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1 Introduction
The notion of link-homotopy, introduced by Milnor [12], gives rise to an equivalence

relation on oriented and ordered links in $S^{3}$ . Two links are said to be link-homotopic if
they are related to each other by a finite sequence of ambient isotopies and self-crossing
changes, keeping the orientation and ordering. Here, a self-crossing change is a homotopy
for a single component of a link depicted in Figure 1, supported in a small ball whose
intersection with the component consists of two segments. The classification problem of
links up to link-homotopy is already solved by Habegger and Lin [5] completely. They
gave an algorithm which determines whether given links arc link-homotopic or not. On
the other hand, a table consisting of all representatives of link-homotopy classes is still
not known other than partial ones given by Milnor $[$ 12, $13]$ for links with 3 or fewer
components and by Levine [10] for links with 4 components. The conlparison algorithm
never gives us a complete table. To obtain such a table, we should require link-homotopy
invariants. Indeed, both of Milnor and Levine utilized numerical invariants to obt ain the
tables.

$\frac{{}_{\lrcorner}Self-crossingchangec}{\backslash r}$

Figure 1:

A quandle, introduced by Joyce [9], is an algebraic system consisting of a set together
with a binary operation whose definition is strongly motivated in knot theory. Joyce
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defined the knot quandle of a link so that knot quandles are isomorphic if associated
links are ambient isotopic to each other. Furthermore, Carter et al. [1, 2] introduced
homology of a quandle and showed that we have the fundamental classes in the second
quandle homology group of a knot quandle being invariant under ambient isotopy. Each
homomorphism from a knot quandle to a quandle induces a homomorphism from the
second quandle homology group of the knot quandle to that of the quandle, as usual.
Thus the multi-set consisting of the values obtained by evaluating the images of the
fundamental classes by all these induced homomorphisms with a 2-cocycle of the quandle
is invariant under ambient isotopy. We call this multi-set a quandle cocycle invariant.

Although knot quandles are not invariant under link-homotopy, Hughes [6] showed that
their quotients, called reduced knot quandles, are invariant under link-homotopy. The
author [7] showed that, if we modify the definition of quandle homology slightly, then we
still have the fundamental classes in the second quandle homology group of a reduced knot
quandle being invariant under link-homotopy. We thus have a quandle cocycle invariant
which is invariant under link-homotopy.

The latent ability of quandle cocycle invariants for classifying links up to link-homotopy
essentially depends on the power of reduced knot quandles and their fundamental classes
for classifying links. The author conjectures that a pair of a reduced knot quandle and
its fundamental classes is a complete link-homotopy invariant (Conjecture 4.1). In this
paper, we show that this conjecture is true under some conditions (Theorem 4.2).

Throughout this paper, links are assumed to be oriented, ordered and in $S^{3}.$
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2 Quandle cocycle invariant for ambient isotopy

In this section, we review a quandle cocycle invariant for ambient isotopy briefly.
A quandle is a non-empty set $X$ equipped with a binary operation $*:X\cross Xarrow X$

satisfying the following three axioms:

(Ql) For each $x\in X,$ $x*x=x.$

(Q2) For each $x\in X$ , a $map*x:Xarrow X(w\mapsto w*x)$ is bijective.

(Q3) For each $x,$ $y,$ $z\in X,$ $(x*y)*z=(x*z)*(y*z)$ .

The notion of a homomorphism between quandles is appropriately defined. We will write

the image $(*y)^{\epsilon}(x)$ as $x*^{\epsilon}y$ for any $x,$ $y\in X$ and $\epsilon\in\{\pm 1\}.$
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Associated with a link $L$ , we have a quandle as follows. Let $N$ be a subspace of $\mathbb{C}$ which
is the union of the closed unit disk $D$ and a segment $\{z\in \mathbb{C}|1\leq z\leq 5\}$ . Assume that
$D$ is oriented counterclockwise. $A$ noose of $L$ is a continuous map $v:Narrow S^{3}$ satisfying
the following conditions:

$\bullet$ The map $v$ sends $5\in N$ to a fixed base point $p\in S^{3}\backslash L.$

$\bullet$ The restriction map $v|_{D}:Darrow S^{3}$ is an embedding.
$\bullet$ The link $L$ intersects with ${\rm Im} v$ transversally only at $v(O)$ .
$\bullet$ The intersection number between $L$ and ${\rm Im} v|_{D}$ is $+1.$

The left-hand side of Figure 2 depicts an image of a noose $v$ . We define a product $*$ of
two nooses $\mu$ and $\nu$ by

$(\mu*v)(z)=\{\begin{array}{ll}\mu(z) if |z|\leq 1,\mu(4z-3) if 1\leq z\leq 2,v(13-4z) if 2\leq z\leq 3,v(\exp(2(z-3)\pi i)) if 3\leq z\leq 4,v(4z-15) if 4\leq z\leq 5.\end{array}$

The right-hand side of Figure 2 shows what happens if we take this product. Let $Q(L)$

be the set consisting of all homotopy classes of nooses of $L$ . The product $*$ of nooses
is obviously well-defined on $Q(L)$ and satisfies the axioms of a quandle. We call this
quandle $Q(L)$ with $*$ the knot quandle of $L$ . By definition, a knot quandle is obviously
invariant under ambient isotopy. Thus the set consisting of all homomorphisms from a
knot quandle to a quandle gives rise to an invariant of links. Especially, the cardinality
of the set is a numerical invariant.

