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Abstract

In this article we will discuss the generalizations of the A-polynomial on basis of the
colored superpolynomial. The colored superpolynomial is the Poincaré polynomial of the
colored HOMFLY homology that categorifies the colored HOMFLY polynomial. In partic-
ular for the colored superpolynomial with the symmetric representation, the analogues of
the generalized/quantum volume conjecture can be considered. As a result of the study of
the colored HOMFLY homology for the (2, 2p + 1)-torus knots and n-twist knots, we find
the 2-parameter deformation of the A-polynomial that is named as super-A-polynomial.

1 Introduction

Let Cx be the character variety of the knot K. This variety is defined to be the moduli
space of the SL;(C) holonomy representation p of the knot complement S*\ K:

Hom(m; (K); SLy(C))/conjugation. (1)

Ck is the algebraic curve in the variables (z,y) € C*xC* which are given by the eigenvalues
of the holonomy matrices for the meridian and longitude elements u, A € m;(K):

p(u)=<g;1), p<A>=(§y’L). (2)
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The defining equation of Cx is given by the A-polynomial Ak (z,v) [8]:
Cxk = {(z,y) € C* x C*|Ak(z,y) = 0}. 3)

As for example, the A-polynomials for 3; and 4, are found manifestly from the generator
relations of m;(K):

A31 (x,y) = (y - 1)(y + .’1:3), (4)
Ay (zy) =y -1)" + (-2 + 2+ 22* +z - 1y +1). (5)

In the generalized volume conjecture, the colored Jones polynomial and A-polynomial
are related in the asymptotic limit.

Conjecture 1.1 (/27, 38, 28]) Let J.(K;q) be an n-colored Jones polynomial. In the
asymptotic limit:

g=¢e">1, n—ooo, z:=q" (fixed), (6)

there exist a saddle point such that the colored Jones polynomial grows exponentially:

1
I(Kig =) = exp (15a) ) @
The leading coefficient So(z) satisfies the relation:
0Sy(x
228 togy(a),  Aleyia) =0 Q

The quantum version of the volume conjecture (which is also known as AJ conjecture)
also relates the colored Jones polynomial and A-polynomial via the ¢-difference equation:

Conjecture 1.2 (23, 20]) The colored Jones polynomial obeys the g-difference equation:

~

Ak(2,9;9)Jn(K;9) =0, 9)
tJo(K;q) = ¢"In(K;q), 9In(K;q) = Jnt1(K;q), 9% = q. (10)

such that the g-difference operator AK(.’Z‘,ﬂ; q) yields in the limit ¢ — 1 of (6):
~ a A —1
Ag(E,9;9) = Ax(z,y). (11)

This conjecture is verified directly for some knots via computer talks [20], and the g-
difference operator Ag (%, §;q) can be found explicitly.

In recent developments of the string theory, some extensions of the volume conjecture
have been studied. In [1], the analogue of the generalized/quantum volume conjecture
are also proposed for the colored HOMFLY polynomial:



Conjecture 1.3 ([1]) Let H,(K;a,q) be a colored HOMFLY polynomial of the r-th com-
pletely symmetric representation 8™ (n =1 +1 ). In the asymptotic limit:

g=¢e"=1, n—oo, a z:=q"(fixed), (12)

there exist a saddle point such that the colored Jones polynomial grows exponentially:

H,(K;a,q=€") ~exp (%So(x; a)+---), (13)
0So(z;a _de
x-% =logy(z), A% *(z,y(z);a)=0. (14)

The Q)-deformed A-polynomial Ag_def(x, y;a) coincides with the augmentation polynomial
[85] for the differential graded algebra of the knot contact homology [12].

Conjecture 1.4 ([1]) One finds a q-difference operator A%~ (z, §; a, g) that annthilates
the colored HOMFLY polynomial:

Ax(2,9;9)Hn(K;a,q) =0, (15)

where & and § acts on Hy(K;a,q) as (10), and the g-difference operator AY™ (2, §; a, q)
reduces to the Q-deformed A-polynomial AS % (z,y;a) in the limit (12):

AL (3, g5a0,9) 5 AL (2, y;a). (16)

In the context of the topological string, this g-difference equation reveals the D-module
structure of the open topological string, and such aspect has been studied in @ — 1 limit
via the topological recursion on the character variety [9, 10, 25, 5].

On basis of these observations for the (2,2p + 1)-torus knots and n-twist knots, we
expect the further extension of the volume conjecture to the colored superpolynomial.
The colored superpolynomial P#(K;a,q,t). is the Poincaré polynomial of the colored
HOMFLY homology Hf\ (K) [24]:

PR(K;a,q,t) = Z aiqjtkdimﬂﬁk(K). (17)
1,5,k
The triply-graded homology Hf}k(K ) categorifies the the colored HOMFLY polynomial
HE(K;a,q), therefore these polynomial invariants are related by

PH(K;a,q,t=~1) = H¥(K;a,q). (18)

In particular for the completely symmetric representation R = ", the colored super-
polynomial P,(K;a,q,t) := 'PS"_I(K; a,q,t), we can study the natural extension of the

quantum volume conjecture.
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Conjecture 1.5 ([18]) Let P,(K;a,q,t) be the colored superpolynomial PR(K;a,q,t) for
the completely symmetric representation R = S™ (r = n —1). One finds a g-difference
equation:

AP (3,950, 0, t)Pa(K; a,0,) = 0, (19)

such that the g-difference operator reduces to the 2-parameter extended A-polynomial
AL (z,y;a,t) in the limit:

g=e"=1, n—ooo, a,t,r:=q" (fixed). (20)
AP (x,y; a,t) reduces to the Q-deformed A-polynomial in the specializationt = —1, and
further reduces to the A-polynomial in the specializationa =1, t = —1.

