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1 Introduction

We say that a nontrivial group $G$ is left-ordemble if there exists a strict total ordering
$<$ on its elements such that $g<h$ implies $fg<fh$ for all elements $f,$ $g,$ $h\in G.$ $A$ typical
example of a left-orderable group is the infinite cyclic group $\mathbb{Z}$ . The left-orderability of
fundamental groups of 3-manifolds has been studied by Boyer, Rolfsen and Wiest [3].
In particular, they prove that the fundamental group of a $P^{2}$-irreducible 3-manifold is
left-orderable if and only if it has an epimorphism to a left-orderable group [3, Theorem
1.1(1) $]$ . Since the infinite cyclic group $\mathbb{Z}$ is left-orderable, a $P^{2}arrow$rreducible 3-manifold
with first Betti number $b_{1}\geq 1$ has a left-orderable fundamental group. One obstruction
for $G$ being left-orderable is an existence of torsion elements in $G$ . Thus, for instance,
lens spaces, more generally, spherical $3$-manifolds cannot have left-orderable fundamental
groups. It is interesting to characterize rational homology 3-spheres whose fundamental
groups are left-orderable. Examples suggest that there exists a correspondence between
3-manifolds whose fundamental groups are left-orderable and $L$-spaces which appear in
the Heegaard Floer homology theory [28, 29]. Recall that a rational homology 3-sphere
$Y$ is called an $L$ -space if the rank of its Heegaard Floer homology $HF(Y)$ coincides with
$|H_{1}(Y;\mathbb{Z})|$ . Following [2, 1.1], for homogeneity, we use $\mathbb{Z}_{2}$-coefficients for $\hat{HF}(Y)$ .

The following conjecture is formulated by Boyer, Gordon and Watson [2].

Conjecture 1.1 An irreducible mtional homology 3-sphere is an $L$ -space if and only if
its fundamental group is not left-orderable.

In [2] the conjecture is verified for geometric, non-hyperbolic 3-manifolds and the 2-fold
branched covers of non-splitting alternating links. See also [1, 6, 15, 18, 32] for related
results.

A useful way to construct rational homology 3-spheres is Dehn surgery on knots in
the 3-sphere $S^{3}$ . For any knot $K$ in $S^{3}$ the exterior $E(K)=S^{3}$ –int$N(K)$ has the
left-orderable fundamental group, and the longitudinal surgery (i.e. $0$-surgery) on $K$

yields a 3-manifold with left-orderable fundamental group; see [12, Corollary 8.3] and [3,
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Theorem 1.1]. On the other hand, the result $K(r)$ of $r$-Dehn surgery may not have such
a fundamental group if $r\neq 0$ ; see Examples 1.5 and 1.7. A Dehn surgery is said to be

left-ordemble if the resulting manifold of the surgery has the left-orderable fundamental
group, and a Dehn surgery is called an $L$ -space surgery if the resulting manifold of the
surgery is an $L$-space.

Define the set of left-orderable surgeries on $K$ as

$S_{LO}(K)=$ { $r\in \mathbb{Q}|\pi_{1}(K(r))$ is left-orderable}.

Similarly define the set of $L$-space surgeries on $K$ as

$S_{L}(K)=$ { $r\in \mathbb{Q}|K(r)$ is an $L$-space}.

In this setting, Conjecture 1.1, together with the cabling conjecture [13], suggests:

Conjecture 1.2 Let $K$ be a knot in $S^{3}$ which is not a cable of a nontrivial knot. Then
$S_{LO}(K)\cup S_{L}(K)=\mathbb{Q}$ and $S_{LO}(K)\cap S_{L}(K)=\emptyset.$