Figure 2:

For a quandle $X$ , consider the free abelian group $C_{n}^{R}(X)$ generated by all $n$-tuples
$(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ for each $n\geq 1$ . We let $C_{0}^{R}(X)=\mathbb{Z}$ . Define a map $\partial_{n}$ : $C_{n}^{R}(X)arrow$
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$C_{n-1}^{R}(X)$ by

$\partial_{n}(x_{1}, x_{2}, \ldots, x_{n})=\sum_{i=2}^{n}(-1)^{i}\{(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n})$

$-(x_{1}*x_{i}, \ldots, x_{i-1}*x_{i}, x_{i+1}, \ldots, x_{n})\}$

for $n\geq 2$ , and $\partial_{1}=0$ . Then we have $\partial_{n-1}\circ\partial_{n}=0$ . Thus $(C_{n}^{R}(X), \partial_{n})$ is a chain complex.
Let $C_{n}^{D}(X)$ be a subgroup of $C_{n}^{R}(X)$ generated by $n$-tuples $(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ with
$x_{i}=x_{i+1}$ for some $i$ if $n\geq 2$ , and let $C_{n}^{D}(X)=0$ otherwise. It is routine to check
that $\partial_{n}(C_{n}^{D}(X))\subset C_{n-1}^{D}(X)$ . Therefore, putting $C_{n}^{Q}(X)=C_{n}^{R}(X)/C_{n}^{D}(X)$ , we have a
chain complex $(C_{n}^{Q}(X), \partial_{n})$ . Let $G$ be an abelian group. The n-th quandle homology
group $H_{n}^{Q}(X;G)$ with coefficients in $G$ is the n-th homology group of the chain complex
$(C_{n}^{Q}(X)\otimes G, \partial_{n}\otimes id)$ . The n-th quandle cohomology group $H_{Q}^{n}(X;G)$ with coefficients in
$G$ is the n-th cohomology group of the cochain complex $(Hom(C_{n}^{Q}(X), G), Hom(\partial_{n}, id))$ .
We will use the symbol $[\cdot]$ to denote a class of quandle homology or cohomology.

Let $L$ be a link and $D$ its diagram. To arcs $\alpha,$
$\beta,$

$\ldots$ of $D$ , we assign elements $a,$ $b,$
$\ldots$

of the knot quandle $Q(L)$ respectively in the same manner as Wirtinger generators. For
the i-th component of $L$ , consider an element $W_{i}= \sum\epsilon\cdot(a, b)\in C_{2}^{Q}(Q(L))$ , where
the sum runs over the crossings of $D$ which consist of under arcs $\alpha$ and $\gamma$ belonging to
the i-th component and an over arc $\beta$ (see Figure 3), and $\epsilon$ is 1 or $-1$ depending on
whether the crossing is positive or negative respectively. Then, by construction, $W_{i}$ is a
2-cycle. Suppose $D’$ is a diagram of $L$ obtained from $D$ by a single Reidemeister move and
$W_{i}’\in C_{2}^{Q}(Q(L))$ the 2-cycle derived from $D’$ . The axioms of a quandle ensure that the
difference $W_{i}’-W_{i}$ is in the second boundary group $B_{2}^{Q}(Q(L))$ (see [1, 2]). Thus the class
$[W_{i}]\in H_{2}^{Q}(Q(L))$ does not depend on the choice of $D$ , i.e., it is invariant under ambient
isotopy. We call this class the fundamental class of the knot quandle $Q(L)$ derived from
the i-th component, and denote it by $[K_{i}]\in H_{2}^{Q}(Q(L))$ .

i-th $\underline{\alpha}\downarrow^{\beta}\underline{\gamma}$

Figure 3:

Let $X$ be a quandle, $G$ an abelian group and $\theta\in Hom(C_{2}^{Q}(X), G)$ a 2-cocycle. For an
$n$-component link $L$ , consider the multi-set consisting of $n$-tuples

$(\langle[\theta]|f|[K_{1}]\rangle, \langle[\theta]|f|[K_{2}]\rangle, \ldots, \langle[\theta]|f|[K_{n}]\rangle)\in G^{n}$
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derived from all homomorphisms $f$ : $Q(L)arrow X$ , where $\langle[\theta]|f|[K_{i}]\rangle\in G$ denotes the
value obtained by evaluating the image of $[K_{i}]\in H_{2}^{Q}(Q(L))$ by the homomorphism
$H_{2}^{Q}(Q(L))arrow H_{2}^{Q}(X)$ induced from $f$ with $[\theta]\in H_{Q}^{2}(X;G)$ . This multi-set, introduced
by Carter et al. [2], is obviously invariant under ambient isotopy and is called a quandle
cocycle invariant.

3 Quandle cocycle invariant for link-homotopy

It is known by Joyce [9] and independently by Matveev [11] that knot quandles of knots
(1-component links) are isomorphic if and only if associated knots are week equivalent,
i.e., there is a homeomorphism of $S^{3}$ sending an associated knot to the other. On the
other hand, every knots are trivial up to link-homotopy. Therefore, knot quandles are not
invariant under link-homotopy. It means that quandle cocycle invariants are not invariant
under link-homotopy in general. However, in this section, we review a certain quotient of
a knot quandle, called a reduced knot quandle, is invariant under link-homotopy. Further,
modifying the definition of quandle homology slightly, we have a quandle cocycle invariant
being invariant under link-homotopy.