The 2-parameter extended A-polynomial A" (z,y;a,t) defined above is named as the
super-A-polynomial, and this polynomial is also found via asymptotic expansion of the
colored superpolynomial:

Pn(K;aaq=ehat) =~ exp (%So(l’,a,t)'f') ) (21)
o2ESY _rogy(a), Ay =0 (22)

Conjecture 1.5 is verified for K = 34, 41, 52,61 in [18, 34] via the computer talks on basis
of the explicit formula for the colored superpolynomial P,(K;a,gq,t).

The organization of this article is as follows. In section 2, we will survey briefly on
the colored superpolynomial [11, 24, 22] and show some computational results obtained
in [19]. In section 3, we will discuss about the super-A-polynomial from the explicit
formulae of the colored superpolynomial obtained in section 2, and see their properties.
In the appendix, we discuss the string-theoretical perturbative invariant associated to the
super-A-polynomial which is found via the topological recursion as is discussed in (10, 5]
for the A-polynomial.

2 Colored HOMFLY homology and colored superpolynomial
2.1 Categorification of the HOMFLY polymonial

The categorifications of the Jones polynomial and HOMFLY polynomial are estab-
lished in the celebrated works [28, 30]. In [30] the doubly-graded homology ’Hii,” (K)
is constructed via the matrix factorization, and categorifies the sly invariant which is
given by the specialization of the HOMFLY polynomial H(K;a = q",q). This homol-
ogy is known as the sly-Khovanov-Rozansky’s homology. As the decategorification of



the Khovanov-Rozansky’s homology, one finds the sly invariant via the g-graded Euler
characteristic:*

H(K;a=gq",q) =) (-1)fePdimHi (K). (23)
k,p

In order to describe the sl homologies in the unified manner, the triply-graded homol-
ogy Hijr(K) is proposed in [11, 29]. This homology categorifies the HOMFLY polynomial:

H(K;a,q) Zan Hijk(K), (24)
5.k
and is named as the HOMFLY homology. In particular, the Poincarepolynomial of the
HOMFLY homology is known as superpolynomial:
P(K;a,q,t) = Z a‘'gt* dimH i (K). (25)
%,k
The properties of the HOMFLY homology are given as its definition in [11], and they

are listed as follows:
Properties of the HOMFLY homology

H1. H, categorifies the HOMFLY polynomial.

H2. H, »has finite support: dimH, < oo

H3. The differentials dy (N € Z) acts on H., and the grading (ijk) is shifted as:'
dy: Hijxk = Hic1jsne—1 (N > 0) (26)
dv: Hige = Himjenie-3 (N <0) (27)

Thus the differential dy are triply-graded of degree: degdy = (—1,N,-1) (N > 0),
and degdy = (-1, N, -3) (N <0).

H4. The differentials are anticommuting each other: dy o dyy = —dp o dy for all
(N,M € Z). Hence for N = M, d2, =

HS5. There exist an involution ¢ : H;j» — H; ;.. The action of ¢ on dy is ¢pdy = d_pn¢.

H6. Taking homology with respect to dy (N > 2), one finds the sly Khovanov-

Rozansky’s homology H*'V after the amalgamation:

@ (’H*, dN)ijk - ’HZLN (28)

iN+j=p

*In this article, we discuss the reduced homology which is the trivial for the unknot.
tHere we obey the convention of grading in [24]. In [11] another degree is assigned for dy (N < 0) such that degdy =
(=1, N,N —1). These two gradings are combined into the quadruply-graded homology [22].
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H7. Taking homology with respect to dy;, one finds the one dimensional sl;-homology
[31):

(Ha,di) = Hs—s0, (Hard-1) = Hssos- (29)

The grading of the surviving generator is specified by the Rasmussen’s invariant S
[37] (e.g. S = (p—1)(g—1)/2 for (p, q)-torus knot).

HS8. Taking homology with respect to do, one finds the knot Floer homology HF K [36]
after a regrading:

P (H. do)ijx = HFKp;. (30)

—2i+k=k'

These properties implies that the HOMFLY homology unifies not only the sly Khovanov-
Rozansky’s homology, but also their deformations [21, 26] and knot Floer homology.
Conversely speaking, one can determine the structure of the triply-graded homology H;x
which satisfies the above properties consistently, and the following conjecture is proposed:

Conjecture 2.1 ([11]) There exists a triply-graded homology Hijx which satisfies the
properties H1-HS.

This conjecture is verified for various knots up to 8 crossings, and the superpolynomials
(i.e. homological structure of the triply-graded homology) are specified uniquely.