Remark 1.3 The cabling conjecture $[13J$ asserts that if $K(r)$ is reducible for a nontrivial
knot $K$ , then $K$ is cabled and $r$ is a cabling slope. Let us show that there exists a cable
knot $K$ for which $S_{LO}(K)\cup S_{L}(K)\neq \mathbb{Q}$ . For instance, let $K$ be $a(p, q)$ cable of a non-
fibered knot $k(q>0)$ . Then $K(pq)=k(_{q}^{g})\# L(q,p)[14$ , Corollary 7. $3J$ . Since $\pi_{1}(K(pq))$

has a torsion, $pq\not\in S_{LO}(K)$ . Furthermore, since $k$ is a non-fibered knot, $k(_{q}^{E})$ is not an
$L$ -space [26, $27J$, and hence $K(pq)=k(_{q}^{E})\# L(q,p)$ is not an $L$ -space neither; see [34,
8.1 (5)$J([29J)$ . It follows that $pq\not\in S_{LO}(K)\cup S_{L}(K)$ .

For the trivial knot and nontrivial torus knots, Examples 1.4 and 1.5 describe $S_{LO}(K)$

and $S_{L}(K)$ explicitly. Note that these knots satisfy Conjecture 1.2.

Example 1.4 (trivial knot) Let $K$ be the trivial knot in $S^{3}$ . Then $S_{LO}(K)=\{0\}$ and
$S_{L}(K)=\mathbb{Q}-\{0\}.$

Example 1.5 (torus knots) For a nontrivial torus knot $T_{p,q}(p>q\geq 2)$ , the argument
in the proof of [8, Theorem 1. $4J$ shows that $S_{LO}(T_{p,q})=(-\infty, pq-p-q)\cap \mathbb{Q}$ and $S_{L}(T_{p,q})=$

$[pq-p-q, \infty)\cap \mathbb{Q}.$

Example 1.6 (figure-eight knot) Let $K$ be the figure-eight knot. Following [30, $31J,$

$\mathcal{S}_{L}(K)=\emptyset$ . Thus it is expected that $\mathcal{S}_{LO}(K)=\mathbb{Q}$ . Boyer, Gordon and Watson $[2J$ show

that $S_{LO}(K)\supset(-4,4)\cap \mathbb{Q}$ , and Clay, Lidman and Watson $[6J$ improve that $S_{LO}(K)\supset$

$[-4,4]\cap \mathbb{Q}$ . Furthermore, $[11J$ implies that $S_{LO}(K)\supset \mathbb{Z}.$
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Example 1.7 $($pretzel $knot P(-2,3,7)$ ) Let $K$ be a pretzel knot $P(-2,3,7)$ . Then
since the genus of $P(-2,3,7)$ rs 5, [31, Proposition 9. $6J$ $([17,$ Lemma $2. 13J)$ implies that
$S_{L}(K)=[9, \infty)\cap \mathbb{Q}$ . Hence it is expected that $S_{LO}(K)=(-\infty, 9)\cap \mathbb{Q}$ . While Clay and
Watson [9, Theorem $28J$ prove that $S_{LO}(K)\subset(-\infty, 17]\cap \mathbb{Q}.$

For further related results, see [7, 16, 21, 35, 37].
In the present note, we will focus on left-orderable, $non-L$-space surgeries on knots in

$S^{3}$ . We will introduce a “periodic construction” (Theorem 2.1) which enables us to provide
infinitely many hyperbolic knots having left-orderable, $non-L$-space surgeries from a given
knot with left-orderable surgeries. See Theorem 2.1 for the precise statement.

In Sections 3, we will give some examples illustrating how the periodic construction
works. In Section 4 we will apply the “periodic construction” with the help of Proposi-
tion 4.1 in [8] to demonstrate the following result.

Theorem 1.8 There exist infinitely many hyperbolic knots $K$ each of which enjoys the
following properties.

