeware is fully functional and offered for an unlimited time, although
some restrictions might apply. Of course, this concept can also include proprietary soft-

207

ware provided that it is offered for free. In this sense, freeware is used to refer to software
which is simply free-of-charge, with no other implications behind. Therefore, it must not
be confused with free software, the later meaning that it can be used, studied, and modi-
fied without restriction. Although proprietary software companies typically use the term
(free software” to refer to price, free software is actually a matter of freedom , not price.
In words of Richard Stallman in the famous “The Free Software Definition” document
[8] released by the Free Software Foundation (FSF), an organization that advocates for
free software [7], to understand the concept, one should “think of free as in free speech,
not as in free beer”.

By open-source software we mean computer software that is available in source code
form. Usually, such source code and certain other rights normally reserved for copyright
holders are provided under a software license that allows users to study, change, and
improve the software. According to this concept, freeware may or may not be open-
source, depending on whether or not the source code is also provided. Similarly, free
software may or may not be open-source software, depending on the rights provided
regarding the re-use of such software and subsequent distributions. This is, however,
a matter of discussion. For the Free Software Foundation, free software is computer
software liberally licensed to grant the right of users to use, study, change, and improve
its design through the availability of its source code. From this standpoint, all licenses
qualified as free software are also considered open-source licenses, but this criterion is not
unanimously acknowledged.

Open-source licenses often meet (but not necessarily) the requirements of the Open
Source Definition [10], used by the Open Source Initiative (OSI) [9] to determine whether
a software license can be considered open-source. Such definition does not match exactly
that of free software issued by the FSF. However, differences between both terms are very
small, so in practice they basically refer to the same software licenses, with a few minor
exceptions. According to FSF [6]: “However, the differences in extension of the category
are small: nearly all free software is open source, and nearly all open source software is
free. ”

Another related term is shareware. By it we refer to proprietary software that is
provided to users for free on a trial basis only. Usually, shareware is freely provided
for a limited period of time in order to offer potential customers the opportunity to use
the program thus determining its usefulness and potential advantages over competitors
before taking a decision about buying a license. Often shareware is also labeled as “free
trial” or “trial version” to stress that meaning. In other cases, the software is offered
with some limitations on functionality, such as import/export or save options and the
like. Such missing functionalities can be fully activated after purchasing a license. For
instance, in videogames, shareware has been traditionally used as a mean to distribute
games developed by small-sized companies that do not have access to major distribution
channels for their products. In general, shareware games are different than game demos
in the sense that the former are much less limited in terms of playtime and number of
levels. It is not uncommon that shareware games include the full game, while additional
content, assets, extras and other functionalities are only provided with the commercial
license.

208

2.2 Software licenses
As pointed out in previous section, software can be classified according to the rights
granted to end-users: availability of software at no cost, access to the source code, possi-
bility of modifying it and distributing it and so on. All those rights are specified in the
corresponding software licenses, which can be categorized in a nutshell as proprietary li-
censes and non-proprietary licenses. In proprietary licenses, the software publisher grants
a license to use one or several copies of the software but maintains the ownership of such
software so as all rights are retained by the software publisher unless otherwise specified.
As a consequence, the user must necessarily accept all terms of the license in order to use
the software. Typically, those terms include an extensive list of activities that users are
not allowed to perform with the software, such as reverse engineering, any modification
of the software, its distribution to third parties and many others.

On the contrary, in non-proprietary licenses the ownership of the copy of the software
does not longer remain with the software publisher, but the end-user (different than the
ownership of the copyright, that still belongs to the software publisher). As a consequence,
end-user can actually use the software without accepting the license. Such acceptance
is optional but it is required if end-user also wants to access to other rights such as the
modification or distribution rights. At its turn, non-proprietary licenses can be essentially
of two different types: copylefted or permissive. The main difference between them is
that copylefted licenses state that when modified versions of such software are distributed,
they must be distributed under the same terms as the original software. In particular,
all improvements or modifications to copylefted software must also be distributed as free
software. In other words, modified versions of software with copyleft come also with
copyleft. This is sometimes referred to as “share and share alike” or “quid pro quo” The
ultimate goal of copyleft is to preserve the freedom and openness of the software itself. A

typical example of copyleft is the GNU General Public License [11] (GPL onwards). Under
it, end-users can redistribute, reverse engineer, or otherwise modify the software, but all
any modifications made and redistributed must include the source code, and the end-
user is not allowed to modify the copylefted license for such new software. Additionally,
if GPL code is used but not shared or sold, the code is not required to be made available
and any changes may remain private. This permits developers and organizations to use
and modify GPL code for private purposes without being required to make their changes
available to the public.

In opposition, permissive licenses aim to give users total freedom on that software,
so users can do basically anything they want with the source code, including the right
to use it as a part of software released under a proprietary license. For instance, GPL
requires any derivative work that is distributed to be released according to the GPL
while permissive licenses, such as Berkeley Software Distribution (BSD), MIT License or
University of Illinois/NCSA Open Source License do not; they only require to acknowledge
the original authors. As such, permissive licenses are more free than the copylefted ones.
In fact, code licensed under a permissive free software license (BSD for instance) can be
incorporated into copylefted projects (for example, GPL). The new code emanating from
this process becomes GPL compatible. However, the opposite is not true: GPL licensed
code cannot be distributed under the BSD license without the previous consent from
copyright holders. To summarize, copyleft and permissive licenses are compatible, but
their combination can onIy be distributed under the terms of the copyleft license, not the

209

permissive license.
A halfway between copyleft and permissive licenses is given by the GNU Lesser Gen-

eral Public license (LGPL) [12]. Under LGPL, copyleft restrictions apply to the program
itself but they do not to other software that merely links with the program. This license
is mostly used for software libraries, since LGPL libraries can be used by a non-LGPL
licensed program (in fact, even by a non-GPL licensed program). A famous example of
LPGL application is OpenOffice.