2.2 Colored HOMFLY homology

The categorification of the colored HOMFLY polynomial H®(K;a,q) is proposed in
[24]. The triply-graded homology ’H{'}k which categorifies H?(K;a,q) is named as the
colored HOMFLY homology:

R(K;a,q) Ea (- kdlm’H”k( )- (31)
ijk
Here we focus on the colored HOMFLY homology in the completely symmetric repre-
sentation R = S”. The properties of ’HUk are proposed in [24], and they consists of the
natural generalization of the properties H1-H7 and new aspects are introduced via the
colored differentials. Such properties listed as follows:
Properties of the colored HOMFLY homology

C1. HY categorifies the colored HOMFLY polynomial H S'(Kja,q).

C2. H, has finite support: dimH, < oo



C3. The differentials d3 (N € Z) acts on H, with degrees:

degdy = (-1,N,=1) (N>1—-7), degdy =(-1,N,=3) (N<—r). (32)

C4. The differentials are anticommuting each other: d¥ o dy; = —d3; o dy for all
(N,M € Z). Hence for N = M, (d% ) =0.

C5. There exist an involution ¢ : HS, — H} ., where A” denotes the r-th anti-

1jx 1,—J*
symmetric representation such that (S7)* = A”. The involution acts on d3% as:
¢y = d¥y¢.

C6. Taking homology with respect to dy (N > 2), one finds the S™-colored sl homology

IN,ST. ST 48T i
H SN : (’H* 7dN )ijk ~ stlN S .

C7. Taking homology with respect to di" and d°7, one finds the one dimensional ho-
mology:

(Hfr’dfr) = Hfg,—rs’,O’ (H*Sr’df;) = Hfsr*,ﬁs,‘zrs- (33)

C8. Taking homology with respect to df”, (1 < k < r), one finds the colored HOMFLY
homology of the smaller representation R = S*:

(HTdiy) = H. (34)
This class of differentials df”, are named as the vertical colored differentials.

C9. There exists yet another class of the differential d,_,,, which reduces the represen-
tation S™ — S™ (r > m):

(H*ST> drsm) = " (35)
For example, the degree of d,,,_; is (0,1, 0).

In the statement of the properties C8 and C9, one can identify the generators after a
re-grading (4,7,k) — (¢, 5/, k). Although the re-grading rules are not simply described
in the triply-graded homology [24], such rules become manifest when we discuss in the
framework of the quadruply-graded homology [22], and larger hidden symmetry of the
homology can be found.

Assuming these properties as the axioms of the colored HOMFLY homology, one can
also determine the triply-graded homology from the consistency of conditions C1-C9.
Actually, the explicit expressions of the colored superpolynomial P5" (K;a, g, t):

PY(K;a,q,t) = Zaiqjtkdimﬂfj;(f() (36)

ijk
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are determined for the (2, 2p + 1)-torus knots T>%*! [17, 19] and the twist knots with n
crossings T K, [34, 19]:

. k ky._
PI(T** % a,q,t) = aP'q"" r L O B o
OSkpS"'SkZShS’m:T q P q
k1
Xq(2T+1) Zf=1 ki_zf=1 ki—lkit2 Zf___l ki H(l + aqi—2t), (37)
i=1

aEI‘=1 ki t2 E?:l ks

ST . _ T ky kn_1
P (TK2n+‘21a»Qat) = Z [: ]q[k'.’]q[ kn

0<kn<--<kz<ki<ko=r ka q
k1

quLl(k‘Lk‘) H(l + a~1q2—it—l)(1 + a-—lql—r—it—S), (38)
i=1

n
where [ P J denotes the ¢g-binomial coefficient:
q

nl __ (&9 R - P
{kL“(q;q)m;q)n_;’ (@an =110 -2) (39)

The colored superpolynomial for the twist knots with odd number of crossings can be

expressed in the similar manner.

3 Super-A-polynomial

Now we shall discuss about the super-A-polynomial and Conjecture 1.5 based on (37)
and (38). From the asymptotic expansion of these expressions for the colored superpoly-
omials, one finds the super-A-polynomial A" (z,y;a,t) from (7). For 3; and 4; knots,
the super-A-polynomials are

AP (z,y;0,t) = a®t*(z - 1)2° + (1 + at’z)y?
—a(1 ~ t*z + 26*(1 + at)z® + at®z® + a®t°z*)y, (40)
AP (z,y;a,t) = a®t®(z — 1)%0® + at®2*(1 + at’z)%y’
+at(z — 1)(1 + t(1 — t)z + 2at3(t + 1)2® — 2at*(t + 1)z® + a?t%(1 — t)2* — *t82%)y
—(1 +at®z)(1 + at(l — t)z + 2at?(t + 1)z* + 2’4 (t + 1)2® + a®t3(t — 1)z* + a3t" %)y
(41)

Specializing to a = 1 and t = —1, one finds that these expressions reduce to the A-

polynomials (4) and (5).



Now our conjecture 1.5 can be verified explicitly. For 3; and 4, one finds the quantum
super-A-polynomials AS*P"(z, §; a, q, t) manifestly via the computer talks [20]:

. . k
AP (@ i0,0,1) = 35 (3a,0,03", e
k=0
L0 _ @t4(E — 1)a3(1 + aqt®s?) 4@
57 g(1+at33)(1 + atPq-132))
o _ a1 +at8%)(q - 3 + (¢° + ¢ + at + ag’)3® + ag’t°’ + ”qt°2")
3, ¢*(1 + at32)(1 + at®q~12?) |
3
AT g t) = ) ) (Ba,0, 09, (43)
k=0

-0 _ _ at’(1 = 2)(1 — g2)(1 + at®¢*3%)(1 + at’¢*1?) 20) _
A1+ at32)(1 + at322)(1 + at3qz)(1 + atdq—142)" 4 ’

=1,

(1) _ (1—q2)(1 + at¢’2?)