(1) $K(r)w$ a hyperbolic 3-manifold for all $r\in \mathbb{Q}.$

(2) $S_{LO}(K)=\mathbb{Q}.$

(3) $S_{L}(K)=\emptyset.$

2 Periodic constructions
The construction of knots in Theorem 1.8 is based on the following theorem. For a

subset $S\subset \mathbb{Q}$ and a positive integer $p$ , we denote by $pS$ the subset $\{pr|r\in \mathcal{S}\}\subset \mathbb{Q}.$

Note that if $S=\mathbb{Q}$ , then $p\mathcal{S}=\mathbb{Q}.$

Theorem 2.1 (periodic construction) Let $\overline{K}$ be a knot in $S^{3}$ and $\overline{C}$ an unknotted
circle which is disjoint from $\overline{K}.$ If $\overline{K}$ is a fibered knot, $\overline{C}$ satisfies the inequality $|\overline{S}\cap\overline{C}|>$

$lk(\overline{K}, \overline{C})$ for any fiber surface ( $i.e$ . minimal genus Seifert surface) $\overline{S}$ . Let $p$ be an integer
such that $p\geq 2$ and $(p, lk(\overline{K}, \overline{C}))=1$ . Take the $p$ -fold cyclic branched cover of $S^{3}$

branched along $\overline{C}$ to obtain a periodic knot $K \frac{p}{c}$ which $w$ the preimage of $\overline{K}$ . Then $K \frac{p}{c}$

enjoys the following properties:

(1) $S_{LO}(K_{\frac{p}{c}}(s)\supset pS_{LO}(\overline{K})$ .

(2) $\mathcal{S}_{L}(K\frac{p}{c}(s))=\emptyset.$
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If $\overline{K}$ is a trivial knot, then $S_{LO}(\overline{K})=\{0\}$ and hence $pS_{LO}(\overline{K})=\{0\}$ . So we will apply
Theorem 2.1 in the case where $\overline{K}$ is nontrivial.

The first assertion follows from the “inheritance” property of left-orderability: The
fundamental groups of 3-manifolds obtained by Dehn surgeries on a periodic knot $K$

inherit the left-orderability from those of 3-manifolds obtained by Dehn surgeries on the
factor knot $K.$

Theorem 2.2 Let $K$ be a nontnvial knot in $S^{3}$ with cyclic period $p$ , and let $\overline{K}$ be its

factor knot. Then $S_{LO}(K)\supset pS_{LO}(\overline{K})$ .

The second assertion in Theorem 2.1 follows from the next result whose proof is based
on Ni’s result [26, 27].

Theorem 2.3 Let $K$ be a periodic knot in $S^{3}$ with the axis $C$ , and let $\overline{K}$ be its factor
knot with the branch circle C. Suppose that $K$ has an $L$ -space surgery. Then $E(\overline{K})$ has
a fibe$rmg$ over the circle with a fiber surface $\overline{S}$ such that $|\overline{S}\cap\overline{C}|$ equals the algebmic
intersection number between $\overline{S}$ and $\overline{C},$ $i.e$ . the linking number $lk(\overline{K}, \overline{C})$ .

In particular, we have:

Corollary 2.4 Let $K$ be a pereodic knot with the factor knot $\overline{K}.$ If $\overline{K}$ is not fibered, then
$S_{L}(K)=\emptyset.$

As Ni [26, 27] proves, the fiberedness of $K$ is necessary for $K$ having an $L$-space surgery.
On the other hand, the periodicity of $K$ itself also puts strong restrictions on 3-manifolds
obtained by Dehn surgeries on $K$ . For instance, if a periodic knot $K$ with period $p>2$

has a finite surgery, which is also an $L$-space surgery, then $K$ is a torus knot or a cable

of a torus knot [23, Proposition 5.6]. So we would like to ask:

Question 2.5 Let $K$ be a knot in $S^{3}$ with cyclic period $p>2$ other than a torus knot, $a$

cable of a torus knot. Then does $K$ admit an $L$ -space surgery2

For proofs of the above results, see [24].

