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1 Introduction

In Heegaard Floer homology theory, $L$-spaces introduced in [17] have an important role.
A rational homology 3-sphere $Y$ is called an $L$ -space if $HF(Y)$ is a free abelian group
whose rank is equal to the order of $H_{1}(Y)$ . Lens spaces are typical $L$-spaces, and several
other families of $L$-spaces are known so far. However, it is still an open problem to give
a characterization of $L$-spaces without involving Heegaard Floer homology.

In [4], Boyer, Gordon and Watson conjecture that an irreducible rational homology
3-sphere is an $L$-space if and only if its fundamental group is not left-orderable. This
would be an algebraic characterization of $L$-spaces. Here, a non-trivial group $G$ is said
to be left-orderable if it admits a strict total ordering $<$

” which is invariant under left-
multiplication. That is, if $g<h$ then $fg<fh$ for any $f,$ $g,$ $h\in G$ . As a convention,

the trivial group is defined to be not left-orderable. It is easy to see that $G$ is left-
orderable if and only if $G$ is right-orderable, which is defined similarly. The history of
research on orderable groups is long, and many groups which appear in topology are left-
orderable. For example, free groups, free abelian groups, knot or link groups, braid groups
are left-orderable. Also, the fundamental groups of surfaces but the projective plane are
left-orderable. Since left-orderable groups are torsion-free, the fundamental groups of lens
spaces, elliptic manifolds are not left-orderable. It is natural to ask which 3-manifolds have

left-orderable fundamental groups. As a classical fact, the free products of left-orderable
groups are left-orderable. Hence we may restrict ourselves to prime 3-manifolds. Boyer,

Rolfsen and Wiest [5] prove that if a compact connected orientable prime 3-manifold has

non-zero first betti number, then its fundamental group is left-orderable. Thus irreducible

rational homology 3-spheres remain to be done.
Dehn surgery might be the easiest way to create rational homology 3-spheres. For a

given knot $K$ in the 3-sphere $S^{3},$ $r$-surgery yields a rational homology sphere whenever
$r\neq 0$ . By considering the cabling conjecture, the resulting rational homology sphere
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would be irreducible if $K$ is not cabled. On the other hand, there are some strong
constraints for knots which admit Dehn surgery yielding $L$-spaces. For example, such
knots are fibered ([16]), and their Alexander polynomials have a specffied form ([17]).
Thus the above conjecture by Boyer, Gordon and Watson suggests that any non-trivial
Dehn surgery on $K$ yields a 3-manifold with left-orderable fundamental group, unless $K$

passes such criteria.
Any knot group is left-orderable. The fundamental group of the resulting manifold by

Dehn surgery on a knot is a quotient of the knot group. Although any subgroup of a left-
orderable group is left-orderable, a quotient may not be left-orderable. For torus knots,
the resulting manifold by Dehn surgery is either a Seifert fibered manifold or the con-
nected sum of two lens spaces. Since Boyer, Gordon and Watson [4] solved the conjecture
affirmatively for Seifert fibered manifolds, the left-orderability of the fundamental groups
of the resulting manifolds by Dehn surgery is completely understandable for torus knots.

The simplest hyperbolic knot is the figure-eight knot. By [17], it does not admit Dehn
surgery yielding an $L$-space. Hence we may expect that any non-trivial Dehn surgery
yields a 3-manifold whose fundamental group is left-orderable. Toward this direction,
Boyer, Gordon and Watson [4] showed if the surgery slope $r$ lies in the interval $(-4,4)$ ,
then $r$-surgery yields a manifold with left-orderable fundamental group. Later, Clay,
Watson and Lidman [6] confirmed the same conclusion for $r=\pm 4$ . (We remark that as
noted in [4], this is also true for any integral surgery by [9]. $)$ These two arguments are
quite different. The former builds a non-trivial representation of the fundamental group of
the resulting manifold by $r$-surgery into $SL_{2}(\mathbb{R})$ , which is known to be left-orderable ([2]).
But the latter makes use of the torus decomposition of the resulting (graph) manifold into
two Seifert fibered pieces and some gluing technique of left-orderings ([3]). The argument
of [6] was generalized to all hyperbolic twist knots in [19]. We showed that 4-surgery on
a hyperbolic twist knot yields a manifold with left-orderable fundamental group. (Here,
the hook of a twist knot is assumed to be left-handed.) Furthermore, we extended the
argument for any exceptional Dehn surgery on hyperbolic two-bridge knots in [7].