5 =TT 1 at®3) (1 + atiqd)(1 + alq-122)
(1 — t(t — 1)gi + at®q~ (1 + ¢° + gt + ¢*t)?

—at*(qg+ * +t + ¢*t)2® — a®(t — 1)t%qz* — a%%¢°% )

~(2) (1 + at3q2§:2)
a4 = —
! at?q?22(1 + at33?)(1 + at3qZ)

X (1 —at(t—1)Z +at*(g+¢* +t + ¢°t)2?

a2t (1 + 3 + gt + ¢?)3® + a2(t — 1)5%5 + a3t7q35:5).
These g-difference operators satisfies the following properties:

. A‘"}?”er(x, y;a,q = 1,t) reduces to the super-A-polynomial A% (z,y;a,t) up to over-
all factors.

e Under the specializations ¢t = —1 and a = ¢?, A%P"(%,9;0,q,t) annihilates the
colored HOMFLY polynomial and colored Jones polynomial:

AT (& Ga,q,t = —1)HS" (K3 a,q) =0, (44)
A&, G0 = ¢ gt = —1)Jn(K; ) = 0. (45)

e Under the specialization z = 1, one finds the
AR (2 = 1,y;0,t) = y* +4*'P(K;a,q = 1,1), (46)

where k is the maximum y-degree of the super-A-polynomial, and P(K;a, g, t) is the
superpolynomial.
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A (x,ysa,t)

N 4
/ \

A" (x,y;t) A xy)

&/

A(x,y)

B 1: Hierarchy of A-polynomials

The second property implies an existence of the hierarchical structure of the (a, t)-deformations
of the A-polynomial. As a completion of this hierarchy, one also finds the refined A-
polynomial [17):

A;ﬁf(x, y;t) = AT (z,y;a0 = 1,t), A;?f(.'f?, g;t) = Aﬁ}"’"(g},g; a=q¢*1). (47)

In conclusion, the super-A-polynomial reveals the integrable structure behind the col-
ored superpolynomials, and we expect that this polynomial contains a plenty of informa-
tion for the topology of the knot complement. Via string theoretical interpretation of the
A-polynomial [9, 10, 1], the invariants associated to the symplectic structure of the the
character variety can be explored. As the first step, we will study such invariant for the
super-A-polynomial of 3; knot in Appendix.
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A Topological recursion on the character variety

For the character variety C whose defining equation is given by the A-polynomial, one
finds a class of geometric invariants associated to the symplectic structure of C via string
theoretical interpretations [9, 10, 1] by utilizing the formalism of the topological recursion.
This formalism is originally developed in the study of the matrix models, and one can



calculate such symplectic invariants systematically. In this appendix, we will compute
(2|2)-Baker-Akhierzer kernel 1[%% for the (super-) character variety of 3; knot.}

A.1 Topological recursion

In the analytic study of the matrix models [3, 2] and topological strings [6, 7], the free
energy F, and correlator W (9" (p1,- -+ ,pr) are studied in detail on basis of the symplectic
data of the spectral curve C. In [13, 16], a systematic method for such analysis has been
established, and called as the Eynard-Orantin’s topological recursion. Here we focus on
the topological recursion for the genus one curve C given by the algebraic equation:

Co={(z,y) € C*ly* = M(2)’S(z)}, (48)
S(z) = (z - z1)(z — z2)(z — z3)(z — 24). (49)

We denoted a rational function M(z), and the branch points ¢; (i = 1,- - - ,4) of C which
obey (z(g:),y(¢:)) = (;,0). In the computation of the topological recursion, we mainly
use the symplectic data of the smooth model Cy:

Co = {(z,y) € C?ly] = S(x)}, (50)

where a compact cycle which encircles around [gi, g;] is denoted as A, and its symplectic
dual cycle is denoted by B. These cycles obeys AN A =0, BNB =0, and ANB = 1.
For this genus one curve, the Bergman kernel B(p;, p,) is the meromorphic (1, 1)-form on
Co®* 3 (z(p1), yo(p1); 2(p2), wo(p2)) which obeys the following properties:

P1p2 dp, ® dp,
(pl - 202)2

#8010 =0, B = 2ridus (52)

j{ dwo = 1, }{dwo =T, (53)
A B

where in (52) we denoted the integration of the Bergman kernel B(py, p;) with respect to
p2 for an abbreviation, and 7 is the period of the elliptic curve Co.