Remark 2.6 We denote the genus of a knot $k$ in $S^{3}$ by $g(k)$ . For $\overline{K}$ and $K \frac{p}{c}$ , we have
$g(K \frac{p}{c})\geq pg(\overline{K})[25$, Theorem 3. $2J.$

When we apply Theorem 2.1 to a given nontrivial (not necessarily hyperbolic) knot
$\overline{K}$ , there are infinitely many choices for $\overline{C}$ , and we can expect that in most cases, $K \frac{p}{c}$

are hyperbolic knots and $K \frac{p}{c}(s)$ are hyperbolic 3-manifolds. In fact, we can prove the

following. See [24] for the proof.
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Theorem 2.7 For a given nontrivial knot $\overline{K}$ in $S^{3}$ , we have the following.

(1) There are infinitely many unknotted circles $\overline{C}$ such that $\overline{K}\cup\overline{C}$ is a hyperbolic link.

(2) If $\overline{K}\cup\overline{C}$ is a hyperbolic link and $p>2$ , then $K \frac{p}{c}$ is a hyperbolic knot, and $K \frac{p}{c}(r)$ is
a hyperbolic 3-manifold for all $r\in \mathbb{Q}.$

(3) Assume that $p>2$ and $\overline{C_{i}}(i=1,2)$ is an unknotted circle such that $lk(\overline{K}, \overline{C_{i}})$ and $p$

are relatively prime, and $\overline{K}\cup\overline{C_{i}}$ is a hyperbolic link. If $K \frac{p}{c_{1}}$ and $K \frac{p}{c_{2}}$ are isotopic in
$S^{3}$ , then $\overline{K}\cup\overline{C_{1}}$ and $\overline{K}\cup\overline{C_{2}}$ are isotopic.

3 Examples

In this section, we present two examples illustrating how the periodic construction works
according as the initial knot $\overline{K}$ is fibered or not fibered.

First we apply Theorem 2.1 in the case where $\overline{K}$ is not fibered. In such a case we can
choose $\overline{C}$ arbitrarily with $lk(\overline{K}, \overline{C})\neq 0$ to obtain a knot $K \frac{p}{c}$ having properties (1) and
(2) in Theorem 2.1.

Let $T_{n}(n\neq 0, \pm 1)$ be a twist knot illustrated in Figure 3.1.

$\otimes 3.1$ : $A$ twist knot $T_{n}$

Then $T_{n}$ is a hyperbolic knot, and since the Alexander polynomial of $T_{n}$ is not monic,
it is not fibered [4, 8.16 Proposition]. Suppose that $n>1$ . Then it follows from [37, 16]
that $\pi_{1}(T_{n}(r))$ is left-orderable for $r\in(-4n, 4)$ . Furthermore, it is known by [35] that
$\pi_{1}(T_{n}(4))$ is left-orderable. Hence $S_{LO}(T_{n}(r))\supset(-4n, 4]\cap \mathbb{Q}.$

Example 3.1 Let us take a 2-component link $T_{2}\cup\overline{C}$ as in Figure 3.2,$\cdot$ $lk(T_{2}, \overline{C})=1$ . Let
$p$ be any integer with $p>2$ . Take the $p$ -fold cyclic branched cover of $S^{3}$ bmnched along
$\overline{C}$ to obtain a knot $K_{2,\overline{C}}^{p}$ which is the preimage of $T_{2}$ . Then $K_{2,\overline{C}}^{p}$ enjoys the following
properties:
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(1) $K_{2,\overline{C}}^{p}$ is a hyperbolic knot in $S^{3}.$

(2) $K_{2,\overline{C}}^{p}(r)w$ a hyperbolic 3-manifold for all $r\in \mathbb{Q}.$