For homotopy classes of nooses of a link $L$ , consider the moves depicted in Figure 4. We
let $RQ(L)$ be the quotient of the set $Q(L)$ consisting of all homotopy classes of nooses of
$L$ by the moves. Then the product $*of$ nooses is still well-defined on $RQ(L)$ and satisfies
the axioms of a quandle. We call this quandle $RQ(L)$ with $*$ the reduced knot quandle
of $L$ . It is known by Hughes [6] that reduced knot quandles are isomorphic if associated
links are link-homotopicl.

tt 1 $\ddagger$

same component same component same component same component

Figure 4:

To discuss an algebraic property of a reduced knot quandle, we first review the following
notions. For a quandle $X$ , an autoraorphism group Aut(X) is defined to be the group

lThis definition of a reduced knot quandle is given by the author. In his paper [6], Hughes defined a reduced knot
quandle in an algebraic way and a more complicated geometric way.
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consisting of all automorphisms of $X$ . The axiom (Q3) of a quandle says that the bijection
$*x$ : $Xarrow X$ is an automorphism of $X$ for each $x\in X$ . An inner automorphism group
Inn(X) of $X$ is the subgroup of Aut(X) generated by the automorphisms $*x$ : $Xarrow X.$

We call an element of the inner automorphism group an inner automorphism.
Nooses $\mu$ and $v$ of a link $L$ intersect with the same component if and only if there is an

inner automorphism of the knot quandle $Q(L)$ sending the homotopy class of $\mu$ to that
of $\nu$ . Thus a type I move depicted in Figure 4 is algebraically described as the following
relation in $Q(L)$ :

( $QT$ ) For each $a\in Q(L)$ and $\varphi\in$ Inn$(Q(L)),$ $a*\varphi(a)=a.$

Further a type II move depicted in Figure 4 is described as the relation $a*(b*\varphi(b))=a*b$

for each $a,$ $b\in Q(L)$ and $\varphi\in$ Inn $(Q(L))$ . Since this relation is an consequence of the
relation ( $QT$ ), the reduced knot quandle $RQ(L)$ is algebraically described as the quotient
of $Q(L)$ by the relation ( $QT$).

We call a quandle $X$ to be quasi-trivial [7] if $X$ satisfies the condition $x*\varphi(x)=x$

for each $x\in X$ and $\varphi\in$ Inn(X). $A$ reduced knot quandle is of course quasi-trivial. We
remark that, for a quandle $X$ which is not quasi-trivial, there are no homomorphisms
other than trivial ones from a reduced knot quandle to $X$ . Since a reduced knot quandle
is invariant under link-homotopy, the set consisting of all homomorphisms from a reduced
knot quandle to $a$ (quasi-trivial) quandle gives rise to an link-homotopy invariant. In
particular, the cardinality of the set is a numerical invariant.

Let $L$ be an $n$-component link and $D$ its diagram. For the reduced knot quandle
$RQ(L)$ , we of course have a 2-cycle $W_{i}\in C_{2}^{Q}(RQ(L))$ derived from $D$ in the same manner
as provided in the previous section. However, if we let $D”$ be a diagram obtained from $D$

by a self-crossing change at a crossing of the i-th component, then the difference $W_{i}"-W_{i}$

is $\pm((a, \varphi(a))+(\varphi(a), a))$ with some $a\in RQ(L)$ and $\varphi\in$ Inn$(RQ(L))$ . This difference
is not in the second boundary group $B_{2}^{Q}(RQ(L))$ in general. Therefore, we do not have
fundamental classes in $H_{2}^{Q}(RQ(L))$ being invariant under link-homotopy. To solve this
problem, we consider to modify the definition of quandle homology as follows.

Suppose $X$ is a quasi-trivial quandle. Let $C_{n}^{D,qt}(X)$ be a subgroup of $C_{n}^{R}(X)$ which
is generated by $n$-tuples $(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ with $x_{i}=x_{i+1}$ for some $i$ and elements
$(x_{1}, \varphi(x_{1}), x_{3}, \ldots, x_{n})+(\varphi(x_{1}), x_{1}, x_{3}, \ldots, x_{n})\in C_{n}^{R}(X)$ for some $\varphi\in Inn(X)$ if $n\geq 2.$