From these symplectic data of the spectral curve Cy, the recursion relations for the
correlators W@R)(p, ... p,) are introduced as follows:

B(p1,p2) + holomorphic, (51)

Definition A.1 (/16/) The meromorphic (1,--- ,1)-form W@M (p,, ... p,) on C®" sat-

1 This point is presented in the problem session of the workshop ILDT 2018.
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X 2: Diagrammatic representation of the Eynard-Orantin’s topological recursion relation (55)

isfies the following recursion relation:
WO (), WO (py,ps) = Bp,ps), (54)

303 BGpo) [ i}
Wgh+1 (pO,pl, ) ’ph) = Z R;q (y( = [W(g 1’h+2)(qa q,P1,° aph)

gi:Branch pts. q) - y(q))

v E > Wt D (g p yWEHITHD (G pg 1) | (55)
£=0 JCH

where H = {1,--- ,h}, J = {t1,---4;} C H, and |H| = h, |J| = 5. The points q,§ € C are
related by (z(3), y(§)) = (z(q), ~y(q)). The diagrammatic representation of the recursion
(55) is described in Fig.2.
The free energy Fy is defined on basis of the above data of the spectral curve C. For
g = 0,1, the free energies Fy and F} are defined by
1

_ L _ L1
O.Fy —%dmyo(x), €= = dzyo(z), 7= 27“86 F, (56)

F =——log (TBHy q,), (57)

where 7p is the Bergmann 7-function which is defined via the relation Olog7g/z =
Res (B(g,q)/dz(q)). For g > 2, the free energy F} is given by
9=a

F, =

9

R QWE(a), 0(a) = [ doun(o)] (58)

In this way, the free energies and correlators for C are calculated recursively by solving
the equation (55) and (58).

A.2 Non-perturbative partition function and (n|n)-kernel

The above definition of the topological recursion gives the perturbative part of the free
energy and correlator. When we take into account of the analyticity of these quantities, the



non-perturbative effects must be treated carefully. To incorporate the non-perturbative
effects systematically, the non-perturbative partition function T,, is introduced in [14, 15]:

Definition A.2 ([14, 15]) Let 9 := ¥ [] (C|) be the theta function of the spectral curve
Co whose period T is defined in (53):
Y = Z eiﬂ(n+n)27+2i7r(n+u)(c+l/), (59)
nez

where p,v € C/Z. The theta function satisfies the heat equation
DY =V®9, V=0/0¢, D =4nid/or. (60)

Using this theta function and the free energy Fy, the non-perturbative partition function
To.[yodz] is defined as follows:
To.lyodz] = exp (Zﬁ”‘%)
h>0

F}E;iﬂ) . V@dj

1 2'2h7“2+dj T
X{ZF > 6 D=t T2im)d 4! % (61)

>0 ' h;>0, d;>0
2h;—2+d; >0

where ¢ is specialized to (g, :

o e el s, @

which is defined modulo Z.

In the case of the N x N Hermitian 1-matrix model, this non-perturbative partition
function is given by summing all possible filling fractions [14], and multi-instanton correc-
tions to the perturbative free energy F, which is defined by 1/N expansion of the partition
function are included. The non-perturbative corrections to the correlator is defined to be
given by the Schlesinger transformation [38] of 7T,,[yodz], and such quantity is named
as the Baker-Akhierzer’s (n|n)-kernel ;bg’j'”] (p1,01;- -+ ;Pn,0n) (abbreviated as (n|n)-BA
kernel). The (n|n)-BA-kernel is defined as follows:

Definition A.3 (/4]) Let dS,, be the Abelian differential of the third kind on the genus
one curve Cy which is given by the Bergman kernel as:

45,l@) = [ B.0) (63)

Shifting 1-form yodz by yodz + Y- | dS,, p, in Ty, [yodz], one finds the Baker-Akhierzer’s
(nln)-kernel Y4 (p1, 013+ , P, 0n):

Tolvodz — yodz + 30, dS,, 5]
[nn] Coa s = 9 i=1 700Pi] 64
wgs (pla 015 i Dn, On) 7-“J [yodx] ( )
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This definition is formal, and 1,[;[ "Il can be described more explicitly in terms of the data
of C. For details of the above definitions, see 4, 5].

To evaluate the above quantities explicitly, we have to take care about the dependence
on the choice of the symplectic basis (A4, B) of the spectral curve Cp. Since the free energy,
correlator, and (n|n)-BA kernel are sensitive to the choice of the symplectic basis, one
finds a shift of these quantities under the change of (A4, B). Therefore, we have to specify
the choice of symplectic basis when we study the topological recursion. The shift of the
topological recursion can be treated simply as follows. When one changes the symplectic

basis (A, B) by
(A", B") = (A - kB",B-T1A), (65)
the Bergman kernel is shifted as:

Bi(p1,p2) = B(p1,p2) + 2imdwo(py) - & - dwo(p2), (66)

and the correlators W@ are also shifted to W™ by adopting this shifted Bergman
kernel B, (p;,p2) to the topological recursion (55) (7, 5].

In [5], the asymptotic expansion of (2|2)-BA kernel in g; — 0 is found explicitly by
using the k-shifted correlator WP as follows:

11)[2'2](171,01,172,02 ~ €Xp [Z 95Gi( P1,01,P2,02)] ) (67)
G = Gh,(QO) + Gg|,¢0) + T2 o KG'lln +T o|nG2|K (T3 ok T3|r€)Ggi£3)v (68)
Gy =Gy + GO + TGy + §(T4,.|N + T2 G2+, (69)

where GZ]fcd) and Ty, are given by

ho(d) 1 1 P1.p2 P1.P2 (ntd,h)
b . —_— n ¥
Gnln (pl, 01; P2, 02) Y] (27{'1)dd' L Tt /o f e g W, ) (70)

1,02 1,02

-~
n times d times

[d/?] ! reye ! — 94!
d\(=1)¢ (2in)¥ o,  VBE-2)y
I.Z-:ﬂ,c = E —Qd/d'! "“K®d & ‘—“—‘—19 . (71)
d’'=0

The notation Ty, means the evaluation of Ty for ¢ = (,, + J. :; b o’; ? dwo. In (69), we have

described only the terms which are relevent in the evaluation on the spectral curve with
a reciprocal symmetry: ¢, B = —B,.