(3) $S_{LO}(K_{2,\overline{C}}^{p})\supset(-8p, 4p]\cap \mathbb{Q}.$

(4) $S_{L}(K_{2,\overline{C}}^{p})=\emptyset.$

$\mathbb{B}3.2$ : The twist knot $T_{2}$ and an axis $\overline{C}$

Pmof. Assertions (1) and (2) follow from Theorem 2.7(2) once we show that $T_{2}\cup\overline{C}$ is
a hyperbolic link. Since $T_{2}\cup\overline{C}$ is a non-split prime alternating link [22, Theorem 1], it
is either a torus link or a hyperbolic link [22, Corollary 2]. The former cannot happen,
because $T_{2}$ is not a torus knot. Hence $T_{2}\cup\overline{C}$ is a hyperbolic link as desired. Since $T_{2}$

is not fibered and $\pi_{1}(T_{2}(r))$ is left-orderable for $r\in(-8,4],$ assertions $(3)$ and (4) follow
from Theorem 2.1. $\square$ (Example 3.1)

Next we apply Theorem 2.1 to the trefoil knot $T_{-3,2}$ , which is a fibered knot. As
described in Example 1.5, $\mathcal{S}_{LO}(T_{3,2})=(-\infty, 1)\cap \mathbb{Q}$ . Since $T_{3,2}(r)$ is orientation reversingly
diffeomorphic to $T_{-3,2}(-r)$ , we see that $S_{LO}(T_{-3,2})=(-1, \infty)\cap \mathbb{Q}.$

Example 3.2 Let us take a 2-component link $T_{-3,2}\cup\overline{C}$ as in Figure 3.3; $lk(T_{-3},{}_{2}\overline{C})=1.$

Let $p$ be any integer with $p>2$ . Take the $p$ -fold cyclic bmnched cover of $S^{3}$ bmnched
along the tnvial knot $\overline{C}$ to obtain a knot $K_{-3,2,\overline{C}}^{p}$ which is the preimage of $T_{-3,2}$ . Then
$K_{-3,2,\overline{C}}^{p}$ enjoys the following properties:

(1) $K_{-3,2,\overline{C}}^{p}$ is a hyperbolic knot in $S^{3}.$

(2) $K_{-3,2,\overline{C}}^{p}(r)$ is a hyperbolic 3-manifold for all $r\in \mathbb{Q}.$

(3) $S_{LO}(K_{-3,2,\overline{C}}^{p})\supset(-p, \infty)\cap \mathbb{Q}.$

(4) $S_{L}(K_{-3,2,\overline{C}}^{p})=\emptyset.$
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$T_{-3,2}$

$(i)$

$H3.3$ : The trefoil knot $T_{-3,2}$ and an unknotted circle $\overline{C}$

Proof of Example 3.2. Assertions (1) and (2) follow from Theorem 2.7(2) once we see that
$T_{-3,2}\cup\overline{C}$ is a hyperbolic link. Since as illustrated in Figure 3.3(i) $T_{-3_{\}}2}\cup\overline{C}$ is a non-split
prime alternating link [22, Theorem 1], it is either a torus link or a hyperbolic link [22,
Corollary 2]. If we have the former case, then $T_{-3,2}$ is isotopic to $\overline{C}$ which is a trivial knot,
a contradiction. Hence $T_{-3,2}\cup\overline{C}$ is a hyperbolic link as desired.

To see (3) and (4), we apply Theorem 2.1. Since $T_{-3,2}$ is fibered, we need to show that
for any fiber surface $\overline{S}$ of $E(T_{-3,2}),$ $|\overline{S}\cap\overline{C}|$ is strictly bigger than the algebraic intersection
number between $\overline{S}$ and $\overline{C}$ , i.e. $lk(T_{-3},{}_{2}\overline{C})$ .