We let $C_{n}^{D,qt}(X)=0$ in the cases $n=0,1$ . By the assumption that $X$ is quasi-trivial,
$\partial_{n}(C_{n}^{D,qt}(X))\subset C_{n-1}^{D,qt}(X)$ . Therefore, putting $C_{n}^{Q,qt}(X)=C_{n}^{R}(X)/C_{n}^{D,qt}(X)$ , we have a
chain complex $(C_{n}^{Q,qt}(X), \partial_{n})$ . For an abelian group $G$ , let $H_{n}^{Q,qt}(X;G)$ denote the n-th
homology group of the chain complex $(C_{n}^{Q,qt}(X)\otimes G, \partial_{n}\otimes id)$ , and $H_{Q,qt}^{n}(X;G)$ the n-th
cohomology group of the cochain complex $(Hom(C_{n}^{Q,qt}(X), G), Hom(\partial_{n}, id))$ . We will use
the symbol $[\cdot]^{qt}$ to denote a class of these modified quandle homology or cohomology.
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Let $L,$ $D$ and $D”$ be the same as above. Then we obviously have 2-cycles $W_{i}$ and
$W_{i}"$ in $C_{2}^{Q,qt}(RQ(L))$ derived from $D$ and $D”$ respectively. Remark that the difference
$W_{i}"-W_{i}$ is equal to zero in $C_{2}^{Q,qt}(RQ(L))$ because $\pm((a, \varphi(a))+(\varphi(a), a))$ is an element
of $C_{2}^{D,qt}(RQ(L))$ . Therefore, the homology class $[W_{i}]^{qt}\in H_{2}^{Q,qt}(RQ(L))$ is invariant under
link-homotopy. We call this homology class the fundamental class of the reduce knot
quandle $RQ(L)$ derived from the i-th component, and denote it by $[K_{i}]^{qt}\in H_{2}^{Q,qt}(RQ(L))$ .

Let $X$ be a quasi-trivial quandle, $G$ an abelian group and $\theta\in Hom(C_{2}^{Q,qt}(X), G)$ a
2-cocycle. Consider the multi-set consisting of $n$-tuples

$(\langle[\theta]^{qt}|f|[K_{1}]^{qt}\rangle, \langle[\theta]^{qt}|f|[K_{2}]^{qt}\rangle, \ldots, \langle[\theta]^{qt}|f|[K_{n}]^{qt}\rangle)\in G^{n}$

derived from all homomorphisms $f$ : $RQ(L)arrow X$ . This multi-set, still called a quandle
cocycle invariant, is of course invariant under link-homotopy. Using a certain quandle
cocycle invariant, we can show a famous fact that the Borromean rings is not trivial up
to link-homotopy [7], for example.

Remark 3.1. For a quandle $X$ , let $F(X)$ be the free group generated by all elements
of $X$ and $N(X)$ the subgroup of $F(X)$ normally generated by all elements in the form
$y^{-1}xy(x*y)^{-1}$ with some $x,$ $y\in X$ . We call the quotient group $F(X)/N(X)$ the associated
group of $X$ and denote it by As(X). Since $w*(x*y)=((w*^{-1}y)*x)*y$ for any $w,$ $x,$ $y\in X,$

we have a homomorphism As $(X)arrow$ Inn(X) sending $xto*x(x\in X)$ . Thus As(X) acts
on $X$ from the right through this homomorphism. We will write the image of $x\in X$ by
the right action of $g\in$ As(X) as $x\triangleleft g.$

For a link $L$ , it is known that the associated group As $(Q(L))$ of the knot quandle $Q(L)$

is isomorphic to the knot group $G(L)$ of $L$ (see [4, 9] for example). An isomorphism
As$(Q(L))arrow G(L)$ is given by restricting each noose of $L$ to the union of $\partial D$ and the
segment $\{z\in \mathbb{C}|1\leq z\leq 5\}$ $(this is a$ positive meridian $of L, by$ definition) . Therefore,
as Hughes mentioned in [6], the associated group As$(RQ(L))$ of the reduced knot quandle
$RQ(L)$ is isomorphic to the reduced knot group $RG(L)$ . Here, $RG(L)$ is the quotient
group of $G(L)$ obtained by adding relations which say each positive meridian commutes
with all of its conjugates [12].

4 Latent ability of quandle cocycle invariants

We remark that the latent ability of quandle cocycle invariants to classifying links up
to link-homotopy depends on the abilities of reduced knot quandles, fundamental classes,
a choice of a target quandle, and a choice of a 2-cocycle. Especially, for the abilities of
reduced knot quandles and their fundamental classes, we have the following conjecture:
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Conjecture 4.1. Suppose $L$ and $L’$ are $n$ -component links. We let $[K_{i}]^{qt}\in H_{2}^{Q,qt}(RQ(L))$

and $[K_{i}’]^{qt}\in H_{2}^{Q,qt}(RQ(L’))$ be fundamental classes of $RQ(L)$ and $RQ(L’)$ respectively.
Then $L$ and $L’$ are link-homotopic to each other if and only if there is an isomorphism

$f$ : $RQ(L)arrow RQ(L’)$ such that $f_{\#}([K_{i}]^{qt})=[K_{i}’]^{qt}$ for all $i(1\leq i\leq n)$ , where $f_{\#}$ denotes
the isomorphism $H_{2}^{Q,qt}(RQ(L))arrow H_{2}^{Q,qt}(RQ(L’))$ induced from $f.$

If $L$ is link-homotopic to $L’$ then obviously there is an isomorphism $f$ : $RQ(L)arrow RQ(L’)$

satisfying $f_{\#}([K_{i}]^{qt})=[K_{i}’]^{qt}$ for all $i$ . The conjecture thus claims that the inverse is also
true. If the conjecture is true, we can completely classify links up to link-homotopy by
quandle cocycle invariants.

In this section, we show a theorem (Theorem 4.2) which might be useful for trying the
conjecture. To express the precise statement of the theorem, we first prepare the following
things.