A.3 Quantum volume conjecture and (2|2)-BA kernel

Choosing the spectral curve C as the character variety Cx of the knot K that is defined
by the A-polynomial Ag(z,y):

Ck = {($>y) € C" x C*lAK(may) = 0}3 (72)

one can evaluate the (2|2)-BA kernel as the invariant associated to the symplectic structure
of the character variety. In particular for K = 4,, C4, is genus one curve, and we can
evaluate (2|2)-BA kernel explicitly using the formulae (67)-(71). Furthermore, since the
character variety has reciprocal symmetry that is invariant under the involution ¢:

z((p)) = 1/z(p), y(up)) = 1/y(p), (73)

we can consider the (2/2)-BA kernel 32 (p, 0;¢(p), t(0)) invariant under the reciprocal
symmetry (73).

On the other hand, in the quantum volume conjecture [23, 20, it is proposed that the
colored Jones polynomial satisfies a g-difference equation: Ak (&,7;q)Jn(K;q) = 0, and
the asymptotic solution of the g-difference equation can be found iteratively solving the
differential equation:

Ak (2, 9;9 = €M Tk (z; B) = 0, (74)

2Jx(z; h) = 2Tk (z; ), 9Tk (z;h) = €' Ji(z; B), (75)

Tk (x; ) ~ K2 exp (Z hkjk(x)> . (76)
k>—1

On basis of the observation for the figure eight knot and m009, the following conjecture
is proposed in [10, 5]:8

Conjecture A.1 ([5]) Choose k as k(1) = —2—11;%27%1 There exist a choice of the end-
point o and p,v € C/Z for the theta function ¥ [4] ((|7) such that
Tic((p), 2h) = (&7 (p, 01.4(p), (o)) (77)

At each level of the asymptotic expansion, (77) implies

2jk(2(p)) = G(p, 05 (p), «(0))- (78)

$Physically this conjecture is proposed in [10]. But in [10] only the perturbative part is discussed, and the non-
perturbative part is introduced as an ad hoc regularization. This ad hoc point is resolved in [5] by the completion of
the non-perturbative completion, and here we use the statement of the conjecture proposed in [5].
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A.4 (2/2)-BA kernel for the super-A-polynomial of 3,

Now we discuss the invariants associated to the super-A-polynomial. The super-A-
polynomial for 3; knot is

AP (z,y50,8) = a’ti(z —1)2° + (1 + at’z)y?
—a(1 — %z + 2(1 + at)z® + at®z® + a’t®z%)y, (79)

and the super-character variety C3** = {(z,y) € C* x C*|A%* (z,y;a,t) = 0} is genus
one curve in this case. Furthermore, A3 has the deformed reciprocal symmetry:

1 _ 1 _
2(u(p)) = = —5=(p)™ y(up)) = Zu(P) . (80)
To discuss the topological recursion for the super-character variety as the genus one

curve, we rewrite the super-A-polynomial (79) [32]:

Ca = {(z,y) € C*ly* = M(X)*S(2)}, (81)
M(z) = 1 o A(z) ++/S(z) (82)

T oS A - /5@
1 — 2z + 2t%2?% + 2at3z? + atdz® + a?t%2*
Alz) = at3(1 + at3z?) ’ (83)

S(z) = a %781 — 2t*z + 4t%2* + 2at®2? + t'2? + 2at®z® + a®t®2?). (84)

In terms of this coordinate, the smooth model is given by
Caro = {(2,30) € C*lyg = S(2)}. (85)

The smooth model C3)'y" can be rewritten in the Weierstrass form:

y? = 4x3 — gox — g3, (86)
16+ 16at + 8t* + 16a%t* 4 16at’ 4 t*
g2 - 12a4t8 ? (87)
(4 + 8at + t?)(—16 + 8at — 8t> + 8a’t? — 16at® — t*)
9= 216a5112 ' (88)

The value of the theta functions of Cgy" are found explicitly via the relations: E4 =
95 + 03 + 0203 = 3(2w ) ga/dn?, Be = —02 — 30501/2 + 36305 /2 + 0}* = 27(2w4)%g3/8n®
where 2wy := §, dz with (z,9) = (p(2/2wal7), ©'(2/2wa|T)). The coeflicient Toq)c(r) for

—537%7(;) is given by [5]

K(T) =
2
Toajn(ry = Daat1j2 © -+ © Daa—3j2 © D1720i(7)/0:(T), Dif:= Df + 3?kE2- (89)

The choice of u, v corresponds to the choice of ¢ = 2, 3,4 for the Jacobi’s theta functions
6;(1) with 3 + 0} = 63. For 4; knot, the appropriate choice of y, v is found for one of
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the solutions for 6; of the above relations between E,(r) and 6;(7) [5]. In the case of

super-character variety of 31, we choose the appropriate values of Tojx(ry and Tyje(r) as:

4 + 8at + ¢*
2 _
T21K'(T)/(2WA) - - 12a2t4 ) (90)
~16 + 32at — 8t? + 32a%t? — 16at® — t*
4 _
Tyu(ry/ (2w4)* = - 180y : (91)
where these are unique solution that is given by the rational function of a, t.