In Figure 3.3(ii), we give a minimal genus Seifert surface $F$ of $T_{-3,2}$ , which is a once-
punctured torus with $\partial F=T_{-3,2}$ . Put $\overline{S}=F\cap E(T_{-3,2})$ . Then by [10, Lemma 5.1] $\overline{S}$ is a
fiber surface of $E(T_{-3,2})$ . We see that $|\overline{S}\cap\overline{C}|=5$ and the algebraic intersection number
between $\overline{S}$ and $\overline{C}$ is one. Assume for a contradiction that we have another fiber surface

$\overline{S}’$ of $E(T_{-3,2})$ such that $|\overline{S}’\cap\overline{C}|<|\overline{S}\cap\overline{C}|$ . Since $\overline{S}$ and $\overline{S}’$ are fiber surfaces of $E(T_{-3,2})$ ,
they are isotopic; see [10, Lemma 5.1], [36]. This then implies that we can isotope $\overline{C}$ to

$\overline{C}’$ in $E(T_{-3,2})$ so that $|\overline{S}\cap\overline{C}’|<|\overline{S}\cap\overline{C}|.$

Claim 3.3 There exists a smooth map $\varphi$ from a semi-disk $D$ into $E(T_{-3,2})$ such that
$\varphi^{-1}(\overline{C})$ is an arc $c\subset\partial D$ and $\varphi^{-1}(\overline{S})$ is the arc $\alpha=\overline{\partial D-c}.$

Proof of Claim 3.3. Let $\Phi$ : $S^{1}x[0,1]arrow E(T_{-3,2})$ be a smooth map giving an isotopy
between $\overline{C}(=\Phi(S^{1}\cross\{0\}))$ to $\overline{C}’(=\Phi(S^{1}\cross\{1\}))$ . We may assume $\Phi$ is transverse to 3.
Furthermore, the essentiality $of\overline{S}$ in $E(T_{-3,2})$ enables us to modify $\Phi$ to eliminate the circle
components as usual. Since $|\overline{S}\cap\overline{C}’|<|\overline{S}\cap\overline{C}|=5$ and the algebraic intersection number
between $\overline{S}$ and $\overline{C}’$ coincides with the algebraic intersection number between 3 and $\overline{C}$ , we
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have $|\overline{S}\cap\overline{C}’|=1$ or 3. Thus $\Phi^{-1}(\overline{S})$ consists of three properly embedded arcs $\alpha,$
$\alpha’$ and $\beta,$

where $\partial\alpha\subset S^{1}\cross\{0\},$ $\partial\alpha’\subset S^{1}\cross\{0\}$ , and $\beta$ connects $S^{1}\cross\{0\}$ and $S^{1}x\{1\}$ (Figure 3.4(i),
(ii) $)$ , consists of four properly embedded arcs $\alpha,$

$\beta,$ $\beta’$ and $\beta"$ , where $\partial\alpha\subset S^{1}\cross\{0\},$

and each of $\beta,$ $\beta’,$ $\beta"$ connects $S^{1}\cross\{0\}$ and $S^{1}\cross\{1\}$ (Figure 3.4(iii)), or consists of four
properly embedded arcs $\alpha,$

$\alpha’,$ $\beta$ and $\gamma$ , where $\partial\alpha\subset S^{1}\cross\{0\},$ $\partial\alpha’\subset S^{1}\cross\{0\},$ $\beta$ connects
$S^{1}\cross\{0\}$ and $S^{1}\cross\{1\}$ , and $\partial\gamma\subset S^{1}\cross\{1\}$ (Figure 3.4(iv), $(v)$ ). In either case there is a
semi-disk $D$ cobounded by $\alpha$ and an arc $c\subset S^{1}\cross\{0\}.$

(i) (ii)

(iii) (iv) (v)

ou 3.4: $\Phi^{-1}(\overline{S})$ in $S^{1}\cross[0,1]$

Putting $\varphi=\Phi|_{D}:Darrow E(T_{-3,2})$ , we obtain a desired smooth map. $\square$ (Claim 3.3)