A very interesting situation is that of multiple licenses, where software is distributed
under two or more different sets of terms and conditions so that end-users can choose
which terms they want to use in order to further distribute the software. A typical
example are some Mozilla products (such as Firefox web browser and Thunderbird e-mail
client), which are actually tri-licensed, since in addition to the LGPL license, they are
also GPL and MPL licensed. That MPL (Mozilla Public License) is a weak copyleft
version (source code copied or changed under the MPL must stay under the MPL, but
code under the MPL may be combined with proprietary files in one program) approved
as a open-source license and a free software license by OSI and FSF respectively.

3 Some Freeware Mathematical Tools
This section provides a comprehensive (although not exhaustive) collection of open-source
and freeware mathematical tools and middleware available to handle different tasks re-
garding the interplay between mathematics and education. Table 1 summarizes all this
information. The table is exclusively devoted to non-proprietary software; therefore, the
readers will notice that commercial CAS are not reported here. The table lists, in rows,
the different computer programs along with the corresponding website, the platforms on
which the program is available and, finally, the type of tasks the program is intended for.
All these items are reported in columns for each individual program.

It was the intenti\’on of the author to report the license information of the different
computer packages included in this section. However, this plan collided with the difficulty
of the task. Most program licenses have varied greatly over the time, making them difficult
to track. Other programs have multiple licenses, depending on several factors, such as the
owners, platforms, developer teams and so on. At a certain point, it became clear that
providing this information might be useless, since it could potentially become obsolete at
the time of reading. So, instead, the reader is kindly advised to check the corresponding
website for an up-to-date information regarding the legal issues of the program license
and the different options available.

4 Conclusions and Further Remarks
The main conclusion we can derive from the phenomenon of freeware mathematical soft-
ware is the wide availability of powerful tools to accomplish $virtually\cdot any$ task in a way
that compares well with commercial software in almost every respect. But, as impor-
tant as this aspect is, there is also another consideration that deserves full attention.
Through the evolution of mathematical software, a repetitive topic has been the con-
frontation between (apparently) opposite ends. This problem has appeared recurrently

210

Table 1: Freeware Mathematical Tools

211

Table 1 (cont’d)

212

Table 1 (cont’d)

in computer science (just think about the illustrative examples of Microsoft’s Windows
vs. Apple’s Mac OSX , purists vs. free-spirit coders, or proprietary vs. open source
programs) and the mathematical software is certainly not an exception. Remarkable,
well-documented examples are the typical “scientific fights” between Mathematica and
Maple followers, between users of numerical and symbolic tools, or between freeware and
commercial software.

In opinion of the author this way of thinking (the requirement to choose just one
among a myriad of alternative options, much like in a “with me or against me” approach)
reflects our natural tendency as human beings to grouping, but it is not very intelligent
after all. All previous experience shows us that the best and most effective approach
to an efficient use of mathematical software in education is to load all this stuff in our
backpack and move on. Why not opening our minds and take the best out of all scientific
progmms in a coopemtive and complementary way?

Acknowledgements
This paper is the printed version of an invited talk delivered by the author at RIMS
(Research Institute for Mathematical Sciences) workshop during the RIMS Workshop on
Mathematical Software and Education: Study on Effective Use of Mathematical Software,
Kyoto University (Japan), on August $22nd$. 2012. The author would like to thank the
organizers of this exciting RIMS workshop for their diligent work and kind invitation.
Special thanks are owed to Prof. Nakamura (Nagoya University) for his patience and
support regarding the writing of this paper.

This research has been kindly supported by the Computer Science National Program
of the Spanish Ministry of Economy and Competitiveness, Project Ref. #TIN2012-30768,
Toho University (Funabashi, Japan), and the University of Cantabria (Santander, Spain).

213

References
[1] Iglesias, A., G\’alvez, A.: Effective BD-binding edutainment approach for powering

students’ engagement at University through videogames and VR technology. In: In-
ternational Conference on Convergence Information Technology-ICCIT’2008-Busan
(Korea). IEEE Computer Society Press, (2008) 307-314.

[2] Iglesias, A., Ipanaqu\’e, R.: Using computer algebra systems to achieve Bologna’s
Declaration educational goals. A case study: symbolic proof of limits of functions.
Intemational Joumal of Computer Science and Software Technology, 2(1) (2009) 35-
42.

[3] Iglesias, A.: Facing the challenges of the new European Space of Higher Educa-
tion through effective use of computer algebra systems as an educational tool. RIMS
Kokyuroku Journal Series, 1624 (2009) 114-128.

[4] Iglesias, A.: Computer Technologies for XXI Century Education: A New Way to
Communicate and Learn.at the University of Cantabria. RIMS Kokyuroku Journal
Senes, 1674 (2010) 53-67.

[5] Iglesias, A.: Combining Functional Equations and Computer Algebra Systems with
Regard to XXI Century Mathematics Education. RIMS Kokyuroku Joumal Senes,
1735 (2011) 213-223.

[6] The Free Software Foundation: $http.\cdot//www$. gnu. org/philosophy/categories. html

[7] The Free Software Foundation Web site: $http://www.fsf.org/$

[8] The Free Software Definition: $http.\cdot//www$. gnu. org/philosophy/free-sw.html

[9] The Open Source Initiative Web site: http://opensource. $org/$

[10] The Open Source Definition: $http.\cdot//$opensource. org/docs/osd

[11] The GNU General Public License v3.0: $http://www$. gnu. org/licenses/gpl-3.0. txt

[12] The GNU Lesser General Public License: $http://www$. gnu. org/copylefl/lesser. html

214