In this note, we report a generalization of the argument of [4] from the figure-eight knot
to hyperbolic genus one two-bridge knots. Details are found in [11]. Let $K=K(m, n)$ be
a hyperbolic genus one two-bridge knot $S(4mn+1,2m)$ as shown in Figure 1. Here, the
twists in the vertical box is left-handed (resp. right-handed) if $m>0$ (resp. $m<0$ ), but
those in the horizontal box is right-handed (resp. left-handed) if $n>0$ (resp. $n<0$ ). By
symmetry, $K(m, n)$ is equivalent to $K(-n, -m)$ . Also, $K(-m, -n)$ is the mirror image
of $K(m, n)$ . Hence we may assume that $m>0$ . Thus $K(1,1)$ is the figure-eight knot,
and $K(1, -1)$ is the right-handed trefoil.

For a knot $K$ , a slope $r$ is said to be left-orierable if the resulting manifold $K(r)$ by
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$\otimes 1$ : $A$ genus one two-bridge knot $K(m, n)$

$r$-surgery has a left-orderable fundamental group.

Theorem 1.1 ([11]) Let $K(m, n)$ be a hyperbolic genus one two-bridge knot $S(4mn+$

$1,2m)$ in the 3-sphere $S^{3}$ . Let I be the interval defined by

$I=\{\begin{array}{ll}(-4n, 4m) if n>0,{[}0, \max\{4m, -4n\}) if m>1 and n<-1,{[}0,4] otherwise.\end{array}$

Then any slope in I is left-ordemble. That is, the fundamental group of the resulting

manifold by $r$ -surgery on $K(m, n)$ is lefl-orderable if $r\in I.$

Among $K(m, n),$ $K(1, n)$ and $K(m, \pm 1)$ are twist knots. Moreover, $K(m, -1)$ is equiv-
alent to $K(1, -m)$ , and $K(m, 1)$ is the mirror image of $K(1, m)$ .

Corollary 1.2 Let $K(1, n)$ be the $n$ -twist knot with $n\neq-1$ . If $n>0$ , then any slope
in the interval $(-4n, 4]$ is left-ordemble. If $n<-1$ , then then any slope in $[0,4]w$ left-
ordemble.

Our argument works for the figure-eight knot, and it is much simpler than one in [4],
which involves character varieties. The fact that a knot has genus one is crucial in our
argument as well as that of [4]. In general, the longitude of a knot group is a product of
commutators. If a knot has genus one, then the longitude is a single commutator. For
a representation of a knot group into the universal covering group $SL_{2}(\mathbb{R})$ , we need to
control the image of the longitude, by using Wood’s inequality [21]. See Lemma 2.7.

Anh Tran [20] obtained independently a similar result to Theorem 1.1.
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2 Outline

Let $K=K(m, n)$ and let $G=\pi_{1}(S^{3}-K)$ be its knot group. We always assume that
$m>0$ and $n\neq 0$ , unless specified otherwise.

Proposition 2.1 The knot group $G$ admits a presentation

$G=\langle x, y|w^{n}x=yw^{n}\rangle,$

where $x$ and $y$ are meridians and $w=(xy^{-1})^{m}(x^{-1}y)^{m}$ . Further.more, the longitude $\mathcal{L}$

is given as $\mathcal{L}=w_{*}^{n}w^{n}$ , where $w_{*}=(yx^{-1})^{m}(y^{-1}x)^{m}$ is obtained from $w$ by reversing the
order of letters.

$2$ : $A$ surgery diagram of $K(m, n)$

This is slightly different from that in [13, Proposition 1], but both are isomorphic. It is
derived from a surgery diagram of $K$ as illustrated in Figure 2, where $1/m$-surgery and
$-1/n$-surgery are performed along the second and third components, respectively.