Cut open $E(T_{-3,2})$ along 3 to obtain a product $3-$manifold $\overline{S}\cross[0,1]$ . The circle $\overline{C}$

is cut into five arcs $c_{1},$ $c_{2},$ $c_{3},$ $c_{4}$ and $c_{5}$ as in Figure 3.3(ii). Note that $\partial c_{1}\subset\overline{S}\cross\{0\},$

$\partial c_{3}\subset\overline{S}\cross\{1\}$ , and each of $c_{2},$ $c_{4},$ $c_{5}$ connects $\overline{S}\cross\{0\}$ and $\overline{S}\cross\{1\}$ . Moreover, we see that
$c_{1}$ and $c_{3}$ are linking once relative their boundaries.

On the other hand, since $c$ is either $c_{1}$ or $c_{3}$ , Claim 3.3 shows that $c_{1}$ and $c_{3}$ are unlinked
relative their boundaries. This contradiction shows that for any fiber surface $\overline{S},$ $|\overline{S}\cap\overline{C}|=5$

and $|\overline{S}\cap\overline{C}|>lk(T_{-3},{}_{2}\overline{C})$ .
Since $\pi_{1}(T_{-3,2}(r))$ is left-orderable if $r\in(-1, \infty)$ , the conclusions (3) and (4) follow

fromTheorem 2.1. This completes the proof of Example 3.2. $\square$ (Example 3.2)

For any fibered knot $K$ in $S^{3}$ a minimal genus Seifert surface in $E(K)$ is a fiber surface
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and vice versa, and furthermore, any fiber surface is unique up to isotopy. See [10, Lemma
5.1], [36].

4 Proofs of Theorems 1.8.

The goal of this section is to prove Theorems 1.8.

Proof of Theorem 1.8. Let us consider the connected sum $T_{-3,2}\# T_{3,2}$ . We recall the
following well-known general fact.

Claim 4.1 Let $K_{1},$
$\ldots,$

$K_{n}$ be nontrivial knots. Then $(K_{1}\#\cdots\# K_{n})(r)$ is irreducible for
all $r\in \mathbb{Q}.$

Proof of Claim 4.1. First we note that the exterior $E(K_{1}\#\cdots\# K_{n})$ is a union of a
composing space $C_{n}$ (i.e. [disk with $n$ –holes] $\cross S^{1}$ ) and $E(K_{1}),$

$\ldots,$
$E(K_{n})$ . Hence for

any $r\in \mathbb{Q},$ $(K_{1}\#\cdots\# K_{n})(r)$ is a union of $C_{n}\cup V$ and $E(K_{1}),$
$\ldots,$

$E(K_{n})$ , where $V$ is a
filled solid torus. Note that $C_{n}\cup V$ has a Seifert fibration over the disk with $(n-1)$ -holes
with at most one exceptional fiber, and hence it is irreducible and boundary-irreducible.
Then since $C_{n}\cup V$ and $E(K_{i})(1\leq i\leq n)$ are irreducible and boundary-irreducible,
$(K_{1}\#\cdots\# K_{n})(r)$ is also irreducible. $\square$ (Claim 4.1)

Let us regard $T_{-3,2}\# T_{3,2}$ as a satellite knot with the companion knot $T_{3,2}$ and the
pattern knot $T_{-3,2}$ . Since $\pi_{1}(T_{-3,2}(r))$ is left-orderable if $r>-1[8]$ , and $(T_{-3,2}\# T_{3,2})(r)$ is
irreducible for all $r\in \mathbb{Q}$ (Claim 4.1), Proposition 4.1 in [8] shows that $\pi_{1}((T_{-3,2}\# T_{3,2})(r))$

is also left-orderable if $r>-1$ . Using the amphicheirality of $T_{-3,2}\# T_{3,2}$ , we see that
$\pi_{1}((T_{-3,2}\# T_{3,2})(r))$ is left-orderable also when $r<1$ . Therefore it is left-orderable for all
$r\in \mathbb{Q}$ . Note that $T_{-3,2}\# T_{3,2}$ is a fibered knot.