From these geometric data of the super-character variety C3.>™", one can calculate

G:ifid) (p,0;4(p), t(0)) which appears in Gy term. Here we consider the (2|2)-BA kernel
which is invariant under the deformed reciprocal symmetry (80). The terms G_; and Gy
are treated independently, and they are given as the Abel map and discriminant of CjP"
as follows [6, 10]:9

log N — (92)

VS(z)/z?’

where v = \/—(3 + 4at + t2)/2at. The next order G; (68) is found via topological recur-
sion (55): '

N —

P,4(p) dzx
Gy = / 2 1ogy(z), Go=
ou(0) T

G0y = (—16 — 16t — 24at® — 11¢* — 18at5 — 26 — 8a*® — 4at” — 215 + (48¢% + 24¢*
+32at” + 27t° — 160’5 + 24at” + 6t° — 16a%® + 12at° — 16a3t° + 6a%t1%)z + (—128¢
—80at® — 208t* — 336at® — 80t° — 152at° — 207at” — 33¢® — 178a%t® — 20at® — 72a3t°
—6t'0 + 40a%t1° — 12at'! + 30a31 — 6a%t'?)a? + (—224at® — 11265 — 12845 — 560at”
—24t% — 768a’t® — 302at° — 288a°t° + 9¢'° — 664a%t'° — 16at'! — 544a3!! + 2412
—52a°t"? — 160at'? + 4at'® — 28033 + 24%t")2® + (128at® + 802 + 208at”
+336a°t® + 80at® + 152a%t° + 207a%t'° + 33at!! + 17843t + 20a2t'2 + 72a%1? + 6at'®
—40a%t" + 120%™ — 30at™ + 60%'%) 2 + (48a%t% + 24a%t° + 32031 + 2742412
—16a%t"? + 24a%" + 6a%t™ — 16a*t™ + 12a°'° — 16a°t' + 6a%'%)2® + (16a%t°
+16a°t" + 24a*t? + 116%™ + 18a*tM + 20310 + 8a¢!® + 4a%t'° + 245¢17)z%)

/(12(1 + at)(1 + £* + at®)(16 + 8t + 16at® + t*)

x(1 = 2t° + (427 + 2at® + t*)2° + 2at°2® + a?t°2%)%/?), (93)

Gaoly = (1 + (3% + 6at®)e + (—12% — 15at® — 9t4 — 12at%)a? + (4t — 10at® + 5¢°
—20a”t® + 6at”)z® + (12at® + 15a%° + 9at” + 12a°t%)z* + (3a®t® + 6a3¢%)z® — a*t°z®)
/(12(1 + at)(1 — 232 + (44 + 2at® + t*)2® + 2at®z® + a’t%z*)3/?), (94)

YIn [10] the Bergman kernel is calculated in the variable w = (z + z~1)/2 that is invaraint under the involution ¢. In
this case, we use the variable w = %(z —1/(at?z)) to evaluate Go term.
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Gointr) = 0 Gijatry = 0 (9)
GYD ) - (2@a)? = (at'(=4 — 387 — dat® + (48° + 5t + 6at°)z + (dat’ + 3at® + 40’t")2?)
J((1 + at)(16 + 8% + 16at® + t*)(1 — 2t%z + (48> + 2at® + t*)2* + 2at°2° + a’t02*)'/?).
(96)

Applying these GZ]E:?T) and (90) to (68), one finds the G; term:

Gi(z) = (1 + 2at + 2t% + dat® + 2a%* + (3t* — 2t* — 4at® - 20°t%)z

+( — 16t — 11at® — 21¢* + 2a%t* — 28at® — 2t° — 8a’t® — 4at” + 2a%t" — 24%°)2”

+( — 30at® — 7t° — 24a%® — 48at” + 2t* — 68a%t® + 4at® — 28a%° + 2a%t'°)

+(16at® + 11a° + 21at” — 2a%" + 28a%® + 2at°® + 8a%t° + 4a’t"" — 2a*t'% + 24°¢"") 2
+(302t8 - 2a2t1° - 4a3t” - 2a4t12) $5 + ( - a3t9 - 2a4t1° - 2a3t” - 4a4t12 - 2a5t13) IEG)
/(48(1 +at)(1 + 2 + at®)(1 — 2%z + 4t%2? + 2at3z? + t'2® + 2at°z% + a2t6m4)3/2)

-1 +1—5x2+z4
© 48(at+1)  16(1 — z + 22)2

+0(a—1,t+1). (97)

The above result and the solution of the g-difference equation (21) with fixed a variable
behave differently even in the augmentation limit ¢ = —1. This discrepancy would be
related with the subtlety of the g-dependence of a and z in the asymptotic expansion. In
terms of the mirror symmetry proposed in [1], the open string amplitude may be identified
with (2]2)-BA kernel after the pull back by the mirror map. This point will be studied in
the future works.