Let $L$ be an $n$-component link. Choose and fix an element $a_{i}\in RQ(L)$ intersecting
with the i-th component for each $i(1\leq i\leq n)$ . It is routine to check that $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}$

are generators of $RQ(L)$ (see [6]). For each $i$ , select a noose $v_{i}$ representing $a_{i}$ so that
distinct nooses only intersect in the base point. We note that this choice is not essentially
unique. We let $\mathscr{D}$ be an oriented 2-disk embedded in $S^{3}$ in which each $\nu_{i}$ is embedded
to be compatible with the orientation of $\mathscr{D}$ . Cutting open $S^{3}$ by $\mathscr{D}$ , we obtain a string
link as depicted in Figure 5. Although the choice of $\mathscr{D}$ is not unique, Habegger and Lin
showed that this string link is unique up to link-homotopy [5]. They further showed that
the string link is link-homotopic to a pure braid $\sigma$ (see Figure 5). We note that the closure
of $\sigma$ is of course link-homotopic to $L.$

Figure 5:

Suppose $X$ is a quasi-trivial quandle. Let $\tilde{C}_{n}^{D,qt}(X)$ be a subgroup of $C_{n}^{R}(X)$ which
is generated by $n$-tuples $(x_{1}, x_{2}, \ldots, x_{n})\in X^{n}$ with $x_{i}=x_{i+1}$ for some $i$ and $n$-tuples
$(x_{1}, \varphi(x_{1}), x_{3}, \ldots, x_{n})\in X^{n}$ with some $\varphi\in$ Inn(X) for $n\geq 2$ , and $\tilde{C}_{n}^{D,qt}(X)=0$ for
$n=0,1$ . By the assumption that $X$ is quasi-trivial, $\partial_{n}(\tilde{C}_{n}^{D,qt}(X))\subset\tilde{C}_{n-1}^{D,qt}(X)$ . Therefore,

putting $\tilde{C}_{n}^{Q,qt}(X)=C_{n}^{R}(X)/\tilde{C}_{n}^{D,qt}(X)$ , we have a chain complex $(\tilde{C}_{n}^{Q,qt}(X), \partial_{n})$ . For an
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abelian group $G$ , let $\tilde{H}_{n}^{Q,qt}(X;G)$ denote the n-th homology group of the chain complex
$(\tilde{C}_{n}^{Q,qt}(X)\otimes G, \partial_{n}\otimes id)$ , and $\tilde{H}_{Q,qt}^{n}(X;G)$ the n-th cohomology group of the cochain complex
$(Hom(\tilde{C}_{n}^{Q,qt}(X), G), Hom(\partial_{n}, id))$ . We will use the symbol $[\cdot]^{qt}$ again to denote a class of
these modified quandle homology or cohomology. We remark that $C_{n}^{D,qt}(X)$ is a subgroup
of $\tilde{C}_{n}^{D,qt}(X)$ and thus $\tilde{H}_{n}^{Q,qt}(X;G)$ and $\tilde{H}_{Q,qt}^{n}(X;G)$ are quotients of $H_{n}^{Q,qt}(X;G)$ and
$H_{Q,qt}^{n}(X;G)$ respectively. Since any link $L$ is link-homotopic to a closure of a pure braid,
the fundamental classes $[K_{i}]^{qt}\in H_{2}^{Q,qt}(RQ(L))$ are elements in $\tilde{H}_{2}^{Q,qt}(RQ(L))$ .

Theorem 4.2. Let $L$ and $L’$ be $n$ -component links. Assume that there is an isomorphism
$f$ : $RQ(L)arrow RQ(L’)$ satisfying $\tilde{f_{\#}}([K_{i}]^{qt})=[K_{i}’]^{qt}$ for all $i(1\leq i\leq n)$ , where $\tilde{f_{\#}}$ denotes
the isomorphism $\tilde{H}_{2}^{Q,qt}(RQ(L))arrow\tilde{H}_{2}^{Q,qt}(RQ(L’))$ induced from $f$ . If there are pure braids

$\sigma$ and $\sigma’$ derived from a choice of generators $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}\in RQ(L)$ and the generators
$f(a_{1}),$ $f(a_{2}),$ $\cdots,$ $f(a_{n})\in RQ(L’)$ respectively such that the pure braids obtained from $\sigma$

and $\sigma’$ by removing their i-th components with some $i$ are link-homotopic to each other as
pure bmids, then $L$ and $L’$ are link-homotopic to each other.

The assumption in the last sentence of the theorem is always satisfied for 2-component
links. Furthermore, it is routine to check that the assumption is also always satisfied for
3-component links. Therefore, we have the following corollary:

Corollary 4.3. Conjecture 4.1 $w$ true for links with 3 or fewer components.

To show Theorem 4.2, we first review the following notion. Let $X$ and $\tilde{X}$ be (not
necessary quasi-trivial) quandles. An epimorphism $p:\tilde{X}arrow X$ is said to be a covering [3]
if $p(\tilde{x})=p(\tilde{y})$ implies $\tilde{w}*\tilde{x}=\tilde{w}*\tilde{y}$ for any $\tilde{w},\tilde{x},\tilde{y}\in\tilde{X}$ . In other words, the natural map
Xf $arrow$ Inn $(\tilde{X})$ sending $\tilde{x}$ to $*\tilde{x}$ factors through $p$ . This property of a covering enables us
to write an element $\tilde{w}*\tilde{x}$ as $\tilde{w}*p(\tilde{x})$ .