Let $s$ and $t$ be real numbers such that $s>0$ and $t>1$ . Let $\rho$ : $Garrow SL_{2}(\mathbb{R})$ be a
representation of $G$ defined by

$\rho(x)=(_{0}^{\sqrt{t}} 1/\sqrt{t}1/\sqrt{t}) , \rho(y)=(_{-s\sqrt{t}}\sqrt{t}1/\sqrt{t}0)$

By [18], $\rho$ gives a non-abelian representation if $s$ and $t$ are a pair of solutions of the Riley
polynomial. Let $W=\rho(w)$ and $z_{i,j}$ be the $(i, j)$-entry of $W^{n}$ . Then the Riley polynomial
of $K$ is given by $\phi_{K}(s, t)=z_{1,1}+(1-t)z_{1,2}$ . (See also [8].) Since $s$ and $t$ are limited
to be positive real numbers in our setting, it is not obvious that there exist solutions for
Riley’s equation $\phi_{K}(s, t)=0$ . However, this will be verified in Proposition 2.3 under some
condition.

To describe the Riley polynomial of $K$ explicitly, we need two sequences of polynomials
with a single variable $s.$
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For non-negative integer $m$ , let $f_{m}\in \mathbb{Z}[s]$ be defined by the recursion

$f_{m+2}-(s+2)f_{m+1}+f_{m}=0$ (2.1)

with initial conditions $f_{0}=1$ and $f_{1}=s+1$ . Also, let $g_{m}\in \mathbb{Z}[s]$ be defined by the same
recursion

$g_{m+2}-(s+2)g_{m+1}+g_{m}=0$ (2.2)

with slightly different initial conditions $g_{0}=1$ and $g_{1}=s+2$ . We remark that $g_{m}$ is
equivalent to the Chebyshev polynomial of the second kind.

The closed formulae for $f_{m}$ and $g_{m}$ are

$f_{m}= \sum_{i=0}^{m}(\begin{array}{ll}m +im -i\end{array})s^{i}, g_{m}= \sum_{i=0}^{m}(\begin{array}{ll}m +l+i -im\end{array})s^{i}.$

In particular, all coefficients of $f_{m}$ and $g_{m}$ are positive integers, and the degree of $f_{m}$ and
$g_{m}$ is $m$ . Also, $f_{m}$ and $g_{m}$ are monic.

Let $\lambda_{\pm}\in \mathbb{C}$ be the eigenvalues of $W=\rho(w)$ . For any integer $k$ , set $\tau_{k}=(\lambda_{+}^{k}-\lambda^{\underline{k}})/(\lambda_{+}-$

$\lambda_{-})$ .

Proposition 2.2 The Riley polynomial of $K$ is

$\phi_{K}(s, t)=(\tau_{n+1}-\tau_{n})+(s+2-t-1/t)f_{m-1}g_{m-1^{\mathcal{T}}n}.$

For convenience, we introduce a variable $T=t+1/t$ . Then the Riley polynomial of $K$

is $\phi_{K}(s, T)=(\tau_{n+1}-\tau_{n})+(s+2-T)f_{m-1}g_{m-1^{\mathcal{T}}n}.$

For example, if $n=1$ then

$\phi_{K}(s, T) = (\tau_{2}-\tau_{1})+(s+2-T)f_{m-1}g_{m-1}\tau_{1}$

$= (trW-1)+(s+2-T)f_{m-1}g_{m-1}$

$= s(s+2-T)g_{m-1}^{2}+1+(s+2-T)f_{m-1}g_{m-1}$

$= (s+2-T)g_{m-1}(sg_{m-1}+f_{m-1})+1$

$= (s+2-T)g_{m-1}f_{m}+1.$

Thus Riley’s equation $\phi_{K}(\mathcal{S}, T)=0$ has the unique solution $T=s+2+1/(f_{m}g_{m-1})$ for
any $s>0$ . Then $T>s+2>2$ , because $f_{m}>0$ and $g_{m-1}>0$ . Hence we have a real
solution $t=(T+\sqrt{T^{2}-4})/2>1$ . In fact, we have $s+2<T<s+2+4/(sg_{m-1}^{2})$ .