Before we apply Theorem 2.1, for ease of handling, take the connected sum $(T_{-3,2}\# T_{3,2})\# T_{2}.$

The Alexander polynomial of $(T_{-3,2}\# T_{3,2})\# T_{2}$ is $(t^{2}-t+1)^{2}(2t^{2}-5t+2)$ , which is
not monic, and hence $(T_{-3,2}\# T_{3,2})\# T_{2}$ is not fibered. We regard $(T_{-3,2}\# T_{3,2})\# T_{2}$ as a
satellite knot with the companion knot $T_{2}$ and the pattern knot $T_{-3,2}\# T_{3,2}$ . As we ob-
serve above, $\pi_{1}((T_{-3,2}\# T_{3,2})(r))$ is left-orderable for all $r\in \mathbb{Q}$ . Moreover by Claim 4.1
$(T_{-3,2}\# T_{3,2}\# T_{2})(r)$ is irreducible for all $r\in \mathbb{Q}$ . We apply [8, Proposition 4.1] again to
conclude that $(T_{-3,2}\# T_{3,2}\# T_{2})(r)$ has the left-orderable fundamental group for all $r\in \mathbb{Q}.$

To obtain hyperbolic knots with this property, we will apply the periodic construction
(Theorem 2.1). Let us put $\overline{K}=T_{-3,2}\# T_{3,2}\# T_{2}$ and take an unknotted circle $CY$ as in
Figure 4.1; $lk(\overline{K}, \overline{C})=1.$

Since KUC is a non-split prime alternating link [22, Theorem 1], it is either a torus
link or a hyperbolic link [22, Corollary 2]. The former cannot happen, because 7? is not a
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@ 4.1: $\overline{K}\cup\overline{C}$

torus knot. Hence $\overline{K}\cup\overline{C}$ is a hyperbolic link. Let $p>2$ be any integer. Take the -fold
cyclic branched cover of $S^{3}$ branched along $\overline{C}$ to obtain a periodic knot $K \frac{p}{c}$ which is the
preimage of $K.$

It follows from Theorem 2.1 and Theorem 2.7(2) that $K \frac{p}{c}$ is a hyperbolic knot and
enjoys the properties (1), (2) and (3) in Theorem 1.8. By changing $p$ , we obtain infinitely
many such knots. For instance, see Remark 2.6. $\square$ (Theorem 1.8)

Remark 4.2 (1) By Theorem 2.7 there are infinitely many unknotted circles for $\overline{K}=$

$T_{-3,2}\# T_{3,2}\# T_{2}$ , and for each unknotted circle $\overline{C}$ we obtain infinitely many hyperbolic
knots $K \frac{p}{c}$ , where $p$ and $lk(\overline{K}, \overline{C})$ are relatively prime.

(2) Recall that any knot $K$ obtained by the periodic construction”, for instance a knot
obtained in the pmof of Theorem 1.8, is not fibered and every nontrivial surgery on
$K$ is a lefl-ordemble, $non-L$ -space surgery. So we can apply Theorem 2.1 again to
the knot $K$ and an arbitrarily chosen unknotted circle to obtain yet further infinitely
many non-fibered knots $K’$ each of which has the (same) factor knot K. Then $r-$

surgery on $K’$ is also a left-ordemble, $non-L$ -space surgery for all $r\in \mathbb{Q}$ . We can
apply this procedure repeatedly arbitmrily many times.

(3) Let $K$ be the knot $10_{99}$ in Rolfsen’s knot table [$33J$ . Recently Clay $[5J$ uses an epimor-

phism from $E(K)$ to $E(T_{3,2})$ which preserves the peripheral subgroup $[20J$ to show that
every nontrivial surgery on $K$ is left-orderable surgery. Since $K$ has no cyclic period
$[19$, Appendix $FJ$, this example cannot be explained by the periodic construction.
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