For each reduced knot quandle, we have its natural coverings as follows. Let $L$ be an
$n$-component link and $\mathscr{D}$ an 2-disk embedded in $S^{3}$ derived from a choice of generators
$a_{1},$ $a_{2},$ $\cdots,$ $a_{n}\in RQ(L)$ . Instead of cutting open $S^{3}$ by $\mathscr{D}$ , we cut open $S^{3}$ by a small
2-disk $\mathscr{D}_{i}$ in $\mathscr{D}$ intersecting with $L$ only at a point of the i-th component. Then we obtain
$a(1,1)$ -tangle $T_{i}$ as depicted in Figure 6. Consider the reduced knot quandle $RQ(T)$ of
$T_{i}$ in a similar way. It is easy to see that the projection $p_{i}:RQ(T_{i})arrow RQ(L)$ derived
from the injection $T_{i}arrow L$ satisfies the condition for a covering.

Choose a diagram of $L$ so that the image of $\mathscr{D}$ is a segment intersecting with each
component of $L$ in order (see the left-hand side of Figure 7). Then removing a small
neighborhood of the intersection point between the i-th component and the image of $\mathscr{D}$

from the diagram, we have a diagram $D_{i}$ of $T_{i}$ (see the right-hand side of Figure 7). Let
$\alpha_{ij}(0\leq j\leq r_{i})$ denote an arc of $D_{i}$ which is a part of the i-th component in order
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$T_{2}$

Figure 6:

(see the right-hand side of Figure 7). We assign $a_{ij}\in RQ(T_{i})$ to each $\alpha_{ij}$ in the same
manner as a Wirtinger generator. We note that, although $p_{i}(a_{i0})$ and $p_{i}(a_{ir_{i}})$ are the same
element, $a_{i0}$ and $a_{ir_{i}}$ are different in general. Let $\beta_{ij}$ denote the arc separating $\alpha_{i,j-1}$ and
$\alpha_{ij}(1\leq j\leq r_{i})$ , and $b_{ij}\in RQ(T_{i})$ the element assigned to $\beta_{ij}$ . Then we have a relation
$a_{ij}=a_{i,j-1}*^{\epsilon_{ij}}b_{ij}$ in $RQ(T_{i})$ , where $\epsilon_{ij}$ is 1 or $-1$ depending on whether the crossing
consisting of $\alpha_{i,j-1},$ $\alpha_{ij}$ and $\beta_{ij}$ is positive or negative respectively.

$D_{3}$

Figure 7:

As mentioned in Remark 3.1, the reduced knot group $RG(L)$ acts on $RQ(L)$ from the
right. Thus $RG(L)$ also acts on $RQ(T_{i})$ from the right, because $p_{i}$ : $RQ(T_{i})arrow RQ(L)$ is
a covering. Let $RG_{i}(L)$ denote the reduced knot group for the link obtained from $L$ by
removing the i-th component. Since $RQ(T_{i})$ is quasi-trivial, $RG_{i}(L)$ acts on each element
of $RQ(T_{i})$ intersecting with the i-th component from the right through the quotient map
$RG(L)arrow RG_{i}(L)$ . Therefore, each element of $RQ(T_{i})$ (and also each element of $RQ(L)$ )

intersecting with the i-th component can be written as $a_{i0}\triangleleft u$ with some $u\in RG_{i}(L)$ .
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Identifying an element of $RQ(T)$ with an element of $RG_{i}(L)$ , consider the element

$l_{i}=b_{i1}^{\epsilon_{i1}}b_{i2}^{\epsilon_{i2}}\cdots b_{ir_{i}}^{\epsilon_{ir_{i}}}\in RG_{i}(L)$ .

Then, by definition, we have $a_{ir_{i}}=a_{i0}\triangleleft l_{i}$ . Milnor $[12]$ showed that $l_{i}\in RG_{i}(L)$ is trivial
if and only if the i-th component of $L$ is trivial up to link-homotopy. We thus have a
cyclic subgroup $\langle l_{i}\rangle$ of $RG_{i}(L)$ , if the i-th component is not trivial up to link-homotopy.
We note that the order of the cyclic subgroup is not always infinite.

Lemma 4.4. Assume that the i-th component of $L$ is not trivial up to link-homotopy.
Then we have a 2-cocycle $\theta_{i}\in\tilde{Z}_{Q,qt}^{2}(RQ(L);\langle l_{i}\rangle)$ which is not in the second coboundary
group $\tilde{B}_{Q,qt}^{2}(RQ(L);\langle l_{i}\rangle)$ .

Proof. We first remark that $p_{i}$ is not injective, although the restriction of $p_{i}$ to the set
consisting of all elements not intersecting with the i-th component is injective. The
preimage of $a_{i0}\triangleleft u\in RQ(L)(u\in RG_{i}(L))$ by $p_{i}$ is the set $\{a_{i0}\triangleleft l_{i}^{k}u|k\in \mathbb{Z}_{|\langle l_{i}\rangle|}\}.$

Define a left action of $\langle l_{i}\rangle$ on $RQ(T)$ by

$l_{i}\cdot a=\{\begin{array}{ll}a_{i0}\triangleleft l_{i}u if a=a_{i0}\triangleleft u with some u\in RG(L_{i}),a otherwise (i.e., a does not intersect with the i- th component) .\end{array}$