Proposition 2.3 Suppose $n\neq\pm 1$ . For any $s>0$ , Riley’s equation $\phi_{K}(s, T)=0$ has
a solution $T$ satisfying $s+2+c/(sg_{m-1}^{2})<T<s+2+d/(sg_{m-1}^{2})$ , where $c$ and $d$ are
constants in $(0,4)$ depending only on $n$ . In particular, $\phi_{K}(s, t)=0$ has a solution $t>1$

for any $s>0.$
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Now, we introduce a continuous family of representations of $G$ . For $s>0$ , let $\rho_{s}:Garrow$

$SL_{2}(\mathbb{R})$ be the representation defined by the correspondence

$\rho_{S}(x)=(\begin{array}{ll}\sqrt{t} 00 \frac{1}{\sqrt{t}}\end{array}), \rho_{s}(y)=(^{\frac{t-s-1}{\sqrt{t}-\frac{1}{r_{t}}}}-\mathcal{S} \frac{}{(\sqrt{t}-\frac{S-\underline{1}S\frac{1}{+1\gamma_{t}})^{2}}{\sqrt{t}-\frac{1}{r_{t}}}}-1)$ (2.3)

Since $\rho_{s}$ is conjugate with $\rho$ , if $s$ and $t$ satisfy Riley’s equation $\phi_{K}(s, t)=0$ then $\rho_{s}$ gives
a non-abelian representation of $G$ as well as $\rho$ (see [8, 14]).

Proposition 2.4 For the longitude $\mathcal{L}$ of $G$ , the matrix $\rho_{S}(\mathcal{L})$ is diagonal, and the $(1, 1)-$

entry of $\rho_{s}(\mathcal{L})$ is a positive real number.

The first conclusion is easy, but the second is important. To show it, the character vari-
ety theory was used in [4, Lemma 7], but we can establish it through a direct calculation.

Let $B_{s}$ be the (1, 1)-entry of the matrix $\rho_{s}(\mathcal{L})$ .

Proposition 2.5
$B_{s}= \frac{-f_{m}+tf_{m-1}}{-f_{m-1}+tf_{m}}.$

This conclusion is interesting, because the parameter $n$ disappears.
Let $r=p/q$ be a rational number, and let $K(r)$ denote the resulting manifold by r-

surgery on $K$ . In other words, $K(r)$ is obtained by attaching a solid torus $V$ to the knot
exterior $E(K)$ along their boundaries so that the loop $x^{p}\mathcal{L}^{q}$ bounds a meridian disk of $V,$

where $x$ and $\mathcal{L}$ are a meridian and longitude of $K.$

Our representation $\rho_{s}:Garrow SL_{2}(\mathbb{R})$ induces a homomorphism $\pi_{1}(K(r))arrow SL_{2}(\mathbb{R})$ if
and only if $\rho_{s}(x)^{p}\rho_{S}(\mathcal{L})^{q}=I$ . Since both of $\rho_{s}(x)$ and $\rho_{s}(\mathcal{L})$ are diagonal (see (2.3) and
Proposition 2.4), this is equivalent to the single equation

$A_{s}^{p}B_{s}^{q}=1$ , (2.4)

where $A_{s}$ and $B_{S}$ are the (1, 1)-entries of $\rho_{s}(x)$ and $\rho_{s}(\mathcal{L})$ , respectively. We remark that
$A_{s}=\sqrt{t}(>1)$ is a positive real number, so is $B_{s}$ by Proposition 2.4. Hence the equation
(2.4) is furthermore equivalent to the equation

$- \frac{\log B_{S}}{\log A_{s}}=\frac{p}{q}$ . (2.5)

Let $g:(0, \infty)arrow \mathbb{R}$ be a function defined by

$g(s)=- \frac{\log B_{s}}{\log A_{s}}.$

By calculating limits, we obtain the following.
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Proposition 2.6 The image of $g$ contains an open interval $(0,4m)$ .