A.4.1 G, term for the augmentation variety

The G is also computed via the above data. Here we note the result for t = —1
specialization:

Gy %, = ~(a~ (8 +10a — 8a%)z + (64 — 101a + 58¢°)” + (=16 — 76a + 82a° — 40a°)z’
+(~160 + 375a — 60a® — 65a%)z* + (—104 + 810a — 1524a® + 644a® + 48a*)z° + (224
—1043a + 1154a> + 306a® — 500a%)z® + (—104a + 810a® — 1524a® + 644a* + 48a°)z’
+(—160a2 + 375a% — 60a* — 65a°)2® + (—16a® — 76a* + 82a° — 40a°)z® + (64a* — 101a°
+58a%)z'? + (—8a® + 10a° — 8a")z"! + a"z'?)

/(128(~1 + a)*(1 - 2z + 52? — 2az® — 2az® + a’z*)%), (98)



Gl - (2w4)? = (125 + 57a — 19202 + 64a® + (—100 — 1248 + 1644a? — 5124%)c
+(2650 — 2382a + 272a%)z® + (3300 — 20508a + 292204 — 159484 + 3072a%)z®
+(—14775 + 57821a — 72418a” + 370864 — 6560a* — 128a%)z* + (3300a — 2050842
+29220a° — 15948a* + 3072a%)z° + (265002 — 2382a° + 272a°%)2® + (—100a® — 12484
+1644a® — 512a°)2” + (125a* + 57a® — 192a° + 64a7)2)

/(96(—1+ a)*(—25 + 16a)%(1 — 2z + 522 — 2az® — 2az® + a’z*)?), (99)

a*(—1120 + 1983a — 1200a? + 256a°)

8(~1+ a)2(—25 + 16a)3 ’

Gy = (3850 + 1186a — 1143702 + 8008a® — 16a* — 1280a° + 256a° + (—49300
+103052a — 122582a® + 128516a° — 92528a* + 34304a° — 4864a°)z + (128150
—72366a — 2232550 + 258862a% — 75964a* — 97284% + 6720a° — 512a7)z?
+(—1218200 + 45669480 — 84556404 + 9515930a° — 6630236a* + 2759120a°
—625920a° + 59648a")2® + (3323350 — 12843994 + 22690091a2 — 229994864°
+13992613a* — 4981960a° + 941328a® — 70656a" — 256a%)z* + (—628500 — 3175260a
+15266330a® — 245498084 + 19927324a* — 8353480a° + 1355680a’ + 1410564’
—54784a%)z° + (—333750 + 4605350a — 74208450 — 4329006a° + 225327624
—25674524a° + 14219576a° — 39623684” + 4417284% + 1024a°)z® + (—628500a
—3175260a” + 15266330a° — 24549808a* + 199273244 — 8353480a° + 13556804
+141056a® — 54784a°)z" + (332335042 — 12843994a° + 22690091a* — 2209948645
+13992613a° — 4981960a" + 941328a® — 70656a° — 2564'°)z® + (—1218200a°
+4566948a* — 8455640a° + 9515930a° — 6630236a” + 2759120a8 — 625920a°
+59648a'%)z® + (1281500 — 72366a° — 22325548 + 258862a" — 7596448 — 97284°
+6720a'® — 512a'")2® + (—49300a° + 103052a° — 1225824" + 1285164 — 925284°
+34304a'® — 4864a')z"! 4 (3850a° + 1186a” — 1143748 + 8008a® — 1640 — 12804
+256a'%)z'?)

/(1152(=2 + a)*(—=1 + a)%(—25 + 16a)*(1 — 2z + 52% — 2az? — 2az® + a’c*)%),  (101)

G1’(2) . (2’13,4)2

0lx(r)

__ a*(—3575 — 2759a + 2305502 — 20532a° + 16568a* — 4512a° + 512a°) (102)

- 48(—2 + a)?(~1+ a)2(—25 + 16a)3

(100)

0,(4 (
GO[l(c(?r) ) (QWA)4 ==
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Applying the above results to (69), one finds the G term:

Gy = (2+6a — 6a® + a® + (—4 — 60a + 60a® — 14a®)z + (—194 + 910a — 10384
+455a% — 70a)z? 4+ (—696 + 1988a — 339642 + 3000a® — 1238a* + 192a°)z?
+(28462* — 8254az* + 10940a> — 7367a® + 2410a* — 305a°)z* + (—1156 — 196a
4326002 — 294243 + 172a* + 676a° — 192a°)z® + (610 — 790a + 6442a> — 15635a°
+15598a* — 6934a® + 1132a°%)2% + (—1156a — 1964 + 3260a® — 2942a* + 17245
+676a° — 192a7)z" + (28464 — 8254a® + 10940a* — 7367a° + 2410a® — 305a")2®
+(—696a> + 1988a* — 3396a° + 3000a® — 1238a” + 192a®)2® + (—194a* + 910a®
—1038a® + 45507 — 70a®)z'® + (—4a® — 60a® + 60a” — 14a®)z™ + (2a° + 64’

—6a® + a%)z'?)
/(48(=2+ a)*(~1 + a)*(1 — 2z + 5z% — 2az® — 2az® + a’z")?). (103)
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