Then, associated with a section $s:RQ(L)arrow RQ(T_{i})$ $(i.e., s is a map$ satisfying $p_{i}os= id)$ ,
we have a map $\theta_{i}$ : $RQ(L)\cross RQ(L)arrow\langle l_{i}\rangle$ satisfying $s(a)*s(b)=\theta_{i}(a, b)\cdot s(a*b)$ . If we
set $\theta(a, b)=0$ for each $a\in RQ(L)$ not intersecting with the i-th component, then $\theta_{i}$ is in
fact a 2-cocycle and its class does not depend on the choice of a section $s$ (see the proof
of Theorem 4.1 in [8] for more details). By definition, we have $\langle[\theta_{i}]^{qt}|$ id $|[K_{j}]^{qt}\rangle=l_{i}^{\delta_{ij}},$

where $\delta_{ij}$ denotes the Kronecker delta. Therefore, $\theta_{i}$ is not in $\tilde{B}_{Q,qt}^{2}(RQ(L);\langle l_{i}\rangle)$ . $\square$

Remark 4.5. The second last sentence of the above proof says that the fundamental
class $[K_{i}]^{qt}$ is not trivial if the i-th component of $L$ is not trivial up to link-homotopy.
Obviously, $[K_{i}]^{qt}$ is trivial if the i-th component of $L$ is trivial up to link-homotopy.

In the light of Lemma 4.4, we have the following key theorem:

Theorem 4.6. Let $L$ and $L’$ be $n$ -component links. Assume that there is an isomorphism
$f$ : $RQ(L)arrow RQ(L’)$ satisfying $\tilde{f_{\#}}([K_{i}]^{qt})=[K_{i}’]^{qt}$ for all $i(1\leq i\leq n)$ . Let $T_{i}$ and $T_{i}’$

denote (1, 1)-tangles derived from a choice of generators $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}\in RQ(L)$ and the
generators $f(a_{1}),$ $f(a_{2}),$ $\cdots,$ $f(a_{n})\in RQ(L’)$ respectively. Then we have an isomorphism
$f_{i}$ : $RQ(T_{i})arrow RQ(T_{i}’)$ sending $a_{i0}$ to $a_{i0}’$ and $a_{ir_{i}}$ to $a_{ir_{i}}’,$ , if the i-th component of $L’$ is
not trivial up to link-homotopy.
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Proof. For each $k(1\leq k\leq n)$ other than $i$ , let $\alpha_{kj}(0\leq j\leq r_{k})$ and $\beta_{kj}(1\leq j\leq r_{k})$

denote arcs of $D_{i}$ considering $D_{i}\cap D_{k}$ to be a part of $D_{k}$ . We let $a_{kj}$ and $b_{kj}$ be the
elements in $RQ(T_{i})$ assigned to $\alpha_{kj}$ and $\beta_{kj}$ respectively. Then we of course have relations
$a_{kj}=a_{k,j-1}*^{\epsilon_{kj}}b_{kj}$ in $RQ(T_{i})$ . We remark that $\alpha_{k0}$ and $\alpha_{kr_{k}}$ are the same arc, and thus
$a_{k0}$ and $a_{kr_{k}}$ are the same element in $RQ(T_{i})$ .

We inductively define a map $f_{i}$ : $\{a_{lj}|1\leq l\leq n, 0\leq j\leq r_{l}\}arrow RQ(T_{i}’)$ , distinguishing
the elements $a_{l0}$ and $a_{lr0}$ , as follows. To start with, we let $f_{i}(a_{l0})=a_{l0}’$ for all $l$ . At
each crossing, we set $f_{i}(a_{lj})=f_{i}(a_{l,j-1})*^{\epsilon_{lj}}f(p_{i}(b_{lj}))$ . Then, by induction, we have
$p_{i}(f_{i}(a_{lj}))=f(p_{i}(a_{lj}))$ and so $f_{i}(a_{lj})=f_{i}(a_{l,j-1})*^{\epsilon_{lj}}f_{i}(b_{lj})$ for all $l$ and $j$ . For each $k$

$(1\leq k\leq n)$ other than $i$ , since $f$ : $RQ(L)arrow RQ(L’)$ is an isomorphism sending both of
$p_{i}(a_{k0})$ and $p_{i}(a_{kr_{k}})$ to $p_{i}(a_{k0}’)$ , we have $f_{i}(a_{k0})=f_{i}(a_{kr}k)=a_{k0}’$ . Therefore, $f_{i}$ uniquely
extends to a homomorphism $f_{i}:RQ(T_{i})arrow RQ(T_{i}’)$ .

For the isomorphism $g$ $:=f^{-1}$ : $RQ(L’)arrow RQ(L)$ , we also have a homomorphism
$g_{i}$ : $RQ(T_{i}’)arrow RQ(T_{i})$ . By construction, we obviously have $g_{i}\circ f_{i}(a_{l0})=a_{l0}$ for all $l.$

Since $a_{10},$ $a_{20},$ $\cdots,$ $a_{n0}$ generate $RQ(T_{i}),$ $g_{i}\circ f_{i}$ should be the identity map. Similarly, $f_{i}\circ g_{i}$

is the identity map. Thus $f_{i}:RQ(T_{i})arrow RQ(T_{i}’)$ is an isomorphism sending $a_{i0}$ to $a_{i0}’.$