The next is the key in [4], which is originally claimed in [14], for the figure-eight knot.
Our proof most follows that of $[4\underline{].}$

The universal covering group $SL_{2}(\mathbb{R})$ can be described as

$S\overline{L_{2}(\mathbb{R}})=\{(\gamma,\omega)||\gamma|<1, -\infty<\omega<\infty\}.$

See [1, 14]. Let $\chi$ : $S\overline{L_{2}(\mathbb{R}}$) $arrow SL_{2}(\mathbb{R})$ be the covering projection. Then $ker\chi=\{(0,2j\pi)|$

$j\in \mathbb{Z}\}.$

Lemma 2.7 Let $\tilde{\rho}$ : $Garrow S\overline{L_{2}\underline{(\mathbb{R}}}$) be a lift of $\rho_{s}$ . Then replacing $\tilde{\rho}$ by a representation
$\tilde{\rho}’=h\cdot\tilde{\rho}$ for some $h:Garrow S\underline{L_{2}(\mathbb{R})}$, we can suppose that $\tilde{\rho}(\pi_{1}(\partial E(K)))$ is contained in

the subgroup $(-1,1)\cross\{0\}$ of $SL_{2}(\mathbb{R})$ .

Proof of Theorem 1.1 Suppose $n\neq-1$ . Let $r=p/q\in(0,4m)$ . By Proposition 2.6, we
can find $s$ so that $g(s)=r$ . Choose a lift $\tilde{\rho}_{s}$ of $\rho_{s}$ so that $\tilde{\rho}_{s}(\pi_{1}(\partial E(K)))\subset(-1,1)\cross\{0\}$

(Lemma 2.7). Then $\rho_{s}(x^{p}\mathcal{L}^{q})=I$ , so $\chi(\tilde{\rho}_{s}(x^{p}\mathcal{L}^{q}))=I$ . This means that $\tilde{\rho}_{s}(x^{p}\mathcal{L}^{q})$ lies in
$ker\chi=\{(0,2j\underline{\pi)|j}\in \mathbb{Z}\}.$ Hence $\tilde{\rho}_{s}(x^{p}\mathcal{L}^{q})=(0,0)$ . Then $\tilde{\rho}_{s}\underline{can}$induce a homomorphism
$\pi_{1}(K(r))arrow SL_{2}(\mathbb{R})$ with non-abelian image. Recall that $SL_{2}(\mathbb{R})$ is left-orderable ([2])
and any (non-trivial) subgroup of a left-orderable group is left-orderable. Since $K(r)$

is irreducible [12], $\pi_{1}(K(r))$ is left-orderable by [5, Theorem 1.1]. For $r=0,$ $K(O)$ is

irreducible ([10]) and has positive betti number. Hence $\pi_{1}(K(O))$ is left-orderable by

[5, Corollary 3.4]. Thus we have shown that any slope in $[0,4m)$ is left-orderable for
$K=K(m, n)$ .

Suppose $n>0$ . If we apply the above argument for $K(n, m)$ , then any slope in $[0,4n)$ is
shown to be left-orderable. Since $K(n, m)$ is equivalent to the mirror image of $K(m, n)$ ,

any slope in $(-4n, 0] is left-$orderable $for K(m, n)$ . Thus we can conclude that $(-4n, 4m)$

consists of left-orderable slopes for $K=K(m, n)$ with $n>0.$

Suppose $m>1$ and $n<-1$ . Since $K(m, n)$ is equivalent to $K(-n, -m)$ , the argument
in the first paragraph shows that any slope in $[0, -4n)$ is left-orderable. In this case, we
obtain $[0, \max\{4m, -4n\})$ consisting of left-orderable slopes.

Finally, consider the remaining cases. They are $K(1, n)$ with $n<-1$ and $K(m, -1)$

with $m>1$ . Since $K(m, -1)$ is isotopic to $K(1, -m)$ , two cases coincide. We obtain $[0,4)$

consisting of left-orderable slopes by the argument in the first paragraph. Furthermore,

since these knots are twist knots, the slope 4 is also left-orderable by [19]. $\square$
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