By Lemma 4.4, we have a 2-cocycle $\theta_{i}’\in\tilde{Z}_{Q,qt}^{2}(RQ(L);\langle l_{i}’\rangle)$ derived from a section
$s’$ : $RQ(L’)arrow RQ(T_{i}’)$ sending $p_{i}(a_{i0})$ to $a_{i0}$ . By a straightforward calculus, we have

$s’(f(p_{i}(a_{ij})))$

$=\{\begin{array}{ll}\theta_{i}’(f(p_{i}(a_{i,j-1})), f(p_{i}(b_{ij})))^{-1}\cdot\{s’(f(p_{i}(a_{i,j-1})))*s’(f(p_{i}(b_{ij})))\} if \epsilon_{ij}=1,\theta_{i}’(f(p_{i}(a_{ij})), f(p_{i}(b_{ij})))\cdot\{s’(f(p_{i}(a_{i,j-1})))*^{-1}s’(f(p_{i}(b_{ij})))\} if \epsilon_{ij}=-1\end{array}$

for all $j(1\leq j\leq r_{i})$ . Therefore, by definition, we have

$f_{i}(a_{ir_{i}}) = \langle[\theta_{i}’]^{qt}|f|[K_{i}]^{qt}\rangle\cdot s’(f(p_{i}(a_{ir})))$

$= \langle[\theta_{i}’]^{qt}|id|[K_{i}’]^{qt}\rangle\cdot s’(f(p_{i}(a_{ir})))$

$= l_{i}’\cdot s’(f(p_{i}(a_{ir})))$ .

Since $s’(f(p_{i}(a_{ir})))=a_{i0}$ and $l_{i}’\cdot a_{i0}=a_{ir_{i}’}$ , the isomorphism $f_{i}$ sends $a_{ir_{i}}$ to $a_{ir_{i}}’,.$
$\square$

Now, we prove Theorem 4.2.

Proof of Theorem 4.2. Since $RQ(L)$ is isomorphic to $RQ(L’)$ , if the i-th component of
$L’$ is trivial up to link-homotopy, then the i-th component of $L$ should be trivial up to

link-homotopy. Thus, in this case, $L$ and $L’$ are obviously link-homotopic to each other by

the assumption. In the following, we assume that the i-th component of $L’$ is not trivial
up to link-homotopy.
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We may assume that $L$ and $L’$ are the closures of $\sigma$ and $\sigma’$ respectively. Let $\tau’$ be the
pure braid satisfying $\sigma’=\sigma\cdot\tau’$ . We note that the pure braid obtained from $\tau’$ by removing
the i-th component is trivial by the assumption.

Let $\mu’$ and $v’$ be nooses of $L’$ , depicted in the left-hand side of Figure 8, which intersect
with the i-th component at the start and end points of $\tau’$ respectively. Then, in the light
of Theorem 4.6, $\mu’$ and $v’$ are related to each other by homotopy and the moves depicted
in Figure 4. Indeed, $\mu’$ and $v’$ are representatives of $f_{i}(a_{ir_{i}})$ and $a_{ir_{i}}’$, respectively. We
let $\hat{\mu}’$ be a noose of $L’$ , depicted in the left-hand side of Figure 8, obtained from $\mu’$ by
moving its disk to the end point of $\tau’$ along the i-th component of $\tau’$ . We note that $\hat{\mu’}$ is
obviously homotopic to $\mu’$ , and so $\hat{\mu}’$ and $\nu’$ are related to each other by homotopy and
the moves. Thus a part of the ‘rope’ of $\hat{\mu}’$ (the image of the segment $\{z\in \mathbb{C}|1\leq z\leq 5\}$ )
parallel to the i-th component of $\tau’$ can be pulled out from $L’$ by homotopy and the moves
as depicted in the right-hand side of Figure 8, We claim that this deformation can be
performed with the i-th component of $\tau’$ keeping parallelness by link-homotopy.

Figure 8:

Let $\gamma’$ denote the part of the rope of $\hat{\mu’}$ parallel to the i-th component of $\tau’$ and $\Gamma’$ the
i-th component of $\tau’$ for simplicity. Since a crossing change for $\gamma’$ can be performed with
$\Gamma’$ by a self-crossing change and type I moves as depicted in Figure 9, homotopy for $\gamma’$

can be performed with $\Gamma’$ . Obviously, a type I move for $\gamma’$ can be performed with $\Gamma’$ by
a self-crossing change (and a crossing change for $\gamma$ and a type I move if necessary, see
Figure 10). We note that the self-crossing changes and the homotopy for $\gamma’$ depicted in
Figure 11 has an effect similar to a type II move. Hence the claim is true.

Pulling out $\Gamma’$ from $L’$ by link-homotopy keeps the parts of $L’$ other than $\Gamma’$ in appearance
(see Figure 12). Thus the result is the closure of $\sigma$ . It means $L$ and $L’$ are link-homotopic
to each other. $\square$

Remark 4.7. We can always pull out $\Gamma’$ from $L’$ by link-homotopy even though the pure
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Figure 9:

Figure 10:

$\langle)$ $()$
same comp. same comp.

Figure 11:

$arrow^{1_{.}.h_{.}}$

Figure 12:
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braid obtained from $\tau$ by removing the i-th component is not trivial. On the other hand,
we can not always pull out $\Gamma’$ from $\sigma’$ by link-homotopy. This difference poses considerable
difficulties in trying Conjecture 4.1 in this way.
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